
sensors

Article

Reconstructed Order Analysis-Based Vibration
Monitoring under Variable Rotation Speed by Using
Multiple Blade Tip-Timing Sensors

Zhongsheng Chen 1,2,* , Jianhua Liu 3,*, Chi Zhan 2, Jing He 1 and Weimin Wang 4

1 College of Electrical & Information Engineering, Hunan University of Technology, Zhuzhou 412007, China;
hejing@163.com

2 Science and Technology on Integrated Logistics Support Laboratory,
National University of Defense Technology, Changsha 410073, China; chizhan_nudt@163.com

3 College of Traffic Engineering, Hunan University of Technology, Zhuzhou 412007, China
4 Beijing Key Laboratory of Health Monitoring and Self-recovery for High-end Mechanical Equipment,

Beijing University of Chemical Technology, Beijing 100029, China; wwm@mail.buct.edu.cn
* Correspondence: chenzswind@gmail.com (Z.C.); liujianhua_hut@163.com (J.L.);

Tel.: +86-139-7580-3247 (Z.C.)

Received: 24 August 2018; Accepted: 17 September 2018; Published: 26 September 2018
����������
�������

Abstract: On-line vibration monitoring is significant for high-speed rotating blades, and blade
tip-timing (BTT) is generally regarded as a promising solution. BTT methods must assume that
rotating speeds are constant. This assumption is impractical, and blade damages are always formed
and accumulated during variable operational conditions. Thus, how to carry out BTT vibration
monitoring under variable rotation speed (VRS) is a big challenge. Angular sampling-based order
analyses have been widely used for vibration signals in rotating machinery with variable speeds.
However, BTT vibration signals are well under-sampled, and Shannon’s sampling theorem is not
satisfied so that existing order analysis methods will not work well. To overcome this problem,
a reconstructed order analysis-based BTT vibration monitoring method is proposed in this paper.
First, the effects of VRS on BTT vibration monitoring are analyzed, and the basic structure of angular
sampling-based BTT vibration monitoring under VRS is presented. Then a band-pass sampling-based
engine order (EO) reconstruction algorithm is proposed for uniform BTT sensor configuration so
that few BTT sensors can be used to extract high EOs. In addition, a periodically non-uniform
sampling-based EO reconstruction algorithm is proposed for non-uniform BTT sensor configuration.
Next, numerical simulations are done to validate the two reconstruction algorithms. In the end,
an experimental set-up is built. Both uniform and non-uniform BTT vibration signals are collected,
and reconstructed order analysis are carried out. Simulation and experimental results testify that the
proposed algorithms can accurately capture characteristic high EOs of synchronous and asynchronous
vibrations under VRS by using few BTT sensors. The significance of this paper is to overcome the
limitation of conventional BTT methods of dealing with variable blade rotating speeds.

Keywords: vibration monitoring; multiple blade tip-timing sensors; variable rotation speeds; angular
sampling; reconstructed order analysis

1. Introduction

High-speed blades are key mechanical rotating components in turbo-machinery, such as engine
compressor and turbine blades. High cycle fatigue due to low stress and high-frequency vibrations
cause different kinds of blade damage or even catastrophic faults. Statistical data have shown that over
60% of the overall engine faults are caused by vibrations. Furthermore, blade faults have accounted
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for more than 70% of the overall vibration-induced faults [1]. Thus, on-line vibration monitoring of
high-speed blades is urgent from the viewpoints of safety, reliability, availability, and maintenance [2].
As blades rotate continuously during operating, it is difficult to carry out on-line vibration monitoring.
Currently, there are two classes of methods, namely contact and non-contact monitoring. For contact
vibration monitoring, strain gauges are mounted on a blade surface, and signals are sampled by using
a slip-ring [3]. This class of method has several intrinsic drawbacks. First, we need to use at least a
strain gauge to monitor each blade. This results in numerous strain gauges being used for monitoring
the whole engine. Strain gauges themselves may affect the vibration characteristics of a blade. Second,
the lifespan of a strain gauge is limited due to the challenging operational environments, so they
need to be replaced regularly, and the cost is high. Third, a high-speed slip ring is needed to transmit
signals of all strain gauges, the expense of which is also very high. To overcome these shortcomings,
non-contact blade vibration monitoring methods have arisen in recent years, such as laser Doppler
vibrometry (LDV) [4]. Stationary LDV measurement can be used to detect all the blades as they pass in
front of the sensor through non-harmonic Fourier analysis [5–7]. Recently, blade tip-timing (BTT) has
become another promising non-contact measurement approach [8,9]. BTT uses the times at which the
blade tips pass the casing-mounted probes to obtain all-blade vibrations simultaneously.

