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Abstract: The new standard oneM2M (one machine-to-machine) aims to standardize the architecture
and protocols of Internet of Things (IoT) middleware for better interoperability. Although the standard
seems promising, it lacks several features for efficiently searching and retrieving IoT data which
satisfy users’ intentions. In this paper, we design and develop a oneM2M-based query engine, called
OMQ, that provides a real-time processing over IoT data streams. For this purpose, we define a query
language which enables users to retrieve IoT data from data sources using JavaScript Object Notation
(JSON). We also propose efficient query processing algorithms which utilizes the oneM2M architecture
consisting of two nodes: (1) the IoT node and (2) the infrastructure node. IoT nodes of OMQ are
mainly sensor devices execute user queries the aggregate, transform and filter operators, whereas the
infrastructure node handles the join operator of user queries. Since the query processing algorithms
are implemented as the hybrid infrastructure-edge processing, user queries can be executed efficiently
in each IoT node rather than only in the infrastructure node. Thus, our OMQ system reduces the
query processing time and the network bandwidth. We conducted a comprehensive evaluation of
OMQ using a real and a synthetic data set. Experimental results demonstrate the feasibility and
efficiency of OMQ system for executing queries and transferring data from each IoT node.

Keywords: IoT data streams; IoT data retrieval; query engine; oneM2M; hybrid infrastructure-edge
processing; edge analytics

1. Introduction

In recent years, there has been a rapid deployment of a massive number of Internet of Things (IoT)
devices [1]. Currently, there are very large number of interconnected devices, and their numbers are
still increasing and expected to reach 25 billion devices by 2020 [2]. For example, smart city applications
require to install many IoT devices for monitoring city infrastructure such as roads [3], buildings [4],
and streams [5].

One of the major challenges in IoT is the retrieval and processing of a large amount of
heterogeneous streaming data generated from a large number of IoT devices [6,7]. Unlike traditional
database management systems (DBMS) where data are structured in schema and their query languages
are standardized, each IoT device has a different data retrieval method, data format, and application
programming interface (API). This means that collecting data from several IoT devices can be
complicated, especially for application developers who want to make use of IoT in their application.

Most IoT implementations exploit the functionalities of IoT middleware to effectively manage
numerous IoT devices. An IoT middleware [8,9] provides an abstraction for the application developers
to interface IoT devices without knowing any details or protocols behind them. However, due to the
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lack of collaboration among IoT industries, most existing IoT middleware does not have a common
specification for the protocol and services for supporting a broader interoperability [10].

To overcome this fragmentation issue, several leading standards development organizations
worked together to suggest a new standard called oneM2M is proposed for M2M (machine-to-machine)
and IoT. The main objective of oneM2M is to minimize fragmentation at the M2M/IoT service layer
fragmentation [11]. Thus, several pieces of oneM2M-based middleware such as Eclipse OM2M [12],
Mobius [13] and Secure OM2M Service Platform [14] are developed and released as open source.

Since existing oneM2M-based middleware focuses on the fragmentation issue or the security issue,
they do not provide essential features for searching and retrieving IoT data streams. More specifically,
they lack content-based data processing such as filtering and other basic operations for retrieval. Also
they do not support any metadata-based search mechanisms. We believe that a oneM2M-based query
engine is necessary because it provides a way for IoT application developers to define what data
they want to use, and how the data should be processed in a single query language. Thus, with the
increased the abstraction of oneM2M-based query engine, developers could focus on what they have
to do with the data.

In this paper, we propose a oneM2M-based query engine, called (OMQ). The main goal of OMQ is
to provide crucial query processing functionalities for IoT applications on top of oneM2M middleware.
The main contributions of this paper can be summarized as follows:

• We propose a oneM2M-based query engine for efficiently searching and retrieving IoT
data streams.

• We define a JSON-based query language which enables users to specify data source search
metadata properties and execution operators.

• The architecture of OMQ facilitates on-demand multiple ad-hoc queries and the efficient execution
of hybrid infrastructure-edge query processing algorithms.

The remainder of this paper is organized as follows. Section 2 presents related research work.
Section 3 provides some brief preliminaries regarding oneM2M standard and how it works. Section 4
explains OMQ architecture and Section 5 describes the OMQ implementation and its performance
evaluation. Finally, we conclude the paper in Section 6.

2. Related Works

2.1. oneM2M Middleware

The oneM2M standard defines some common service functions (CSFs) that an IoT/M2M service
or middleware has to comply. The goal of the standard is to provide a common functionality to simplify
the application development and remove the need to develop common components [11]. The two
basic CSFs include the ability to register, discover and control devices, and manage the data coming
from a device to the user through a subscription model. There are several pieces of oneM2M-based
middleware. One open-source middleware is called Mobius [13], a Node.js oneM2M middleware that
provides wireless-sensor integration. Another open-source-based middleware is called OM2M [12],
which was originally based on ETSI standard but is currently modified to comply with the oneM2M
standard. In Korea, a proprietary oneM2M-compliant middleware such as HANDYPIA [15], has a
unique semantic-enabled IoT middleware feature, whereas SKT ThingPlug (https://sandbox.sktiot.
com/IoTPortal/main/changeLocale?locale=en) and Olleh IoTMaker (http://iotmakers.olleh.com/
openp/index.html), provide a cloud infrastructure that users can utilize to host their middleware.

