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Abstract: As a typical machine olfactory system index, the accuracy of hybrid gas identification
and concentration detection is low. This paper proposes a novel hybrid gas identification and
concentration detection method. In this method, Kernel Principal Component Analysis (KPCA)
is employed to extract the nonlinear mixed gas characteristics of different components, and then
K-nearest neighbour algorithm (KNN) classification modelling is utilized to realize the recognition of
the target gas. In addition, this method adopts a multivariable relevance vector machine (MVRVM)
to regress the multi-input nonlinear signal to realize the detection of the concentration of the hybrid
gas. The proposed method is validated by using CO and CH4 as the experimental system samples.
The experimental results illustrate that the accuracy of the proposed method reaches 98.33%, which
is 5.83% and 14.16% higher than that of principal component analysis (PCA) and independent
component analysis (ICA), respectively. For the hybrid gas concentration detection method, the CO
and CH4 concentration detection average relative errors are reduced to 5.58% and 5.38%, respectively.

Keywords: sensor array; gas detection; gas identification; kernel principal component analysis;
multivariate relevance vector machine

1. Introduction

With the rapid development of modern science and technology, sensor technology and pattern
recognition methods continue to improve, promoting the development of machine olfaction. Machine
olfaction is a bionic detection technology that uses electronic devices to simulate biological olfactory
systems. The system is widely used in gas/odour qualitative identification and quantitative detection.
Unlike machine vision technology, which shows mature development and wide application, machine
olfaction technology is still in the stage of research and development. This technology shows a wide
range of application prospects in such fields as environmental monitoring [1], medical auxiliary
diagnosis [2,3], industrial production [4], and public safety [5]. Relevant scholars have continuously
devoted themselves to the research of related technologies (gas-sensitive materials, manufacturing
processes, signal processing methods, pattern recognition methods, gas molecular structures, etc.) in
machine olfaction and have obtained a series of research results [6–8]. Mammals can use their natural
olfactory system to easily identify some odors, but they cannot easily detect certain colorless, odorless
gases [9]. In particular, when certain flammable and explosive toxic gases (such as carbon monoxide
and methane) are leaked, they will cause harm at a certain concentration, which will greatly endanger
human life and property. Therefore, it is of great significance to qualitatively identify and quantitatively
detect various hazards and harmful gases in human production and living environments.
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The machine olfactory system includes three main components: (1) a gas sensor array; (2) a signal
acquisition and processing device; (3) a pattern recognition algorithm, as shown in Figure 1. Gas
sensor collects the electrical signals, and the combination of various sensors can effectively improve the
selection ability of the sensor [10]. The electrical signal output from the sensor passes through the data
acquisition and A/D conversion system to obtain a series of response signals. After pre-processing
techniques, feature parameters are extracted from each response signal, and the feature values are then
extracted through multi-dimensional signal processing techniques. Finally, the feature parameters or
feature values are sent to a pattern recognition system to obtain information pertaining to gas type
and concentration. The pattern recognition algorithm is composed of two main parts: qualitative
identification and quantitative detection. The operating requirements of gas sensors, as key devices for
gas detection, have higher and higher requirements for its accuracy, performance and stability [11].
The performance indicators of gas sensors mainly include sensitivity, selectivity, response time, energy
consumption, reversibility, adsorption capacity, and fabrication cost. However, the occurrence of
certain factors will lead to instability of the gas sensor, such as structural changes, phase shifts, and
changes in the surrounding environment. Therefore, to ensure that the gas sensor produces a stable
and reproducible signal over a given period, the use of chemically and thermally stable materials to
optimize the sensing element’s elemental composition and grain size is critical [12,13]. Among many
types of sensors, metal oxide semiconductor (MOS) gas sensors are widely used in gas detection due
to their fast response, low cost, and long service life [14,15]. However, because the cross-sensitivity
characteristic is prevalent in MOS gas sensors and there is no single-gas selective gas sensor, the use of
a single MOS gas sensor cannot recognize a mixed gas [16,17]. In machine olfactory systems, MOS
gas sensor array technology is widely used. The basic structure is to form a sensor array for a group
of MOS gas sensors with different gas sensitivities. This method improves the selectivity of a single
gas sensor [18] and obtains more information on multi-channel response signals, providing a feasible
means for the detection and analysis of the composition of mixed gases [19].

Sensors 2018, 18, x FOR PEER REVIEW  2 of 17 

 

quantitatively detect various hazards and harmful gases in human production and living 
environments. 