A review of BTT vibration analysis methods can be found in References [10,11]. To date,
a few methods have been proposed to identify synchronous or asynchronous blade vibrations at
constant rotation speed [12,13]. Lawson and Ivey proposed measuring blade vibration amplitude
through dual capacitance probe tip timing [14]. Bastami et al. used two BTT sensors to identify
the frequency and amplitude of asynchronous blade vibration by using the least mean square
algorithm [15]. Dimitriadis et al. studied the effects of the various dynamic phenomena during
synchronous vibrations on the BTT technique itself and pointed out that there is no single BTT
data analysis method to address all these phenomena [16]. Battiato et al. evaluated the accuracy of
the tip-timing system by measuring the forced response of rotating bladed disks under synchronous
excitations [17]. Diamond et al. compared three blade tip timing algorithms for estimating synchronous
turbomachine blade vibration [18]. However, under-sampling is an intrinsic drawback of BTT methods,
so frequency aliasing always exists in the direct spectral analysis. To overcome it, Chen et al. proposed
under-sampled blade vibration reconstruction methods by using the Shannon sampling theorem and
wavelet packet transform [19,20]. Hu et al. presented a novel reconstruction method for non-uniformly
under-sampled BTT data based on the periodically non-uniform sampling theorem [21]. Lin et al.
reconstructed unknown multi-mode blade vibration signals based on sparse representation and
compressed sensing [22].

In practice, the rotating speed is impossible to keep constant due to unstable airflow,
load instability, and other dynamic factors. Furthermore, blade damage is constantly formed and
accumulated during variable operational conditions due to their frequently passing resonant regions.
In this sense, variable rotation speed (VRS) may have positive effects on blade vibration monitoring.
For example, VRS may result in nonlinear vibration phenomenon [23], such as amplitude modulation,
frequency modulation, and phase modulation. In this case, it may be easier to detect incipient blade
damage. Therefore, it is important to perform vibration monitoring under VRS. However, existing
methods result in significant estimation errors due to VRS. BTT sensors are only mounted around
the circumference of the bladed disk, so BTT sampling can be looked at as an angular sampling
process. As we know, angular sampling-based order analysis has been widely used for vibration
signals in rotating machinery with variable speeds [24–31]. Fyfe et al. [29] discussed the effects of
various factors on its accuracy in the computed order tracking method. An extended work was
discussed by Bosssley et al. [30] which focused on the assessment of the accuracy of three different
order tracking methods. As a BTT system is only a hardware-implemented order analysis configuration,
the computed order tracking method will not be used. The angular sampling rate of the BTT method
depends completely on the number of sensors so that the sampling order of blade vibration signals
is always much less than engine orders (EOs) of interest. In this case, blade vibration signals in the
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angular domain are well under-sampled, so that existing order analysis and reconstruction methods
will not work. To our knowledge, no related works have been done to reconstruct true vibration
characteristics from under-sampled BTT vibration signals under VRS.