Figure 1 illustrates the current approach of existing IoT middleware [13]. When an IoT application
requests to obtain a specific stream data, it should create a subscription to a specific data source
URI via the middleware. However, an IoT application of the current approach cannot specify any
filtering and processing operations in the subscription; thus, it has to retrieve all raw data and to apply
further processing by itself. Consider Figure 1 again. Assume that the client application wants to
subscribe all the temperature raw data from two different IoT nodes located at a city center and a
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suburban area. In this case, an IoT application should include the exact URI location of the data source
they wish to subscribe since the current oneM2M middleware does not provide any metadata-based
search mechanisms.

Figure 1. Current oneM2M-based middleware approach for data retrieval [13].

OMQ addresses the two features lacking in oneM2M-based middleware as shown in Figure 2.
First, OMQ adds a query-based data processing functionality that addresses the lack of content-based
data processing in oneM2M [16]. A client or an application can utilize OMQ to process the raw data
using a processing operator such as aggregation, which can reduce the bandwidth usage significantly.
Second, OMQ provides a searching feature that searches the data source based on the given metadata
property (such as sensor type or sensor location), then a client does not have to know the exact physical
location to obtain specific data. The current implementation of oneM2M middleware (including
Mobius) provides only a simple discovery feature that list all data sources without any filtering
mechanism. Another benefit of implementing a query engine (QE) on top of oneM2M is that it can be
implemented and integrated easily on various oneM2M-compliant middleware.

Figure 2. Our proposed query engine (QE) for better oneM2M data retrieval and processing.

2.2. IoT Data Processing

Due to the multi-layered and heterogenous nature of IoT implementation, the IoT data processing
researches can be divided into three categories: infrastructure-based processing, edge-based processing,
and hybrid processing. In infrastructure-based processing, IoT data are processed by a cluster of
high-capacity, high-performance servers located in either the private infrastructure or the public
cloud. There are several so-called “Big Data” technologies for this type of data processing such
as Apache Hadoop, which provides Map-Reduce [17]-based batch-processing; Apache Spark [18],
which provides in-memory batch and stream processing; and Apache Storm [19], which provides a
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graph-driven stream-processor. However, processing data exclusively in the infrastructure involves
sending all raw data from the IoT nodes to the infrastructure, which can increase network bandwidth
and latency. In edge-based processing (also known as “edge analytics”, “fog computing”, or “edge
computing”), IoT data is processed on edge devices such as sensor node or gateway node. Because data
are processed on the same network where it produced, it can process data without any network latency.
This edge-based processing is important in real-time, mission-critical applications such as self-driving
cars [20]. WSN query processing systems [21–23] are some examples of edge-based processing
where processing is performed right in the sensor node. In other types of edge-based processing,
the processing is performed in the gateway-level [24–27]. Even though the current generation of edge
devices (such as Raspberry Pi, PandaBoard) possess a high computing throughput, it still cannot
challenge the performance of the infrastructure server. Therefore, in general edge-based processing is
usually done mainly for data pre-processing purposes to reduce the bandwidth and storage usage for
sending and storing IoT data.

To compensate the lack of processing power in edge devices, some researchers have suggested
a hybrid-approach, where some processing can be done in the edge devices and the remaining
(usually more complex) processing is done in the infrastructure. Hu et al. [28] proposed combining
edge-processing system Global Sensor Network (GSN) [25] with Storm. Govindarajan et al. [29,30]
suggested an automatic way to split a given graph of queries into two sets: a set of connected queries
that will be processed in the edge devices and another set of queries that will be processed in the cloud.
ECHO [31] offers an application lifecycle manager that receives JSON-based dataflow information
and provisions different types of data processing platforms in a variety of edge devices and cloud
accordingly.

As depicted in Figure 2, our OMQ accepts ad-hoc queries written as JSON-based text files through
a standardized query language. The query language consists of (1) data sources definition that define
the data source metadata properties, and (2) query processing operators such as filtering, aggregation,
transformation, and join. OMQ also supports simultaneous processing of multiple stream-based
queries, where an on-demand query can be started and stopped at any time. Finally, OMQ supports
hybrid edge-infrastructure processing by splitting a given query operator automatically into two parts:
one part that will be processed by the edge node, and another part that will be processed by the cloud
or fog infrastructure.

