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Abstract: Fatty acids (FAs) are of interest to the areas of food science and medicine because they are
important dietary sources of fuel for animals and play important roles in many biological processes.
The health effects of FAs are different due to the diversity of olefinic bonds in the alkyl chains including
number, position and configuration. However, the discrimination of FAs is difficult from a chemical
sensing perspective due to the lack of diversity in terms of functional groups. Until now, only a
few chemosensors have been developed for selective sensing of FAs based on their overall shape,
however they are still limited in discrimination of FAs with subtle structural differences, moreover,
they cannot be used for rapid and in situ inspections. Herein, for the first time, we designed a test
paper for in situ colorimetric inspection for FAs based on the combination of the highly selective
binding of Ag+ to olefinic bonds and Ag+ mediated color variation of 3,3′,5,5′,-tetramethylbenzidine.
As a result, the sensor exhibited high sensitivity and good selectivity for five FAs with subtle structural
differences. Furthermore, our method described herein was successfully applied to monitor the
structural variations of FAs and quality changes in mixture edible hot pot oils with heat treatment in
time course. Hence, the test paper presented herein holds great potential in the inspection of fats and
edible oils in food industries.
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1. Introduction

Fatty acids (FAs) are the primary components of animal fats and vegetable oils, which are important
dietary sources of fuel and are required for energy storage, membrane proliferation, and the generation
of signaling molecules [1]. FAs are aliphatic monocarboxylic acids with carbon atoms ranging from 4 to
28, which are obtained by the hydrolysis of natural triglycerides, phospholipids, and cholesterol esters.
According to the number of their olefinic bond, they are classified into three categories, including saturated
fatty acids (SFAs) with no olefinic bond, mono-unsaturated fatty acids (mono-UFAs) with one olefinic
bond and poly-unsaturated fatty acids (poly-UFAs) with more than one olefinic bond [2]. In nature, UFAs
generally have cis configurations, the opposed trans-UFAs (TUFAs) naturally present in ruminant adipose
tissue and related dairy products. In food production, liquid cis-UFA (CUFA) esters such as vegetable
oils are hydrogenated or partially hydrogenated to produce SFAs or TUFAs, which are more stable and
easier to store and use [3]. Thus, the SFAs and TUFAs are widely produced and used in the food industry
such as for the production of margarine, snack foods, baked foods and frying fast foods in restaurants [4].
However, extensive experimental and observational data indicate that excessive use of SFAs and TUFAs
can easily lead to cardiovascular and related diseases [5–7]. According to world health organization (WHO)
estimates, the intake of TUFAs leads to more than 500,000 deaths of people from cardiovascular related
diseases every year [8]. In order to protect human health, WHO enacted a plan named REPLACE in 14 May
2018, which is a stipulation to eliminate the industrially-produced TUFAs in the global food industry [8].
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Therefore, the approaches to determine FAs profile in food industries are important in order to correct
nutrition labeling and control of labeling authenticity, which is of great significance to the implementation
of the plan of REPLACE.

The structures of FAs are diversity, because the length (carbon number) and unsaturation degree
(olefinic bond number) of alkyl chains, position and configuration (cis/trans) of the olefinic bond in
FAs are different. The chemical discrimination of FAs is difficult, because they lack special functional
groups other than the hydrophobic alkyl chain and carboxyl group. Currently, the most used methods
for the determination of FAs are based on gas chromatography (GC) or liquid chromatography (LC)
coupling with mass spectrometry (MS) analysis [9–11]. However, the GC/LC-MS techniques suffer
from some drawbacks, such as being time-consuming, expensive, operationally complex and relying
on sophisticated instrumentation that cannot be used for rapid and in situ analysis. Moreover, a variety
of regio- and stereoisomers can exist for FAs, posing a challenge for MS based analyses. Chemosensors
have been widely used in various fields because of their rapid, facile and convenient features, and these
features just make up for the inadequacies of the GC/LC-MS related techniques. Until now, only a
few colorimetric and fluorimetric chemosensors have been developed for selective sensing of FAs
based on their overall shape [12,13]. The main capability of these chemosensors is discrimination of
mono-CUFAs (with bent alkyl chain) from mono-TUFAs and SFAs (with linear alkyl chains), but they
do not show promise in differentiating poly-UFAs and SFAs. Therefore, a portable sensing method for
in situ inspection of FAs with different degree of unsaturation, position of olefins, and the configuration
of the olefins is urgent but difficult.