This paper aims to explore a reconstructed order analysis-based BTT vibration monitoring method
under VRS. Moreover, both uniform and non-uniform BTT sensor configuration are considered.
First, BTT vibration signals in the domain are transformed into angularly sampled signals. Then,
angular-domain BTT vibration reconstruction algorithms under VRS are proposed for both uniform
and non-uniform BTT sensor configurations, respectively. Based on them, order analysis is used
to extract high EOs of synchronous and asynchronous vibrations. The remainder of the paper is
organized as follows: In Section 2, basic problems of BTT vibration reconstruction under VRS are
described, and the basic structure of angular sampling-based BTT vibration monitoring under VRS
is proposed. Next BTT vibration reconstruction algorithms under VRS are presented in Section 3.
In Section 4, numerical simulations are done. Then a test rig is built, and experiments are carried out
to validate the proposed method in Section 5. Finally, conclusions are summarized in Section 6.

2. Angular Sampling-Based BTT Vibration Monitoring under Variable Rotation Speed

2.1. Basic Principles of BTT-Based Vibration Monitoring

The basic principle of a BTT monitoring system is shown in Figure 1. First, I BTT sensors are
embedded into a stationary casing around a bladed-disk with K blades. In practice, BTT sensors can
be optic fiber, eddy current, microwave or capacitive sensors. At the same time, a once-per-revolution
sensor is mounted in front of the rotating shaft as a reference sensor. The angular positions of the
ith(1 ≤ i ≤ I) BTT sensor and the kth(1 ≤ k ≤ K) blade are denoted as αi and θk, respectively.

Sensors 2018, 18, x FOR PEER REVIEW  3 of 25 

 

vibration signals in the angular domain are well under-sampled, so that existing order analysis and 

reconstruction methods will not work. To our knowledge, no related works have been done to 

reconstruct true vibration characteristics from under-sampled BTT vibration signals under VRS. 

This paper aims to explore a reconstructed order analysis-based BTT vibration monitoring 

method under VRS. Moreover, both uniform and non-uniform BTT sensor configuration are 

considered. First, BTT vibration signals in the domain are transformed into angularly sampled 

signals. Then, angular-domain BTT vibration reconstruction algorithms under VRS are proposed for 

both uniform and non-uniform BTT sensor configurations, respectively. Based on them, order 

analysis is used to extract high EOs of synchronous and asynchronous vibrations. The remainder of 

the paper is organized as follows: In Section 2, basic problems of BTT vibration reconstruction under 

VRS are described, and the basic structure of angular sampling-based BTT vibration monitoring 

under VRS is proposed. Next BTT vibration reconstruction algorithms under VRS are presented in 

Section 3. In Section 4, numerical simulations are done. Then a test rig is built, and experiments are 

carried out to validate the proposed method in Section 5. Finally, conclusions are summarized in 

Section 6. 

2. Angular Sampling-Based BTT Vibration Monitoring under Variable Rotation Speed 

2.1. Basic Principles of BTT-Based Vibration Monitoring 

The basic principle of a BTT monitoring system is shown in Figure 1. First, I  BTT sensors are 

embedded into a stationary casing around a bladed-disk with K  blades. In practice, BTT sensors 

can be optic fiber, eddy current, microwave or capacitive sensors. At the same time, a 

once-per-revolution sensor is mounted in front of the rotating shaft as a reference sensor. The 

angular positions of the th(1 )i i I   BTT sensor and the th(1 )k k K   blade are denoted as  i  

and k , respectively. 

, ,
expected
i k nt

, ,
actual
i k nt

i
k

 

Figure 1. Basic principle of the blade tip-timing (BTT) method. 

The basic idea of the BTT method is to measure the arrival times as each blade passes each BTT 

sensor. When there are no blade vibrations under ideal conditions, the passage times of each blade 

will only be a function of rotating speed, rotating radius, and its circumferential position. Once these 

parameters are fixed, the blade passage times are also deterministic. However, when blade 

vibrations happen, the blades will pass BTT sensors earlier or later than normal intervals. Thus, the 

blade passing times will deviate from those under undisturbed conditions and a time difference 

series will be generated for each blade. Then vibration displacements of each blade can be calculated 

based on these time differences. The BTT method can be used to measure all-blade vibrational 

Figure 1. Basic principle of the blade tip-timing (BTT) method.