3. Introduction to oneM2M Standard

The oneM2M standards are specified in several published specification documents (http://www.
onem2m.org/technical/published-documents), which include functional architecture [32], service
layer protocol [33] with different bindings (HTTP or MQTT), and some auxiliary documents regarding
internetworking, security, and applications. One main aspect of oneM2M standards is the separation
between the application entity and common service entity. An application entity (AE) is a software
or program that is responsible for executing the application logic of an IoT or M2M system. Some
examples of AE include sensor reading, actuator control, device monitoring, or power metering.
A common service entity (CSE) provides some common services collectively referred to as CSFs, which
include data management, device management, subscription management, and location services.
These services can be utilized by AEs or other CSEs.

Figure 3 illustrates an example of oneM2M-based IoT network. Two main domains of
oneM2M-based IoT network are: (1) an infrastructure domain and (2) a field domain. The main
IoT service provider usually resides inside the cloud infrastructure. Thus, the infrastructure domain
consists of one or several infrastructure nodes (IN). An infrastructure node contains one CSE and
several AEs. Examples of application entities in the infrastructure domain include a command center
application, a monitoring application, and others. The field domain is a site or a field where IoT nodes
resides. IoT nodes include several constrained devices such as sensors, actuators or IoT gateways.

http://www.onem2m.org/technical/published-documents
http://www.onem2m.org/technical/published-documents
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Figure 3. An example of oneM2M-based IoT network.

Another important aspect of the oneM2M standard is that each CSE has a standardized
representation called resource tree. This tree represents the resources or entities that a CSE handles.
An AE resource type defines name, point of access, and other attributes corresponding to an AE.
A container defines a data source container that can be used by an AE to get/put data from/to another
AE through a publisher or subscriber model. A remote CSE defines an associated remote CSE that
can be accessed remotely. To manipulate a resource tree, oneM2M provides a REST-based API that
can be used to create, read, update, or delete a resource. Consider again Figure 3. To refer to the
CH4 container of the IoT Gateway node, we can access it through the infrastructure node via URL
/IN-CSE/IoTGateway/GasMonitoring/CH4. This API can be accessed through several protocol
bindings: HTTP, COAP, WebSocket, or MQTT.

4. Proposed System Architecture

The proposed OMQ system is depicted in Figure 4. The QE is installed inside an infrastructure
node located in the infrastructure domain. To support hybrid edge-infrastructure processing, an edge
QE can be installed on some of the IoT nodes. The QE receives a query q from a client (such as
applications, users or web dashboard) to be processed. Before processing a query, the QE will search
for the IoT node and data source that matches the given data source property defined inside the
query. This process involves a communication between the QE and oneM2M CSE. After the target data
sources are resolved, the main QE then splits the query into sub-queries and sends those sub-queries
into all related IoT nodes that host the target data sources.

Figure 4. The proposed oneM2M query engine.
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4.1. Query Language Definition

OMQ receives a query q = {n,D,O}, which consists of n data sources, data sources definition
D = {d(1), d(2), . . . , d(n)}, and a set of query operators O. A data source definition d(x) is a set of data
source properties a user wishes to query in the form of a key-value pair. A query consists of several
connecting operators O = {Oprejoin, ojoin, Opostjoin}, which are divided into three parts:

• Pre-join operators Oprejoin = {O(1)
prejoin, O(2)

prejoin, . . . , O(n)
prejoin}, where O(x)

prejoin = {o(1), o(2), . . . }
defines a set of chaining query processing operators that will be applied for each corresponding
data source as pre-processing steps before joining the data into a single tuple.

• A join operator ojoin defines a join function that joins the inputs from several data sources into
one tuple.

• Post-join operators Opostjoin = {o(1), o(2), . . . } defines a set of chaining operators applied to the
data after being joined into a single tuple.

Table 1 lists all the operators supported by OMQ. Both pre-join and post-join operator chains can
consist of one or multiple combinations of these operators, except the join operator, which can only be
defined once in a single query.

Table 1. Query operators supported in OMQ.

Operator Parameters Description Illustration

Aggregate
(oaggr)

• Function
• Window Size
• Output Rate

Aggregate several data samples
(within a range of window size)
with an aggregate function such
as mean, count, min, or max.
Output rate determines how often
the aggregation samples will be
outputted regardless of the input
data rate.

Transform
(otran)

• Function
• Input field
• Function

parameters

Transform data from a given
input into another form using a
transformation function

Filter
(o f ilter)

• Filter Criteria Filter a data input based on the given
criteria

Join
(ojoin)

• Join column
• Window size

Join several data stream inputs into
one combined tuple. By default,
the join will be performed to
combine all the latest data from
several inputs.

Users can specify their intentions as queries using a JSON-based format
as shown in Figure 5. Here, the example query consists of two data sources:
d(1) = {(sensor_type, ch4), (location, site1)} and d(2) = {(sensor_type, co), (location, site1)} with
pre-join operators O(i)

prejoin = {ofunc = mean,winsize = 60
aggr , ofunc = percentage,maxval = 100

trans }, i ∈ {1, 2} for each

data source respectively. The join operator is defined as otype = timestamp
join , and the post-join operators

are defined as Opostjoin = {och4_sensor ≥ 1,co_sensor ≥ 1
f ilter }. Another way to represent this query is through

a query directed acyclic diagram (DAG), which is shown in Figure 6. For the given example query,
the QE will aggregate each sensor data input using the same aggregation function (mean) and same
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window size (60 s). Then, each aggregated data is transformed into a percentage. After being processed
separately, each data source will then be joined into a single tuple based on a similar timestamp.
After joining, both data are filtered, so that it only outputs when both the readings are 100%.