It is well known that silver ion (Ag+) can complex with olefinic bonds reversibly [14]. The stabilities
of Ag+-olefin complexes are highly dependent on the properties of olefins that can usually be divided into
two groups, namely steric (chain length, cis/trans isomers and number of olefinic bonds) and electronic
(conjugation and electron cloud density) properties [15]. Thus, Ag+ chromatography has been widely
used for the separation of unsaturated compounds with subtle structural differences such as FAs and
sterols [16–19]. However, a FAs sensor based on the selective complexation between Ag+ and olefinic
bonds has never been explored. Interestingly, the colorless 3,3′,5,5′,-tetramethylbenzidine (TMB) can be
oxidized by Ag+ and turn blue, and the color intensity is positively correlated with the concentration
of Ag+ [20–22]. When combining the highly selective binding ability of Ag+ to olefinic bonds and Ag+

mediated color variation of TMB, a colorimetric sensing method to inspection of FAs is possibly designed.
Recently, test paper-based colorimetric sensors have been widely applicated in various fields

such as disease diagnosis [23–26], environmental monitoring [27,28] and food safety inspection [29,30]
due to their simplicity, disposability, economical efficiency and minimal samples requirement [31].
More importantly, they are easier to use in in situ inspections. According to the principle of paper-based
colorimetric sensing, some specific reagents are necessary to develop color intensity and/or hue
correlates with types and concentration of analytes [32]. Herein, considering the Ag+ mediated color
variation of TMB and selective binding of Ag+ with olefinic bonds, we propose a test paper for FAs
inspection (Scheme 1). By mixing Ag+ with FAs in a solution, a part of Ag+ could form Ag+-FAs
complexes and the remnant part is free Ag+ ions. The free Ag+ could further oxidize TMB and develop
blue colors. The proportion of free Ag+ is dependent on the concentration and type of FAs. Therefore,
by taking advantage of the complexation difference of Ag+ to olefinic bonds of FAs, we successfully
identified five types of model FAs with subtle structural differences. Using the approach described
herein, the structural variation of FAs with heat treatment can be successfully monitored. Furthermore,
the quality changes of mixture FAs in edible hot pot oils with heat treatment were successfully
monitored by the test paper presented herein.
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Scheme 1. Illustration of the mechanism of test paper for colorimetric inspection of FAs according to
the color changes of TMB induced by Ag+ oxidation.

2. Materials and Methods

2.1. Materials

Stearic acid, oleic acid, linoleic acid, linolenic acid, elaidic acid, silver nitrate (AgNO3), sodium
acetate and acetic acid were obtained from Aladdin Reagent Database Inc. (Shanghai, China)
without further purification. TMB was purchased from Sigma-Aldrich and dissolved in ethanol
with concentration of 50 mM as stock solution, further dilution was completed by using sodium
acetate-acetic acid (NaAc) buffer solution. Milli-Q water (18 MΩ. cm) from a Millipore system was
used in our experiments.

2.2. FAs Preparation

Stearic acid, oleic acid, linoleic acid, linolenic acid, elaidic acid were dissolved in ethanol with
concentration of 10 mM as stock solution and diluted to different concentration for further use. For oleic
acid heating experiment, oleic acid was heated at 180 ◦C with vigorous stirring and collected at 0, 2, 4,
6, 8 h respectively. Then the collected samples dissolved in ethanol for further colorimetric sensing.
To prepare the real samples, hot pot oil was heated at 180 ◦C and collected at 0, 2, 4, 6, 8 h respectively.
Then 1 mL of the collected oils mixed with 5 mL n-hexane respectively, after 10 min, the supernatant of
the mixture was separated and n-hexane was removed with a rotary evaporator, and the remaining
oils were collected for further colorimetric sensing.

2.3. Colorimetric Sensing of FAs

The experiments were performed in 0.2 M NaAc buffer solution with different pH range from
4.0–6.5. A 10 µL of FAs was added to 100 µL AgNO3 solution with final concentration range from
0.05–0.20 mM, and then 200 µL of TMB with final concentration range from 0.1–0.5 mM was added
to the mixture and reacted at room temperature for 5–30 min. The UV-vis absorption spectra and
digital photos of the resulting solutions were recorded on a Varian CARY 50 spectrophotometer
(Agilent Technologies Inc., Santa Clara, CA, USA) and Canon 500D digital camera (Canon Inc., Tokyo,
Japan) respectively.
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2.4. Colorimetric Sensing for FAs by Test Paper

To prepare a paper-based device for FAs inspection, filter papers were cut into 0.4 cm × 2.5 cm,
and immersed in TMB (0.3 mM), after 5 min incubation, filter papers were taken out, dried with
nitrogen in dark and stored in a dryer without light for further use. In order to achieve FAs inspection,
AgNO3 (0.175 mM) was firstly added in analyte FAs and incubated for 5 min; then 100 µL of the
mixture was added to the as prepared paper-based device and incubated for 10 min in dark; finally,
the colored papers dried with nitrogen in dark. After 10 min stabilization in dark in an ambient room,
the resulting filter papers were recorded by digital camera.