The basic idea of the BTT method is to measure the arrival times as each blade passes each BTT
sensor. When there are no blade vibrations under ideal conditions, the passage times of each blade
will only be a function of rotating speed, rotating radius, and its circumferential position. Once these
parameters are fixed, the blade passage times are also deterministic. However, when blade vibrations
happen, the blades will pass BTT sensors earlier or later than normal intervals. Thus, the blade
passing times will deviate from those under undisturbed conditions and a time difference series will
be generated for each blade. Then vibration displacements of each blade can be calculated based on
these time differences. The BTT method can be used to measure all-blade vibrational displacements,
which is superior to other contact monitoring methods. The details are summarized as follows:
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Let the bladed-disk rotate clockwise at a constant speed. Under ideal conditions, the expected
arrival times of the kth blade passing the ith BTT sensor can be calculated as:

texpected
i,k,n =

1
2π fr

[2π(n− 1) + αi − θk], n = 1, 2, . . . , N (1)

where fr is the rotating frequency and n denotes the nth revolution.
The actual arrival times of the kth blade passing the ith BTT sensor are measured as tactual

i,k,n .
Then the time difference series is calculated as:

∆ti,k,n = texpected
i,k,n − tactual

i,k,n (2)

Furthermore, vibration displacements of the kth blade measured by the ith BTT sensor can be
calculated as:

di,k[n] = 2π frR∆ti,k,n = 2π frR
(

texpected
i,k,n − tactual

i,k,n

)
(3)

where R is the rotating radius of the blade tip.
It can be seen that I vibration displacements of each blade are measured during each revolution

due to I BTT sensors. Thus, the BTT sampling frequency fBTT of each blade can be defined as I × fr

if the BTT sensors are mounted uniformly. In engineering applications, the number of BTT sensors
I is often small due to the restrictions of spaces and costs, so the sampling frequency fBTT is always
less than the natural frequencies of a blade. Thus, BTT vibration signals are typically under-sampled.
In this case, we cannot directly use sampled vibration displacements to perform vibration monitoring,
and we need to reconstruct the vibration signal to obtain true vibration characteristics of a blade.

2.2. Problem Statements of BTT Vibration Reconstruction under VRS

By now, several works have been done to reconstruct under-sampled BTT vibration signals [17–19],
which are mainly based on Equations (1)–(3). According to Equations (1) and (3), the rotating frequency
fr is assumed to be a constant in previous works. In practice, however, this assumption is rarely
satisfied due to many factors, such as variable operation conditions, unstable airflows, rotor imbalances,
and so on. In this case, estimated vibration displacements are not accurate, which will cause existing
reconstruction methods to be unusable.

When considering VRS, the rotating frequency fr should not be a constant. In this case, the period
of the ith revolution is denoted as Ti. The expected arrival times of the kth blade passing the ith BTT
sensor can be calculated as:

t̃expected
i,k,n =

n−1

∑
i=1

Ti +
αi − θk

2π
Tn, n = 1, . . . , N (4)

Furthermore, when the blade has a vibration displacement d
(

ti,k,n

)
at that time, the actual arrival

times can be expressed as:

t̃actual
i,k,n =

n−1

∑
i=1

Ti +
αi − θk

2π
Tn −

d
(

ti,k,n

)
2πR

Tn (5)

Then blade vibration displacements under VRS can be estimated as:

d̃i,k[n] = 2πR
(

t̃expected
i,k,n − t̃actual

i,k,n

)
/Tn

= 2πR
(

n−1
∑

i=1
Ti +

αi−θk
2π Tn − t̃actual

i,k,n

)
/Tn

(6)
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In practice, t̃actual
i,k,n can be measured by the BTT monitoring system. By comparing Equation (6)

with Equation (3), we can see that blade vibration displacements under VRS are significantly different
from those under constant speeds. In particular, it brings two main obstacles to existing reconstruction
methods. The first is that the rotating period is not fixed so that it is difficult to calculate fr accurately
in Equation (3). The second is that the BTT sampling process is non-uniform, even though BTT sensors
are mounted uniformly around the casing. In this case, previous methods cannot be used [19–22].
Therefore, new reconstruction algorithms should be explored for BTT vibration monitoring under VRS
to the best of our knowledge this has not been reported before.