The machine olfactory system includes three main components: (1) a gas sensor array; (2) a signal 
acquisition and processing device; (3) a pattern recognition algorithm, as shown in Figure 1. Gas 
sensor collects the electrical signals, and the combination of various sensors can effectively improve 
the selection ability of the sensor [10]. The electrical signal output from the sensor passes through the 
data acquisition and A/D conversion system to obtain a series of response signals. After pre-
processing techniques, feature parameters are extracted from each response signal, and the feature 
values are then extracted through multi-dimensional signal processing techniques. Finally, the 
feature parameters or feature values are sent to a pattern recognition system to obtain information 
pertaining to gas type and concentration. The pattern recognition algorithm is composed of two main 
parts: qualitative identification and quantitative detection. The operating requirements of gas 
sensors, as key devices for gas detection, have higher and higher requirements for its accuracy, 
performance and stability [11]. The performance indicators of gas sensors mainly include sensitivity, 
selectivity, response time, energy consumption, reversibility, adsorption capacity, and fabrication 
cost. However, the occurrence of certain factors will lead to instability of the gas sensor, such as 
structural changes, phase shifts, and changes in the surrounding environment. Therefore, to ensure 
that the gas sensor produces a stable and reproducible signal over a given period, the use of 
chemically and thermally stable materials to optimize the sensing element’s elemental composition 
and grain size is critical [12,13]. Among many types of sensors, metal oxide semiconductor (MOS) 
gas sensors are widely used in gas detection due to their fast response, low cost, and long service life 
[14,15]. However, because the cross-sensitivity characteristic is prevalent in MOS gas sensors and 
there is no single-gas selective gas sensor, the use of a single MOS gas sensor cannot recognize a 
mixed gas [16,17]. In machine olfactory systems, MOS gas sensor array technology is widely used. 
The basic structure is to form a sensor array for a group of MOS gas sensors with different gas 
sensitivities. This method improves the selectivity of a single gas sensor [18] and obtains more 
information on multi-channel response signals, providing a feasible means for the detection and 
analysis of the composition of mixed gases [19]. 

G
as

 M
ix

tu
re

Sensor1

Sensor2

Sensor3

Sampling
and Conditioning

Sampling 
and

Conditioning

Sampling 
and

Conditioning

Feature 
Extraction

Feature 
Extraction

Feature 
Extraction

F
ea

tu
re

 E
xt

ra
ct

io
n 

an
d 

N
or

m
al

iz
at

io
n

P
at

te
rn

 R
ec

og
ni

ti
on

G
as

 S
pe

ci
es

an
d 

C
on

ce
nt

ra
ti

on
 I

nf
or

m
at

io
n

Signal Acquisition and Processing DeviceGas Sensor Array pattern recognition algorithm

 
Figure 1. Block diagram of a machine olfactory system. 

Traditional machine olfactory systems rely on MOS gas sensor array technology and pattern 
recognition algorithms to detect and analyse mixed gases [20,21]. The current research direction of 
machine olfaction is mainly the development of MOS gas-sensitive materials and the study of pattern 
recognition algorithms [22]. An effective signal acquisition device is the premise of the machine 
olfactory system. The selectivity and sensitivity of the MOS gas sensor can be improved through 
composite materials, preparation processes and doping methods [23]. However, there is no single 
selective material for the study of MOS gas sensitivity, and cross-sensitive characteristics still exist. 
The improvement of the detection and analysis performance of the gas mixture components by means 
of gas-sensitive materials alone does not yield satisfactory results. Hence, many studies have focused 

Figure 1. Block diagram of a machine olfactory system.

Traditional machine olfactory systems rely on MOS gas sensor array technology and pattern
recognition algorithms to detect and analyse mixed gases [20,21]. The current research direction of
machine olfaction is mainly the development of MOS gas-sensitive materials and the study of pattern
recognition algorithms [22]. An effective signal acquisition device is the premise of the machine
olfactory system. The selectivity and sensitivity of the MOS gas sensor can be improved through
composite materials, preparation processes and doping methods [23]. However, there is no single
selective material for the study of MOS gas sensitivity, and cross-sensitive characteristics still exist.
The improvement of the detection and analysis performance of the gas mixture components by means
of gas-sensitive materials alone does not yield satisfactory results. Hence, many studies have focused
on the use of signal processing methods to improve the detection and analysis performance of the
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machine olfactory system. Some studies [24,25] have noted the importance of the signal processing
method in the machine olfactory system. However, improving the performance of the algorithm
can better achieve a signal classification effect and enhance the detection and analysis capabilities of
the machine olfactory system. One study [26] used a chaotic BPNN algorithm to identify distilled
liquors; the recognition rate reached 100%, and the convergence speed was 75.5 times faster that of the
BPNN algorithm. Zhang used the LPC pattern recognition algorithm based on KPCA to enhance the
elimination of background interference and improved the prediction accuracy of mixed gases [27,28].