3. Results and Discussion

To demonstrate the Ag+-TMB sensing system could be applied to inspect of FAs, we firstly
implemented some verification experiments, and the results are shown in Figure 1. The TMB alone
exhibits no blue color and absorbance peaks (curve a and inset Figure 1a). When Ag+ was added to
TMB, an obvious blue color with strong absorbance peaks centered at 652 nm was observed (curve
b and inset Figure 1b), which could be attributed to the direct oxidation of TMB by Ag+, for there is
no other reducing agent in this system. There was no blue color and absorbance peaks when oleic
acid was added to TMB (curve c and inset Figure 1c), suggesting that the oleic acid alone has no effect
on the oxidation of TMB. Significantly, when the mixture of oleic acid and Ag+ was added to TMB
(curve d and inset Figure 1d), the blue color of oxidized TMB faded and its absorbance at 652 nm was
decreased; because Ag+ complexes with the olefinic bonds of oleic acid, thus the content of free Ag+ is
reduced and finally weakened the oxidation of TMB. According to a previous report [33], the strong
complexation between Ag+ and FAs is attributed to the formation of σ-bonds and π-bonds between
olefinic bonds and Ag+. Therefore, the results of Figure 1 prove the feasibility of the Ag+-TMB sensing
system in the inspection of FAs.
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Figure 1. UV-vis absorption spectra of 0.3 mM TMB (a) without 0.175 mM Ag+ and 1 µM oleic acid,
(b) with 0.175 mM Ag+ and without 1 µM oleic acid (c) with 1 µM oleic acid and without 0.175 mM
Ag+, (d) with 0.175 mM Ag+ and 1 µM oleic acid. The inset shows the corresponding digital photo.

In order to realize effective colorimetric sensing, we optimized experimental conditions such as
incubation time, pH, concentration of AgNO3 and TMB. We chose the parameter ∆A as a criterion for
optimization; ∆A = A0 − A, A0 and A represent the absorbance of Ag+-TMB system at 652 nm in the
absence and presence of oleic acid respectively. As shown in Figure 2a, the values of ∆A are distinct
among different incubation time ranging from 5–30 min, and 10 min incubation obtained the highest
value. Increasing the time has no effect on the increasing of ∆A, as a result, 10 min is appropriate for
the experiments followed.
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Figure 2. (a) Effect of incubation time on the ∆A (0.2 M NaAc buffer, pH 5.0, 0.3 mM TMB, 0.175 mM
AgNO3 and 500 nM oleic acid). (b) Effect of pH on the ∆A (0.2 M NaAc buffer, 0.3 mM TMB, 0.175 mM
AgNO3, 500 nM oleic acid and 10 min incubation). (c) Effect of AgNO3 concentration on the ∆A
(0.2 M NaAc buffer, pH 5.0, 0.3 mM TMB, 500 nM oleic acid and 10 min incubation). (d) Effect of
TMB concentration on the ∆A (0.2 M NaAc buffer, pH 5.0, 0.175 mM AgNO3, 500 nM oleic acid and
10 min incubation).

According to a previous report [21], the pH affected the oxidation capacity of Ag+, therefore we
investigated the effect of pH on the Ag+-TMB sensing system. We adopted a 0.2 M NaAc buffer with
pH range from 4.0–6.5 to determine the optimum. As shown in Figure 2b, ∆A increased gradually
when the pH increased from 4.0 to 5.0, and when the pH was greater than 5.0 the ∆A decreased
gradually, therefore, we chose pH 5.0 for the FAs sensing experiments.