Figure 5. An example query.

Figure 6. A query DAG of corresponding query shown on Figure 5.

The query format is inspired from the GSN virtual sensor definition [25]. According to the GSN
virtual sensor definition, a user can define several data sources consisting of key-value data source
properties and a query statement, which is applied on each data source. Then, in the same file, a user
can apply a query on the whole joined data from all defined data sources.

4.2. Query Engine Architecture

Figure 7 shows a more detailed schematic of the QE architecture inside OMQ. A QE consists of
two modules: query pre-processor, which performs query planning tasks, and a stream query processor,
which performs the stream processing according to a given query. Each QE is connected with oneM2M
CSE for communicating between the data sources and the query processor. The main QE is also
connected with the edge QE located inside several IoT nodes in the field domain. The edge QE uses
mostly the same part as the main QE, with the query pre-processor part removed, as the pre-processing
is done mainly in the infrastructure side.
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Figure 7. oneM2M QE architecture.

4.2.1. Query Pre-Processor

The query pre-processor consists of three main components: data source resolver, query splitter and
query forwarder as depicted Figure 8. The input query firstly goes into the data source resolver module
in the infrastructure node. This module maps each data source search property (denoted as d(x)) of
a query q into a corresponding oneM2M container URI. This mapping process can be achieved by
matching d with the key-value metadata information of all the containers in a resource tree.

Figure 8. Query Pre-Processor module.

To achieve a fast mapping, the data source resolver maintains a table data structure called metadata
mapping M for avoiding scanning all the resource trees. During a startup, the module builds M by
discovering the related resources using Algorithm 1, which starts from the scanning container in the
infrastructure node’s CSE. Then, if a remote CSE is registered inside the CSE, the module will also
recursively scan those remote CSEs for available containers. the data source resolver module quickly
transforms a given data source search property of a new incoming query q into several key-value pairs
with a matching container URI by checking the constructed M. It also updates M periodically to reflect
the current state of the system.
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Algorithm 1: Building metadata mapping for data source resolver
Input: nodeIP: physical IP address of node, starting from IN
Output: M

1 Function buildMetadataMapping(nodeIP)
2 M← initialize M;

// Get resource tree from CSE with corresponding IP
3 resources← getCSEResourceTree(nodeIP);
4 foreach resources as r do
5 if r is an AE then
6 foreach r.containers as c do

// For each container in an AE, read its metadata information and
add it to the table

7 containerMetadata← getContainerMetadata(c);
8 M.addEntry(c, containerMetadata);
9 end foreach

10 end if
11 if r is a Remote CSE then

// Recursively do mapper build for a remote CSE, and add its results
to the table

12 M.addMultipleEntries(buildMetadataMapping(r.remoteCSEAddress))
13 end if
14 end foreach
15 return M;

Example 1. Figure 9 explains how the data source resolver works. Two data sources with each search property
are obtained from two different sensors such as ch4_sensor and co_sensor. Each data source is mapped quickly to
the corresponding oneM2M container URI by checking metadata mapping table M. The data source resolver
outputs each data source with the corresponding matching container URI information.

Figure 9. An illustration of data source resolver.

After resolving the target container URIs of each data source definition, the query will then pass
into the query splitter module. This module splits a query q into two sub-queries: (1) internal sub-query
sqint which will be processed in the IoT node and (2) external sub-query sqext which will be processed in
the infrastructure node.

The pseudo code for query splitting is shown in Algorithm 2. For each data sources in a given
query q, the query splitter will check whether the node that hosts the corresponding data source has
its own edge QE installed. If it does, an instance of sqext for the corresponding edge QE will be created
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with all the pre-join operators of the corresponding data source included as its operators. Otherwise,
the data source and its pre-join operators will be included in sqint to be processed in the main QE.
Note that join and post-join operators will always be included as part of sqint.

Algorithm 2: Query Splitting Algorithm
Input: q: a query input
Output: sqint internal sub-query, sqext external-subquery

1 sqint ← initialize sqint;
2 sqext ← initialize sqext;
3 for i from 1 to q.n do

// For each operator and its corresponding pre-join operators
4 if hasItsOwnEdgeQE(q.d(i)) then

// Put a data source and its operator as external sub-query to the
corresponding data source node, if the data source has an edge QE

5 localQELocation← getHostName(q.d(i));
6 d(new) ← (q.d(i));

7 O(new)
prejoin ← (q.O(i)

prejoin);

8 sq(localQELocation)
ext .insertDataSource (d(new), O(new)

prejoin) ;

9 sqint.insertExternalQueryDataSource (sq(localQELocation)
ext ) ;