Pattern recognition can be defined as the identification or classification of complex signal samples.
The current machine olfactory system mainly includes two parts: gas qualitative recognition and
quantitative detection [29]. Therefore, the machine olfactory system can also be defined as a pattern
recognition. In [30], principal component analysis (PCA) and an artificial neural network (ANN) were
used to combine the optimum feature parameters. Using PCA, good separation between the mixed
gas signals was obtained, and the recognition probability of the artificial neural network was 98%.
Wang [31] proposed a DQN active perception strategy with a higher classification accuracy than that
of PCA, which can optimize the flow modulation online, achieve higher recognition accuracy, increase
recognition speed, and reduce training and testing costs. Studies [32–34] used independent component
analysis (ICA) to decompose a multidimensional vector into statistical components, which were as
independent as possible and eliminated the redundancy of the original data. In [35], researchers
compared the MLP gas quantitative detection performance of single multiple inputs multiple outputs
(SMIMO) and multiple multiple inputs single output (MMISO) algorithms and improved the detection
accuracy of multiple single gas concentrations. A method combining Weighted Kernels Fisher
Discriminant Analysis (WKFDA) with Quantum-behaved Particle Swarm Optimization (QPSO)
and reprocessing of an original eigenmatrix using QWKFDA was proposed by Li, Z.H. et al. [36],
improving the accuracy of feature parameter extraction in the prediction of wound infection and
inflammable gases. Reference [37] proposed a hybrid gas detection method based on one-class
support vector machines (SVM). The recognition rates of the two gas samples reached 95.24% and
94.83%, respectively.

Although the above-mentioned methods have effectively achieved mixed gas identification and
concentration detection to some extent, both PCA and ICA are linear feature extraction methods [38],
and the extracted features are linear additions of the original features. However, the response signals
of MOS gas sensors have nonlinear characteristics [39]. The intrinsic structure of the actual data set is
not in the same plane; thus, the PCA and ICA methods are not ideal. The ANN algorithm requires a
large number of parameters, and the empirically determined weights and thresholds will cause the
gas recognition rate to fluctuate. Moreover, the ANN algorithm requires a large number of learning
processes, which may be infeasible for small sample data sets. The SVM classification model [40] used
for small samples and nonlinear problems is limited by the fact that the kernel function must satisfy the
Mercer condition. With an increase in the number of training samples, the number of support vectors
increases linearly, and the model sparsity is greatly reduced. SVM requires parameter optimization to
achieve the best recognition rate, that greatly increases the amount of computation [41].

To resolve the nonlinear characteristics of MOS gas sensor responses to mixed gas signals,
we present KPCA as a feature extraction method for mixed gas signals. KPCA addresses the
limitations of PCA for extracting nonlinear data features. Through kernel functions, nonlinear data in
a low-dimensional space are mapped to a high-dimensional space for analysis to achieve nonlinear
feature extraction [42]. The K-nearest neighbour (KNN) algorithm is used as a classification method.
The algorithm has a clear and simple objective and is highly mature. The KNN algorithm can achieve
a higher classification accuracy for mixed gases by using the KPCA feature extracted signal [43].
The Multivariate Relevance Vector Machine (MVRVM) is used as the concentration regression method.
MVRVM was presented by Thayanantheana et al. in 2006 as a method for simultaneously regressing
multi-input variables [44]. The technique is widely used in fault diagnosis [45] and geomagnetic
prediction [46]. MVRVM is based on a hierarchical Bayesian probability model structure and is an



Sensors 2018, 18, 3264 4 of 17

extension of the correlation vector machine algorithm. The algorithm requires less sample data and
offers high prediction accuracy and strong generalization ability [47]. Under the structure of a priori
parameters, autocorrelation decision theory is used to remove irrelevant points and obtain a sparse
model. Multiple probability probabilistic functions are introduced to achieve multiple outputs to
reduce computational complexity. Hence, the complex nonlinear relationship between the mixed gas
concentration and the response signal of the MOS gas sensor array can be addressed by MVRVM to
realize the regression of a mixed gas concentration. The contributions of this paper are summarized
as follows:

(1) This paper proposes a KPCA-KNN gas identification method aiming at the low identification
rate of binary mixed gas in the existing machine olfactory system. The method uses KPCA to
extract the nonlinear characteristics of a binary mixed gas with different concentration ratios,
composes the mixed gas feature set, and then uses a KNN classifier to identify the gases.

(2) To improve binary mixture gas detection accuracy, this paper proposes to use MVRVM’s
multi-input multi-output feature, with the MOS gas sensor array’s response signal as the
input and the two target gas concentrations as the output, to achieve binary mixed gas
concentration detection.

(3) The accuracy of the proposed method is verified by qualitative analysis and quantitative detection
of CO and CH4 mixed gases. The experimental results show that the proposed method has better
resolution accuracy for binary mixed signals than other methods do.

The rest of this article is organized as follows: the signal feature extraction method KPCA and
the classification algorithm KNN are described in Section 2. The multiclass relevance vector machine
method is introduced in Section 3. Section 4 describes the mixed gas detection method, including gas
identification and concentration. Section 5 details simulation experiments based on CO and CH4 gas
detection. Validation experiments are also presented. The major findings of this work are summarized
in Section 6.

2. Mixed Gas Qualitative Identification

2.1. KPCA Feature Extraction

Kernel principal component analysis (KPCA) maps nonlinear raw data from input space to
high-dimensional space Z through kernel function Φ(·) and then uses principal component analysis to
extract data features of nonlinear raw data in high-dimensional space Z.