Finally, the concentration of TMB and AgNO3 were optimized. As shown in Figure 2c,d, the too
high or too low concentration of TMB and AgNO3 are not appropriate for FAs sensing. On the one
hand, the higher concentration of TMB and AgNO3 needs higher concentrations of FAs to produce
the recognizable color changes, which reduces the sensitivity of the sensing system. On the other
hand, the low concentration of TMB and AgNO3 makes the low absorbance of oxidized TMB which
introduces the larger experimental error. When the concentration of TMB and AgNO3 are 0.3 mM
and 0.175 mM, the highest ∆A are obtained respectively. Therefore, we chose 0.3 mM of TMB and
0.175 mM of AgNO3 for the next FAs sensing experiments.

To verify the sensitivity and concentration-dependent response of Ag+-TMB system for FAs,
the effect of 0 to 6 µM oleic acid on the color change of Ag+-TMB system was investigated. As shown
in the inset of Figure 3a, under the optimal experimental conditions, the color changes of the Ag+-TMB
system induced by the variation of oleic acid concentration can be clearly visualized. The dark
blue color of Ag+-TMB system is gradually weakened to light blue with the increasing of oleic acid
concentration. Meanwhile, the corresponding absorbance of Ag+-TMB system at 652 nm is decreasing
(Figure 3a) as the oleic acid concentration is increasing. Correspondingly, ∆A with the increasing
concentration of oleic acid were investigated (Figure 3b). It is obviously seen that ∆A increased
gradually with the increasing of oleic acid concentration, and there is no obvious increase observed
when the concentration of oleic acid is up to 2 µM. In the range of 0–1 µM, ∆A increased linearly with
increasing oleic acid concentration (inset of Figure 3b), and the equation fitted as ∆A = 0.01 + 0.63C (C
is the concentration of oleic acid), with the corresponding R2 = 0.989.
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Figure 3. (a) Absorption spectra (inset is digital photo) of Ag+-TMB system in the presence of
different concentrations of oleic acid (0 to 6 µM, from top to bottom); (b) Plots of ∆A versus different
concentrations of oleic acid ranging from 0 to 6 µM (inset is the linear relationship between ∆A and the
concentration of oleic acid from 0 to 1 µM). Experimental conditions: 0.2 M NaAc buffer (pH = 5.0),
0.3 mM of TMB and 0.175 mM of AgNO3, incubation time is 10 min. The error bars represented
standard deviations based on three independent measurements.

In order to demonstrate the selectivity of the Ag+-TMB system, five FAs including stearic acid
(SFAs), oleic acid (mono-CUFAs), linoleic acid (poly-CUFAs), linolenic acid (poly-CUFAs) and elaidic
acid (TUFAs) with different unsaturation degrees and configuration of the olefinic bonds (Figure 4a)
were investigated. Figure 4b is the digital photo of Ag+-TMB sensing system towards the above
five FAs, and Figure 4c is the corresponding absorption spectra. The number of 0 (blank) represents
Ag+-TMB system with the addition of equal volume of ethanol without any FAs addition as the control
experiment, and numbers 1–5 represent the above five FAs respectively. As shown in Figure 4b,
five FAs displayed distinct colors ranging from dark blue to colorless, and the five types of FAs were
readily distinguished from blank by the naked eye except for stearic acid (1). Because stearic acid has
no olefinic bond, it cannot complex with Ag+ and produce color change. A similar result is observed in
Figure 4c, that is, the addition of stearic acid has almost no effect on the change of absorption spectrum
of Ag+-TMB system. For oleic acid (2), linoleic acid (3) and linolenic acid (4), they are all CUFAs
but with different numbers of olefinic bonds: 1, 2 and 3 respectively. With the number of olefinic
bonds increasing, the color changed from dark blue to colorless, and the corresponding absorbance of
Ag+-TMB system at 652 nm gradually decreased. The reason for this is that the complexation ability of
FAs with Ag+ increased with the number of olefinic bond increasing. Linolenic acid shows the lowest
absorption at 652 nm and almost colorless, for it has 3 olefinic bonds and complexes with Ag+ more
easily than other two FAs. As for different configurations of FAs, for example, in the case of oleic
acid (2) and elaidic acid (5) which only have one olefinic bond at same position but with different
configurations, the result of colorimetric sensing is distinct. Elaidic acid exhibits darker blue and
higher absorption at 652 nm compared with oleic acid. Because the complexation between Ag+ and
trans-olefinic bond is weaker than cis-configuration, therefore, the degree of TMB oxidation caused by
trans- is more acute than cis-configuration. As a result, the color of Ag+-TMB system in the presence of
oleic acid is lighter than the presence of elaidic acid.
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Next, we designed a test paper for colorimetric sensing of FAs based on the proposed Ag+-TMB
sensing system to improve the portability and disposability of this sensing system. As shown in
Figure 4d, the paper-based devices exhibit distinct colors toward the above five types of FAs and could
be easily distinguished from blank (0) except for steric acid (1). CUFAs including oleic acid (2), linoleic
acid (3) and linolenic acid (4) shows the gradual fading blue color for their number of olefinic bond are
increasing. As for configurational identification, the elaidic acid (5) shows darker blue than oleic acid
(2), for TUFAs has lower ability to complex with Ag+ than CUFAs. Thus, the results indicate that the
delicately designed test paper shows good selectivity for different types of FAs; and it’s worth noting
that the preparation processes of test paper were very simple, which could be widely used in in situ
inspection of FAs.