10 else
// Else, put it into internal sub-query

11 d(new) ← (q.d(i));

12 O(new)
prejoin ← (q.O(i)

prejoin);

13 sqint.insertDataSource (d(new), O(new)
prejoin) ;

14 end if
15 end for

// Put join and post-join operator as internal sub-query
16 sqint ← insertPostJoinOperators (q.Opostjoin, q.ojoin) ;
17 return sqint, sqext;

Example 2. Figure 10 depicts the internal and external sub-query splitting results from the original query
shown in Figure 6. The user query contains aggregation and transformation operations for the two data sources
ch4_sensor and co_sensor. The aggregation operation is specified with a mean function and a sliding window of
size 60 seconds, whereas the transform operation is specified with a percentage function and maximum value
100. These two data sources with the container URI information go to the query splitter.

Based on the sub-query for data source ch4_sensor, the query splitter checks the corresponding IoT node
whether it has its own QE or not. Since the corresponding IoT node A for ch4_sensor evidently has its own QE,
then the sub-query is forwarded by query forwarder to the IoT node A. This is a case for the external sub-query.
For another sub-query for data source co_sensor, the corresponding IoT node B is checked by query splitter.
It turns out that the IoT node B does not have its QE. Therefore, this sub-query is directly forwarded to the
stream query processor module and handled by the QE of the infrastructure node. This is a case for the internal
sub-query.
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Figure 10. Query splitting demonstration.

The query forwarder module mainly delivers the external sub-query from query splitter to each
corresponding IoT node. Since it only forwards the external sub-query, this module is used only when
there exists any corresponding IoT node with its own QE.

4.2.2. Stream Query Processor

The stream query processor module consists of several processors that are responsible for four
basic query operators, two additional processors (input and output receiver), query provisioning,
and inter-processor data exchange, as depicted in Figure 11.

Figure 11. Stream Query Processor module.

The input receiver module receives the input data stream as either raw data from the CSE data
source or as partially processed data from an edge QE, later moves to the first defined operator
according to the current running query. Each processor handles the given input stream according
to the given query operator. Then it places the processed stream data as its output and provide it to
another stream which will be handled by the next operator. This data processing is done for each
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chaining operator. When the data is handled by the last operator of the chain and the results are sent
to the output receiver module. The output receiver module reports the final results to the user through
the user interface. This process will stop based on user demand, otherwise it continuously run.

Both main QE and edge QE have a similar stream query processor architecture; however, the latter
does not include the join processor because the join processes are performed only in the main QE.

To control how a processor processes an input data, each processor maintains a data structure
called process mapping. Each entry of the process mapping contains a tuple of (input stream ids,
operator definition, and an output stream id). All the streams are identified by a unique string-based
identifier. The aggregate, transform and filter processors accept only a single input stream, whereas the
join operator can accept multiple input streams at once. The input receiver annotates the data input by
adding a stream identification (named ch4_sensor and co_sensor).

Example 3. Figure 12 illustrates the data processing steps needed to process sub-queries from Figure 10.
The edge QE receives two data inputs from the two sensors (CO and CH4) directly from the CSE located on the
same node. The input receiver annotates the input data by adding a stream identification (named ch4_sensor
and co_sensor).

Figure 12. An illustration of data processing inside stream query processor.

The inter-processor data exchange module aims to determine the operator’s processor that will be
responsible for processing the given stream data. Algorithm 3 explains how the input data stream data
are handled inside the operator’s processor. When one of operator’s processors takes the input data
stream, this processor firstly checks its process mapping table by matching the corresponding data
stream identifier (id) to determine how the stream data is going to be processed.
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Algorithm 3: Data processing inside an operator’s processor
Input: inputStreamData: Input stream data
// This procedure is called whenever an operator’s processor get a new input

data stream
1 Procedure processData(inputStreamData)

// Given input stream id, Get all pairs of (operator, output stream id)
2 operatorOutputPairs← this.processMapping.getOpOutputPairs(inputStream.id);
3 foreach operatorOutputPairs as (operator, outputId) do

// For each pair, perform data processing according to operators
4 processedData← processDataAccordingOperator(inputData, operator);
5 processedData.streamId← outputId;
6 exchangeData(processedData);
7 end foreach

If the input data stream identifier exists in the process mapping table for this operator’s processor,
the inter-processor data exchange module forwards this data stream to the defined operator’s processor,
as described in Algorithm 4.

Algorithm 4: Inter-operator data exchange
Input: streamData: Input stream identifier
// This procedure is called whenever the inter-operator data exchange receives

processed data from an operator’s processor
1 Procedure exchangeData(streamData)
2 foreach All operator processor as opProcessor do

// Check wheter the input stream id exists or not in the mapping table
3 if opProcessor.containsInputId(streamData.id) then
4 opProcessor.processData(streamData);
5 end if
6 end foreach

The operator processors for aggregate/join/filter/transform as shown in Figure 7 handle the input
stream data to compute the results. They send the output results to the inter-processor data exchange
module. The operator’s processor ends when the inter-processor data exchange module forwards the
processed stream data into the output receiver module. The processed stream data are sent to the user
clients or to the main QE for post-join operator processing.