Assumption X = [x1, x2, . . . , xM] ∈ RN×M represents the original observation sample. M
represents the dimension of each sample, N is the number of observed samples. xi ∈ RN represents
the i-th M-dimensional observation sample. When the nonlinear mapping function Φ(·) satisfies the
centralization requirement, the formula is as follows:

M

∑
i=1

Φ(xi) = 0. (1)

Then, the covariance matrix of the original observation sample in the feature space can be
expressed as:

C =
1
M

M

∑
i=1

Φ(xi)Φ(xi)
T . (2)

The eigenvalue solving equation of the covariance matrix C is:

λv = Cv =
1
M

M

∑
i=1

< Φ(xi), v >Φ(xi)
T . (3)
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λ and v represent feature values and feature vectors, respectively. Feature vector v can be linearly
represented by Φ(x1), Φ(x2), . . . , Φ(xM). Therefore, αi(i = 1, 2, . . . , M) is defined as follows:

v =
M

∑
i=1

αiΦ(xi). (4)

By substituting Equation (4) into Equation (3), we obtain:

λ(Φ(xk) · v) = Φ(xk) · Cv(k = 1, 2, . . . , M). (5)

An M×M nuclear matrix K is defined as follows:

Kij = K
(
xi, xj

)
=
(
Φ(xi), Φ

(
xj
))

. (6)

By combining Equations (4)–(6), the eigenvalue solving problem can be further transformed into
the following:

Mλα = Kα. (7)

Mλ is the characteristic value of nuclear matrix K, and α = (α1, α2, . . . , αN)
T is the eigenvector.

Equation (7) is solved in the high-dimensional space to obtain the eigenvector α1, α2, . . . αM and its
corresponding eigenvalue λ1 ≥ λ2 ≥ . . . ≥ λM. The dimension reduction can be achieved by retaining
the first p feature vectors by the cumulative contribution rate method as follows:

rCCR =
p

∑
i=1

λ1/
M

∑
j=1

λj × 100%. (8)

The k-th principal component of the new observation sample x can be obtained by mapping Φ(x)
to feature vector vk:

tk = 〈vk, Φ(x)〉 =
M

∑
i=1

αk
i 〈Φ(xi), Φ(x)〉, k = 1, 2, . . . , p. (9)

p is the number of kernel principal components. The contribution rates of the kernel principal
components are sorted, and the first p principal components are taken such that the cumulative
contribution rate rCCR is at least 85%.

It is worth noting that when the observed sample does not meet the requirements of Formula (1),
the nuclear matrix K can be replaced by the following:

K̃ = K− IMK−KIM + IMKIM, (10)

where IM is an M×M matrix:

(IM)ij =
1
M

. (11)

2.2. KNN Proximity Algorithm

The K-nearest neighbour algorithm calculates the distance between a sample to be classified and
a training sample of a known class and obtains the K training samples closest to the sample to be
classified. If the K samples closest to the sample to be classified belong to the same category, then
the sample to be classified also belongs to this category. If the K samples closest to the sample to be
classified do not belong to the same category, it is determined that the sample to be classified belongs
to the category with the highest number of K samples.

The simplest case is that in which K = 1, wherein the resulting training sample point is the closest
training sample to the input sample. The hypothetical training sample is

{
yj

(i)
}

, (i = 1, 2, . . . , c), (j =
1, 2, . . . , Ni), where i denotes the sample class and j denotes the sample number in the i-th class. The
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total number of training samples is N =
c
∑

i=1
Ni, where c is the total number of categories and Ni is the

number of samples of type ωi. The distance between sample x to be categorized and sample yj
(i) of

the N known classes is dj
(i), which is determined as the class to which the sample whose dj

(i) is the
smallest belongs. The decision function is expressed as follows:

di(x) = min
j=1,2,...,Ni

∥∥∥x− y(i)j

∥∥∥, i = 1, 2, . . . , c. (12)

The rules of judgement are expressed as:

x ∈ ωm, m = arg min
i=1,2,...,c

(di(x)). (13)

1NN uses the nearest training sample as the determination condition. Obviously, this is a simple,
intuitive method of classification. However, when the number of samples in the training dataset is
large, the method of using this distance from a single sample as a classification criterion has a certain
probability of producing an error, resulting in a low classification accuracy. To improve the accuracy of
the classification, the number of training samples examined is extended to k nearest neighbours. KNN
is an extension of the 1NN method. In the training sample set, the nearest k neighbours of the input
sample are found, and then the decision rule is used to determine the category of the input sample.