Furthermore, the test paper could be used in monitoring of FAs structural variations, and we
took oleic acid as example to illustrate. According to a previous report [34], heating could induce
FAs variation in terms of unsaturation degree and generation of harmful trans-configurations; thus,
we implemented experiments to monitor the structural variation of oleic acid by the proposed approach.
As shown in the inset of Figure 5a, oleic acid without heating (0 h) exhibits a very light blue color, while
when the heating time increased from 0 to 8 h, the color of Ag+-TMB solution is gradually deepened to
dark blue and the absorption of the sensing system at 652 nm is gradually increased. Correspondingly,
the test paper shows the similar results (Figure 5b). The color changes of the sensor are ascribed to the
unsaturation and configuration variation of oleic acid induced by heating.
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Figure 5. (a) Absorption spectra (inset is digital photo) of Ag+-TMB sensing system and (b) test
papers toward oleic acid samples with heat treatment at 180 ◦C for different times; (c) digital photo
of Ag+-TMB sensing system and (d) test papers toward hot pot oils with heat treatment at 180 ◦C for
different time.

In order to prove the feasibility of the test paper for the in situ inspection of complex mixture
FAs, we profiled the quality changes of edible hot pot oils with heat treatment based on the method
described herein. Edible oils are a very important source of FAs, and usually suffered from variations
of unsaturation degree and configuration, which occurs when fresh edible oils are heated at high
temperatures during various food preparations [35]. Illegal gutter oils are refined second-hand oils
which is detrimental to people’s health because their quality have been declined, but it is common to
use these oils in the commercial food industry for maximized profits. Therefore, the inspection of the
quality of edible oils is significant. As a very famous special food in China, hot pot is very popular
there, and the oils used for this cuisine suffered continuous heating during the process of eating. There
are many reported food safety incidents regarding second-hand oils being used in hot pot, therefore
the quality monitoring of the hot pot oils is very important. Soybean oil is a commonly used edible
oil in hot pot, which mainly composed of CFAs (ca. 81%), with saturated FAs as minor components
(ca. 18%) [36]. In our work, we monitored the quality changes of soybean oil under continuous heating
with different times. As shown in Figure 5c, the original oil (0 h) without heating is almost colorless,
and with the increased heating time from 0 to 8 h, the color of the sensing system gradually turns
dark blue. In the paper-based sensing results (Figure 5d), the original oil (0 h) shows the color of
filter paper, and the color of paper gradually changed to dark blue with as the heating time increased.
The color changes were mainly attributed to the variation of unsaturation degree and configuration of
FAs, which lower the complexation ability of hot pot oil with Ag+, thus the adequate free Ag+ could
oxidize TMB and develop blue colors. These results indicate that the portable and disposable test
paper can be used to monitor the changes in oil quality by the naked eye, and the method can be used
in in situ safety inspection of edible oils.

4. Conclusions

In this work, we proposed a test paper for the colorimetric inspection of FAs with subtle difference
in their alkyl chains such as number, position and configuration of olefinic bonds. For the first time,
the approach we designed herein could discriminate FAs rely on the highly selective binding of Ag+ to
olefinic bonds in FAs rather than the shape of alkyl chain (bent or linear). Based on the Ag+ mediated
color variation of TMB, the test paper achieved colorimetric discrimination of five types of model FAs
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including stearic acid, oleic acid, linoleic acid, linolenic acid, and elaidic acid. Furthermore, the test
paper was successfully applied to monitor the structural variations of oleic acid with heat treatment.
Significantly, the quality changes of mixture edible hot pot oils with heat treatment was successfully
monitored by the sensor. Thus, the facile, economic, portable and disposable test paper for FAs holds
great potential in in situ food safety inspection.
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