The stream query processor supports simultaneous handling of multiple queries through the
query provisioning module in Figure 7. This module receives a sub-query submission either as an
internal sub-query or as an external sub-query. It aims to modify the processor mappings of several
related operators when it takes a new sub-query sq as an input. This module also creates the process
mapping for each operator’s processor based on the input sub-query. However, it only creates the
process mapping for join operator’s processor when the input sub-query is an internal sub-query.

Algorithm 5 shows the pseudo code for the query provisioning. It scans through all pre-join
operators and post-join operators within the input query. One of key action of Algorithm 5 is to
create a mapping for an operator’s processor. Algorithm 6 explains how a new process mapping entry
is added. Before adding a new entry into a process mapping, the query provisioning has to make
sure if the operator processor has already processed the same combination of (input stream identifier,
operator parameters) in order to maximize data and operator sharing. Otherwise, it creates a new
entry in the process mapping.
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Algorithm 5: Query provisioning
Input: sq: sub-query
// This procedure is called whenever a new query need to be provisioned inside

a QE
1 Procedure provisionQuery(sq)
2 toJoinStreamIds← newArrayList();
3 for i from 1 to sq.n do

// Process each data source-pre-join operators pair

4 foreach sq.O(i)
prejoin as o do

// For each operator in a pre-join operator set
5 if o is first operator then
6 outputStreamId← d(i);
7 else

// Create a process mapping using current input stream id and
previous operator definition

8 outputStreamId← currentProc.addProcMap(currentStreamId, currentOp);
9 end if

10 currentProc← getOperatorProcessor(o);
11 currentStreamId← outputStreamId;
12 currentOp← o;
13 end foreach

// Add process mapping to join operator only if this query is an
internal sub-query.

14 if This QE is the main QE then
15 toJoinStreamId← currentProcs.addProcMap(currentStreamId, currentOp);
16 toJoinStreamIds.add(toJoinStreamId);
17 else
18 OutputReceiver.addOutput(currentStreamId)
19 end if
20 end for

// Process each post-join operator only if this query is an internal
sub-query

21 if This QE is the main QE then
22 currentStreamId← toJoinStreamIds;
23 currentProc← JoinProcessor;
24 currentOp← sq.ojoin;
25 foreach sq.Opostjoin as o do
26 outputStreamId← currentProc.addProcMap(currentStreamId, currentOp);
27 currentProc← getOperatorProcessor(o);
28 currentStreamId← newStreamId;
29 currentOp← o;
30 end foreach

// Connect the output of last operator to output receiver
31 OutputReceiver.addOutput(currentStreamId)
32 end if
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Algorithm 6: Add process mapping to an operator processor
Input: inputStreamId: Input stream identifier
Input: op: Operator parameters
Output: outputStreamId: Output stream identifier
// This function is called when the query provisioner try to add an entry into

one of operator processor’s process mapping table
1 Function addProcMap(inputStreamId, op)
2 existingOperator← this.processMapping.getOperator(inputStreamId);
3 if existingOperator 6= null&&existingOperator.equals(op) then

// Reuse the existing entry if it is available
4 return this.processMapping.getOutputId(inputStreamId, existingOperator);
5 else

// Else, create a new entry in the process mapping and generate a new
output stream id

6 newOutputStreamId← createRandomId();
7 this.processMapping.addEntry(inputStreamId, op, newOutputStreamId);
8 return newOutputStreamId;
9 end if

5. Evaluation

5.1. Software Implementation

We implemented all the QE components including the query pre-processor and stream query
processor modules using Java Development Kit (JDK) version 1.8.0 (Oracle Corp., Redwood City, CA,
USA, 2017). We utilize a multi-threading approach by implementing each operator processor as a
single separate thread. For data communication among QEs, we utilize a message queue server using
Rabbit MQ 3.6.10. We exploit Mobius YellowTurtle version 2.3.8 (Open Alliance for IoT Standard
(OCEAN), Seongnam, Korea, 2017) and nCube Rosemary version 2.1.14 (Open Alliance for IoT
Standard (OCEAN), Seongnam, Korea, 2016) (both are based on the same Mobius codebase) for
oneM2M CSE implementation in the infrastructure node and IoT node respectively. The query engine
(QE) communicates with CSE through REST-based HTTP endpoint. The implementation code of the
OMQ system can be acquired in [34].

5.2. Experiments

We evaluated the OMQ using two different scenarios. In the first scenario, we performed
a benchmark test on the stream query processor using a synthetic load. In the second scenario,
we implemented the QE on top of a oneM2M-enabled IoT system, which monitors the CPU and
memory status of each IoT node.