Let k1, k2, . . . , kc be the number of k nearest neighbours for x. The categories are ω1, ω2, . . . ωc,
and the decision function ωi is:

di(x) = ki, i = 1, 2, . . . c. (14)

The judgement rule is:
x ∈ ωm, m = max

i=1,2,...,c
(di(x)). (15)

When designing the nearest neighbour classifier, a metric function is needed to measure the
distance between samples, which gives the size of the scalar distance between two samples. Euclidean
distance is the most common distance metric function. In the supervised classification problem, two
samples containing l attributes are defined as Euclidean distances between X = (x1, x2, · · · , xl) and
Z = (x1, x2, · · · , xl):

DE(X, Z) =

√√√√ l

∑
i=1

(xi − zi)
2. (16)

Although the Euclidean distance formula can always be used to calculate the distance between
two vectors, the resulting distance value is not always meaningful. For example, if the coordinates are
transformed and each coordinate axis is multiplied by an arbitrary constant, the actual transformation
of this coordinate simply changes the unit of each attribute. However, the relationship between
the Euclidean distance in the transformed space and the distance in the original space may be
completely different.

The metric in the more general d space is the Minkowski distance metric. For two points X and Z
in d space, the Minkowski distance between them is calculated as follows:

Lk(X, Z) = (
d

∑
i=1
|xi − zi|k)1/k. (17)

Such a distance metric is also called the Lk norm, and the Euclidean distance is the L2 norm. The
L1 norm is the Manhattan distance, where L1(X, Z) represents each segment of the nearest distance
from the X point to the Z point that is parallel to the corresponding coordinate axis. The L∞(X, Z)
norm represents the maximum value among the distances between the projection of the X point and
the Z point to the d coordinate axes.



Sensors 2018, 18, 3264 7 of 17

3. Mixture Gas Concentration Estimation

The Multivariable Relevance Vector Machine (MVRVM) is a supplement and extension to the
Relevance Vector Machine (RVM), which can realize the simultaneous regression of multiple variables.
MVRVM still exhibits good generalization ability under small-sample conditions and can guarantee
the accuracy of regression. The model is sparse, and the complexity is not high, which is conducive to
confirming the real-time output of the measured value. As a kernel learning method, MVRVM maps
the complicated input-output relationship of a gas sensor to a linear high-dimensional space, which
can help solve the corresponding nonlinear problem. This method is suitable for solving concentration
estimation problems based on MOS gas sensor arrays.

Given training sample set [x(n), t(n)]
N
n=1, x(n) ∈ R1×q and t(n) ∈ R1×m represent the

multi-dimensional response signal and target gas concentration vector of the nth MOS gas sensor array,
q is the number of gas sensor installed in the MOS gas sensor array, M is the number of different gas
types in the mixed gas, and E is the number of training samples. The mathematical expression of the
multiple regression model based on MVRVM is as follows:

y(n) = Φ
[
x(n)

]
·W, (18)

where y(n) ∈ R1×M is the output value of the MVRVM regression model, i.e., the predicted value
output vector of the nth set of sample data sets. y(n) = [y1, y2, · · · ym,···yM], 1 ≤ m ≤ M, M is the
number of outputs.

W ∈ RRV×M is the weight matrix optimized by the regression model W = [w1w2 · · ·wm · · ·wM],
wm = [wm1wm2 · · ·wmrv · · ·wmRV ]

T , 1 ≤ rv ≤ RV. RV is the number of correlation vectors selected
from the N training samples in the MVRVM model, and RV � N; Φ

[
x(n)

]
∈ Rl×RV is the optimal

design matrix, which is the kernel mapping matrix of the first set of sample data sets, where

Φ = K
{

x(n),
[
x(∗)

]RV

rv=1

}
, K(·), x(∗), and RV denote the kernel function matrix, kernel function,

correlation vector and the number of correlation vectors, respectively.
The solution process of the multiple regression model based on MVRVM is as follows:
Assume that the weight matrix W obeys the prior normal distribution, as indicated in

Equation (19), and the likelihood distribution of the weight matrix W is as indicated in Equation (20):

p(W |A ) =
M

∏
m=1

N

∏
n=1

N
(

ωmn

∣∣∣0, α−2
n

)
, (19)

p
({

t(n)
}N

n=1
|W, B

)
=

M

∏
m=1

(tm|W ·Φ, B ), (20)

Φ = K
{[

x(n)
]N

n=1
,
[
x(n)

]N

n=1

}
, (21)

A = diag
(

α1
−2, α2

−2, · · · αn
−2, · · · , αN

−2
)

, (22)

B = diag(β1, β2, . . . , βm, . . . , βM). (23)

In (22), the element αn is called the hyperparameter of the correlation vector and is used to select
the training samples that make up the correlation vector. In Equation (23), βm denotes the noise signal
included in the m-th estimated output, and ωmn denotes the element in the m-th row and the n-th
column in the weight matrix W.

The prior probability distribution of the weight matrix W is indicated in Equation (24). The
posterior probability distribution of W is the inner product of each weight vector that is independent
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and obeys the Gaussian distribution, as indicated in Equation (25). Further deduction yields
Equation (26):

p(W |A ) =
M

∏
m=1

N(ωm|0, A ), (24)

p
(

W
∣∣∣{t(n)

}N

n=1
, B, A

)
∝
({

t(n)
}N

n=1

∣∣∣∣W, B
)
· p(W, A) (25)

p
(

W
∣∣∣{t(n)

}N

n=1
, B, A

)
∝

M

∏
m=1

N(wm

∣∣∣∣∣µm, ∑
m
) , (26)

where µm = β−1
m ∑m ΦTτm is the mean of the weight matrix and ∑m =

(
β−1

m ΦTΦ + A
)−1

is the
variance vector.

Finally, by maximizing the maximum edge likelihood function of the objective function, the
optimal hyperparameter and noise parameters are obtained, as indicated in Equations (27) and (28):

A = diag
(

α2
1 α2

2 · · · α2
rv · · · α2

RV

)
, (27)

B = diag
(

β1 β2 · · · βm · · · βM
)

(28)

The resulting averaged vector µm ∈ RRV×1 and weight matrix W ∈ RRV×M expression are

µm = βm∑mΦT
τm, (29)

W = (µ1, · · · µM)T . (30)

The optimized variance matrix ∑m ∈ RRV×RV in Equation (29) is expressed as follows:

∑m =
(

β
−1
m ΦTΦ + A

)−1
. (31)

Correspondingly, if the latest test sample is denoted as x∗ ∈ Rp×q, p is the number of test samples,
q is the number of MOS gas sensors, and y∗ ∈ Rp×M is the output value of the multiple regression
model based on MVRVM:

y∗ = Φ[x∗]p×RV ·WRV×M (32)

The error vector is represented by the diagonal elements of the matrix σy and is expressed
as follows:

σy = sprt
(

B−1
+ Φ · Σ ·ΦT

)
. (33)

When calculating the optimal hyperparameters, as the number of iterations increases, many
hyperparameters will tend to infinity. As most of the corresponding weights tend to zero, an increasing
number of sample vectors in the training data set will be rejected, and fewer correlation vectors will be
preserved, thus sparsifying the model.

4. Hybrid Gas Detection Method

KPCA possess a powerful ability to extract useful features from nonlinear signals, mapping the
extracted feature data into a space that facilitates classification. In the classification algorithm, KNN
algorithm offers higher accuracy and lower training time complexity. Therefore, this paper proposes a
new hybrid gas type identification method based on the KPCA and KNN algorithms. A flow chart of
the proposed method is presented in Figure 2a, and is illustrated in the following steps.
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measured point. 

For the gas concentration estimation problem, the Multivariate Relevance Vector Machine 
(MVRVM) has the characteristics of strong generalization ability for small sample data, high 

Figure 2. (a) Flow chart of binary mixed gas identification method based on KPCA and KNN; (b) flow
chart of binary mixed gas concentration estimation method based on MVRVM.

Step 1: Use the MOS gas sensor array to collect the response signals of mixed gas samples of
different compositions. To remove the influence of the baseline, subject the collected data to a
baseline reduction process.
Step 2: By constructing a kernel matrix K from the training sample set, use KPCA to extract the
features of all training samples and forms a training sample feature set.
Step 3: Use the feature vector of the training sample set obtained by KPCA to obtain the
characteristics of the test sample.
Step 4: Identify the characteristics of the test sample using the KNN algorithm, select the K points
with the smallest distance, and count the number of occurrences of the category to which the
K-point belongs the most. The category corresponding to the most frequent point is the category
of the measured point.

For the gas concentration estimation problem, the Multivariate Relevance Vector Machine
(MVRVM) has the characteristics of strong generalization ability for small sample data, high regression
accuracy, and sparse model. In this paper, a new mixed gas concentration estimation method is
proposed based on MVRVM. A flow chart of the proposed method is presented in Figure 2b:

Step 1: Collect the response signals of the mixed gas samples with different concentrations
through the MOS gas sensor array. To remove the influence brought by the baseline, subtract the
baseline data from the collected data signals.
Step 2: For the training sample set, select the kernel function K, establish the relevant MVRVM
model, obtain the optimal hyperparameter, and determine the number of related vectors to obtain
the mean vector and the weight matrix.
Step 3: Calculate the estimated gas concentration by calculating the mean value vector and the
weight matrix.
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5. Experiment