5.2.1. Stream Query Processor Benchmark

The main goal of the benchmark test is to measure the maximum throughput and
processing time of our QE with a synthetic load for a given number of simultaneous
queries. We used a road traffic dataset from in Aarhus, Denmark with a range of two days
(from 13 February 2014 to 14 February 2014) provided by the CityPulse project [35]. Since it has huge
amount of data, we choose it as test data set for verifying the implementation of OMQ. The benchmark
was conducted by injecting 100,127 vehicle count data records from 449 different roads.

We performed each experiment with three types of queries, depicted in Table 2. Each query uses
10 random data sources from 10 different roads. The benchmark was performed on two nodes: (1) a
PC equipped with an intel Core i5-4460 3.20 GHz processor and 12GB RAM as an infrastructure node,
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and (2) a Raspberry Pi 3 single board computer equipped with an ARM-based 1.0 GHz processor as an
edge/IoT node.

Table 2. List of queries for the benchmark experiment.

Query Data Sources Operators

q11
• Vehicle Count from 10

random places

• Pre-Join 1: Aggregate
– Function: Sum
– Window Size: 1 h

• Join by timestamp

q12
• Vehicle Count from 10

random places

• Pre-Join 1: Aggregate
– Function: Sum
– Window Size: 1 h

• Pre-Join 2: Transform
– Function: Percentage
– Max Value: 100

• Join by timestamp

q13
• Vehicle Count from 10

random places

• Pre-Join 1: Aggregate
– Function: Sum
– Window Size: 1 h

• Pre-Join 2: Transform
– Function: Percentage
– Max Value: 100

• Pre-Join 3: Filter
– x > 0

• Join by timestamp

Figure 13 displays the benchmark results for the throughput in the infrastructure node and IoT
node. The throughput in the infrastructure node reaches around 50,000–60,000 input/second in the
infrastructure node and around 8000–9000 input/second in the IoT Node. The throughput stays
around this range regardless of the query number and query type. The throughput of the infrastructure
node always tends to be higher than that of the IoT node, since the infrastructure node has more
powerful hardware.
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Figure 13. Processing throughput of stream query processor.

Figure 14 shows the total processing time needed to process all the 100,127 data records with
different number of query q13. We observe that the processing time increases with the number of
queries. Most of the processing time is spent to perform aggregation, followed by join operation,
filter operation, and transformation. Since the join operation can only be executed in the infrastructure
node, it requires data transfer between the IoT node and the infrastructure node. Thus, the processing
time for the join operation is slowest. The aggregation takes much more time than other processors
except join because it could compute the final answer after seeing all input data consecutively.
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Figure 14. Total processing time for query q13 for processing 100K of data. (a) Infrastructure Node;
(b) IoT Node.

The total processing time barely reaches 200 ms and 4000 ms in the infrastructure node and IoT
node, respectively. However, if we expect that the throughput is calculated as the total number of
records divided by the total processing time, the throughput in the first graph is very low compared
to what we should expect. One possible reason for the very low throughput is the bottleneck in the
input receiver module. Another reason can be the high cost needed to move data from one processor
to another.

5.2.2. IoT Nodes System Monitoring

The second experiment scenario consists of a oneM2M enabled IoT architecture as shown in
Figure 15. Each IoT node consists of a Raspberry Pi 3 SBC (BCM2837 4 × 1.0 GHz processor, 1 GB
RAM, 16 GB storage, Raspbian 20170410 OS, Linux Kernel 4.9.24-v7+) installed with our edge query
engine (QE) and nCube Rosemary 2.1.14 CSE. Each IoT node also has an AE called “SystemMonitor”,
which monitors the CPU usage, CPU temperature and memory usage of each node. The infrastructure
node consists of an x86 PC (Intel Core i5-4460 4 × 3.20 GHz processor, 12 GB RAM, 1 TB storage,
Ubuntu 16.04.3 LTS, Kernel 4.4.0-79 generic) installed with Mobius YT 2.3.8 CSE and running our main
query engine (QE).

To capture an unpredictable latency, which usually happens in an IoT node, we used a Network
Emulation (NETEM) program [36]. It is a tool that allows to add delay, packet loss, duplication and
other characteristics to packets outgoing from a selected network interface. Thus, we can simulate a
network latency in a range from 1 ms to 100 ms with a normal distribution.

In this scenario, several applications make use of the data from the IoT system. Each application
issues a single stream query into the system. Table 3 lists all the queries used during the experiment.
One identical query will be submitted by five different applications. We start all applications
one-by-one, every 10 s, starting from the first five applications that submit the same query q21 (denoted
as q21(1) to q21(5)), and continue with another five applications that submit q22 and so on. During the
application execution, several metrics are measured from each IoT node: network transfer rate,
CPU usage, and memory usage. After running all the applications, the average query latency time is
computed for another 10 s. All the measurements are recorded using a separate telemetry program
installed on each edge device.
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Figure 15. Hardware environment used for the IoT node system monitor.

Table 3. List of queries for IoT node system monitor experiment.