5.1. Experimental Sample Acquisition

To verify the feasibility and effectiveness of the binary mixed gas detection method in the machine
olfactory system, a binary gas detection experiment system was designed to analyse the performance
of the method. The experimental system block diagram is presented in Figure 3.
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The experimental system is mainly composed of a gas sensor array, an AD acquisition board,
a PXI chassis, a host computer, and a DC power supply. The MOS gas sensor array consists of five
Figaro sensors with different sensitivities: TGS2600, TGS2610, TGS2611, TGS2602, and TGS2620.
To improve the reliability of the sensor array under experimental conditions, five types of gas sensors
are selected for each type to form a 5 × 4 array. The array consisting of multiple sensors has a certain
universality. Each sensor selects four, which ensures that the sensor array has a certain fault-tolerant
ability. When one or several sensors have problems, other sensors can be used instead. On the
other hand, it can eliminate the problem that the same sensor has different response to gas due to
manufacturing process problems. The AD acquisition board uses an independently designed P105
function board, and this board is based on the acquisition function of DSP and FPGA, with 32 channels.
In this project, only the first 20 channels are used to collect the voltage signal output by the sensor
in real time, and the signal is saved in the txt file. The sampling rate of the board is set to 10 Hz,
the input range of the signal is −9 V~+9 V, the A/D resolution is 16 bits, and the full-scale accuracy
is 0.5%. The AD acquisition board uses the CPCI interface to communicate with the host computer.
The PXI chassis uses a PXI-1042 produced by NI Corporation. The DC power supply provides a
+5 V supply voltage and heating voltage. Because the response characteristics of the sensor array are
susceptible to temperature and humidity, the selected sensor has the best gas selectivity at 15 ◦C and
relative humidity of 20%. Therefore, signal acquisition must be performed in a room with constant
temperature and humidity, where the constant temperature and humidity are ensured by a fan and
a humidifier [48]. The experimental conditions are set to 15 ◦C and a relative humidity of 20%. The
procedure for obtaining the experimental sample is as follows: the binary mixed gas (CH4 and CO)
is prepared, and mixed gas of various concentrations is injected into the gas chamber. Before each
different concentration of gas is injected into the gas chamber, 300 s of pure air is injected first, and
then the next concentration of mixed gas is injected. The response output value of the sensor array is
recorded as an experimental sample.
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5.2. Experimental Sample Composition

Table 1 presents the sample composition of the mixed gas test, with 50 different mixed
concentration combinations. TS represents the training sample, ES represents the test sample, and
each concentration is sampled five times. Each mixed gas sample is continuously collected for 1 s at a
sampling frequency of 10 Hz after the sensors signal reached a stable value such that the data obtained
each time form a 10 × 20 matrix. To ensure the reliability of the data, five acquisitions were performed
such that the data size for each concentration was 50 × 20. There were 26 training samples and 24 test
samples. Therefore, the dimensions of the training sample matrix were 1300 × 20, and those of the test
sample matrix were 1200 × 20.

Table 1. Experimental sample composition.

CH4 (ppm) CO (ppm)

0 200 400 600 800 1000 1200 1400

0 TS ES TS ES TS ES TS
200 TS ES TS ES TS ES TS
400 ES TS ES TS ES TS ES
600 TS ES TS ES TS ES TS
800 ES TS ES TS ES TS ES

1000 TS ES TS ES TS ES TS
1200 ES TS ES TS ES TS ES
1400 TS

5.3. MOS Gas Sensor Sensitivity Analysis

The detection principle of the target gas by the MOS gas sensor is such that, at a certain heating
temperature, the surface of the gas sensor can adsorb oxygen molecules O in the environment. Oxygen
molecules obtain electrons from the surface of the gas-sensitive material and form charged particles
O− and O2−, etc., resulting in a decrease in the number of electrons on the surface of the material
and an increase in the surface resistance of the gas-sensitive material. When reducing gases (CH4,
CO) occur in the environment, the oxidation-reduction reaction on the surface of the semiconductor
material will cause the electrons in O− and O2− to return to the semiconductor material, causing the
surface resistance value of the gas sensitive material to decrease. It can be observed that the sensitivity
of MOS gas sensors is based on complex physical and chemical reactions. The MOS gas sensor detects
the target gas through the abovementioned process. The chemical reaction equations of the detection
principle are presented as Equations (34)–(36):

1
2

O2 + ne→ On−
Adsorption, (34)

On−
Adsorption+CH4 → H2O + CO2 + ne, (35)

On−
Adsorption + CO→ CO2 + ne. (36)

To investigate the sensitivity to methane gas and carbon monoxide gas of the MOS gas sensors
produced by the five commercially available Figaro companies, this paper analyses the sensitivity
characteristics of each sensor under different concentrations of methane gas and carbon monoxide gas.
The MOS gas sensor array’s sensitivity curve corresponding to the different target gases is presented
in Figure 4. The MOS gas-sensitive materials demonstrate different sensitivity characteristics for
different target gases; specifically, they exhibit nonlinear changes in sensitivity to the same target gas
concentration, and their selectivity is not singular, i.e., there are cross-sensitivity characteristics.
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As presented in Figure 5, the single and mixed gas response curve of the TGS2620 sensor is
taken as an example. The sensor shows cross-sensitivity characteristics for methane gas and carbon
monoxide gas. The response output of the sensor to the mixed gas is not equal to the sum of the
responses of the sensor to the two target gases and has a nonlinear characteristic.
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Therefore, regarding the characteristics of the MOS gas-sensitive materials, it is not possible to
obtain exact information about the target gas species or concentration through the sensor output.
The incorporation of the subsequent signal processing method can reveal the target gas information
via its response signal and then select an appropriate pattern recognition method for analysis.
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6. Binary Gas Detection

The kernel function in the KPCA algorithm employed the most commonly used Gaussian radial
kernel function K

(
xi, xj

)
= exp

(
−‖xi − xj‖2/σ2

)
. The choice of kernel parameters was based on

cross-validation method and was ultimately determined to be σ = 2.5. As shown in Table 2, when
the cumulative contribution rate of the principal component reached 95%, the principal component
reached 43; that is, the number of dimensions of the data was increased from the original 20 to 43.
After KPCA processing, the dimensions of the training data set and test data set were 1300 × 43 and
1200 × 43, respectively. In the KNN classifier, the value of k was determined to be 5 after several
experiments. After feature extraction, the data were incorporated into the KNN classification model
to obtain the final recognition rate. Table 3 shows the three feature extraction methods for CO, CH4,
mixed gas, and average recognition rate.

Table 2. KPCA characteristic value and contribution rate.

Principal Component Eigenvalues Contribution Rate Cumulative Contribution Rate

PC1 0.1072 11.96% 11.96%
PC2 0.0932 10.40% 22.36%
PC3 0.0739 8.25% 30.61%
PC4 0.0565 6.30% 36.91%
PC5 0.0524 5.85% 42.76%
PC6 0.0432 4.82% 47.58%
PC7 0.0373 4.17% 51.75%
. . . . . . . . . . . .

PC32 0.0055 0.60% 90.31%
. . . . . . . . . . . .

PC43 0.0027 0.29% 95.11%

Table 3. Recognition results corresponding to PCA, ICA and KPCA.

Category Sample Detection Sample Recognition Rate

PCA ICA KPCA

CO 150 86.70% 100% 93.30%
CH4 150 100% 53.30% 100%

Mixed Gas 900 92.20% 86.70% 98.80%
Average —– 92.5% 84.17% 98.33%

Table 3 shows that the average recognition rate obtained by the KPCA method is 5.83% and 14.16%
higher than the rates of PCA and ICA, respectively, reaching 98.33%. Therefore, the proposed method
can extract feature information about the multi-dimensional response signal of the MOS sensor array
better, thereby improving the recognition rate of the binary mixed gas species.

The quantitative analysis of the mixed gas concentration was based on the results of a qualitative
analysis. The gas concentrations were estimated using the MVRVM method for a single gas and a
mixed gas, respectively. The kernel functions all employed the most commonly used Gaussian radial
basis function, and the optimal kernel parameters were solved by a 5-fold cross-validation method.
The binary mixed gas concentration estimation results are shown in Table 4.

Table 4. Binary mixed gas concentration estimation results.

Gas Category Single Gas Mixed Gas

Gas Composition CO CH4 CO CH4
Optimal Kernel

Parameters 0.76 0.25 0.67

Average Relative Error 2.36% 2.01% 9.01% 8.79%
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For single gas predictions, the optimal kernel parameters for CO and CH4 were 0.76 and 0.25, and
the average relative errors were 2.36% and 2.01%, respectively. The prediction result for mixed gas was
an optimal kernel parameter value of 0.67, and the average relative errors of CO and CH4 were 9.01%
and 8.79%, respectively.

To illustrate the performance of the MVRVM binary mixed concentration detection method
proposed in this paper, Table 5 compares the binary mixture gas concentration detection performances
of different methods. The table shows that the MVRVM binary mixed gas concentration detection
method offers a lower average relative error than does the single RVM method or the LS-SVR method,
and the average detection time is significantly reduced.

Table 5. Comparison of binary mixed gas concentration detection performance.

Performance
Method

MVRVM Single RVM LS-SVR

Average Relative Error of CO (%) 5.58 6.16 7.85
Average Relative Error of CH4 (%) 5.38 7.17 5.65

Average Detection Time (ms) 1.37 22.86 91.63

7. Conclusions

Based on the metal oxide gas sensor array, the detection accuracy of mixed gas in the machine
olfactory system is low. This paper proposes a feature extraction method based on KPCA. Combined
with the binary mixed gas identification model of the KNN classification algorithm, qualitative
identification of mixed gas is realized. For the qualitative identification results, a regression method
based on MVRVM was proposed to achieve quantitative detection of gas concentration. The major
findings of this work can be summarized as follows:

(1) KPCA was verified as a feature extraction method for processing nonlinear signals. Compared
with PCA and ICA, KPCA exhibits a good signal feature extraction capability. Using the KNN
classification algorithm to construct a gas identification model, the recognition accuracy rate
exceeds 98%.

(2) This study also examined the detection of mixed gas concentrations and proposed an MVRVM
algorithm that is different from the ANN and requires many training cycles. The average relative
error of gas concentration monitoring is within 6%, and the detection time is short, which is more
suitable than other methods for real-time detection of mixed gas.

(3) The method for qualitative identification and quantitative detection of the binary mixed gas
proposed in this paper was verified via experiments, and the accuracy of detection and the
detection of a mixed gas by the machine olfactory system was improved. It is worth expanding
the application of the system to the identification and detection of multiple gas mixtures.
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