Query Goal Data Sources Operators

q21
Get status of node 1 and
node 2

• CPU temperature of node 1
• CPU temperature of node 2
• CPU usage of node 1
• CPU usage of node 2
• RAM usage of node 1
• RAM usage of node 2

• Join by timestamp

q22
Get total memory usage of
all nodes

• RAM usage of node 1
• RAM usage of node 2
• RAM usage of node 3
• RAM usage of node 4

• Join by timestamp
• Post-Join: Transform

– Function: Sum

q23
Get mean of CPU usage for
every node during 2 s

• CPU usage of node 1
• CPU usage of node 2
• CPU usage of node 3
• CPU usage of node 4

• Pre-Join: Aggregate
– Function: Mean
– Window Size: 60 s
– Output Rate: 2 s

• Join by timestamp

q24
Get mean CPU usage of all
node every 5 s

• CPU usage of node 1
• CPU usage of node 2
• CPU usage of node 3
• CPU usage of node 4

• Pre-Join: Aggregate
– Function: Mean
– Window Size: 60 s
– Output Rate: 5 s

• Join by timestamp
• Post-join: Transform

– Function: Mean All

q25

Notify if node 3 CPU
temperature is beyond
60 degree

• CPU temperature of node 3
• Pre-Join: Filter

– x > 60

To see the effectiveness of our proposed system, we measure the query processing time of OM2M
without QE as a baseline. This baseline time is compared to the query processing time of OM2M with
QE. We use the same application programs in both cases (with and without QE). These applications
execute the list of queries described in Table 3 and implemented with Node.js technology.

Figure 16a–c display the network transfer rate for each IoT node and an infrastructure node.
This transfer rate can be computed when OMQ sends data from each IoT node and for the infrastructure
node and vice versa while it executes users queries consecutively.
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When OMQ does not utilize QE (Figure 16a), we observe a gradual increase of the network
transfer rates for node 1 and node 2 after running query q21. This is because that the queries used in the
experiment require transferring data from all IoT nodes. However, there is almost no utilization of the
network in the infrastructure side as shown in Figure 16c. This means that all IoT nodes have to serve
all applications by themselves even though the subscription is already established by all applications
through the infrastructure node.
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Figure 16. Network transfer rate. (a) IoT Node without QE; (b) IoT node with QE; (c) the
infrastructure node.

When the OMQ QE is utilized, the network transfer rates for node 1 and 2 are around 1 kB/s and
the other two nodes utilize less bandwidth as depicted in Figure 16b. From Figure 16b,c, we observe
that transfer rates of all IoT nodes and an infrastructure node tend to be nearly stable in the end even
with increasing number of queries. This is because the QE implements a data-sharing mechanism that
efficiently reuses data from the IoT nodes and shares them across many queries.

The average CPU and memory usage of all IoT nodes, with increase in the number of queries,
are depicted in Figure 17. As we can see in Figure 17a, the CPU usage of the IoT node without QE is
generally a bit higher than that of IoT node with QE. It happens because when an IoT node does not
have QE to process the query operation itself, it sends the all data to an infrastructure node for further
processing in the infrastructure QE. Consequently, the data communication overhead between an IoT
node and an infrastructure node affects the higher CPU usage in the IoT node. However, the memory
usage when implementing QE on each node is higher by about 30–40 MB as shown in Figure 17b.
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Figure 17. Average CPU and memory usage of all IoT nodes. (a) CPU usage; (b) Memory usage.

Figure 18 indicates the average latency of each query after running all applications simultaneously.
The latency for a given query is calculated as the sum of data transfer latency and data processing time.
At this case, we observe that the latency for q25 using QE is not measured. Since the CPU temperature
of IoT node 3 never exceeds the minimum threshold which specified by query q25, the QE does not
send any results to the application. Another observation is that the latency when using QE is generally
lower than that without using one. One possible reason for such phenomena is that the higher the
bandwidth it takes to transfer data from the IoT node, the more prone it becomes to higher network
latency. The latency for each query when an application performs query without QE varies even within
the same query, whereas the latency is almost the same within the same query when an application
performs a query with QE because of the data-sharing mechanism.
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Figure 18. Average latency for each query type.

6. Conclusions

In this paper, we have presented the design of OMQ for efficient retrieval of IoT data streams.
The query language of OMQ enables users to retrieve IoT data from sources by specifying aggregate,
filter, transform, and join operators. The OMQ supports hybrid infrastructure-edge query processing
by placing the QE in two places, the first is in the infrastructure node and the second is in each IoT
node. Therefore, the user queries can be processed efficiently in each IoT node rather than only in
the infrastructure node, which reduces the query processing time and the network bandwidth in
the infrastructure node. For efficiently processing user queries over IoT data stream, OMQ exploits
the oneM2M architecture. The experimental results on real and synthetic IoT datasets indicates that
OMQ can efficiently and effectively process user queries by reducing the query execution time and the
usage of data bandwidth among IoT nodes. We plan to extend our OMQ bases on the following two
directions: one is to enhance the query language to deal with more complex operators. The other is to
design the edge deep learning algorithm for quickly obtaining analytic results from IoT data streams.
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