2.3. Basic Structure of Angular Sampling-Based BTT Vibration Monitoring under VRS

As we know, high cycle fatigue (HCF) is a common failure mode of high-speed rotating blades.
Generally speaking, blade vibrations are a major reason for generating HCFs, which can be classified
into synchronous and asynchronous vibrations. Frequencies of unsteady aerodynamic forces due to
aerodynamic instabilities, such as wakes of upstream blades, struts, and burners, are usually integer
multiples (called engine order) of the rotation speed of the blade. Then, vibrations of the blade
which occur at the engine order (EO) are termed as synchronous vibrations. Whereas, some flow
instabilities appear at a distinct frequency which is not an integer multiple of the rotor speed so that
it is not synchronous with the rotating speed. In addition, flow instability naturally occurs at one
frequency locking on one of the nearby natural frequencies of the blade, leading to shifting, somewhat,
the frequency of the response. Such vibration is termed as asynchronous vibration. In practice,
synchronous vibrations enlarge vibration amplitudes of rotating blades, so they are more dangerous
to rotating blades than asynchronous vibrations. On the other hand, blade damage also causes
asynchronous vibrations. Thus, BTT vibration monitoring aims to accurately identify both these
characteristic vibrations.

As for the under-sampling problem of BTT techniques, angular re-sampling in vibration
monitoring of rotating machinery is introduced in this paper, and an idea of angular sampling-based
BTT vibration monitoring is proposed. Its basic principles are as follows: The I BTT sensors are
assumed to be uniformly mounted around the casing, so that angle between any two adjacent blades
is the same. In this case, blade vibration displacements can be considered as being sampled uniformly
in the angular domain, which is referred to as synchronously sampled data. In other words, no matter
what the RPM (Revolutions Per Minute) of the measured blade is, there will always be uniform I data
samples per revolution. As we know, order analysis techniques can enable us to analyze vibration
signals when the rotating speed changes over time, including basic order analysis [18] and order
tracking analysis [25]. Therefore, order analysis techniques can provide a promising solution for BTT
vibration monitoring under VRS. As mentioned before, a BTT system samples the data at constant
angular increments and synchronous sampling is not needed, so existing computed order tracking
methods are not considered in this paper. According to the order sampling theorem, the sampling
number per revolution should be larger than twice the maximum EO of interest. That is to say,
we need to mount at least 20 BTT sensors if we want to monitor the 10th EO. In practice, the number
of BTT sensors is small, so the order sampling is also under-sampled in terms of high EOs of interest.
In this case, we cannot directly carry out order analysis, and we also need to reconstruct high EOs
of interest.

In this section, we propose a basic structure of reconstructed order analysis-based BTT vibration
monitoring, which is shown in Figure 2. There are three key steps. The first is to transform BTT
vibration signals in the time domain into angularly sampled vibration signals. The second is to
reconstruct under-sampled vibration signals in the angular domain. The third is to perform order
analysis to extract characteristic blade vibration frequencies for vibration monitoring.
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Furthermore, assuming that the rotating speed is a constant during each revolution, angularly
sampled vibration displacements of the kth blade under VRS can be represented as:

dk[l] = 2πR
Tb l

I c+1

(
t̃actual
b l

I c+1,k,mod(l,M)
− t̃expected
b l

I c+1,k,mod(l,M)

)
= 2πR

Tb l
I c+1

(
t̃actual
b l

I c+1,k,mod(l,I)
− αmod(l,I)−θk

2π × Tb l
I c+1

)
(7)

where l denotes the lth sampled vibration displacement, bxc denotes the maximum integer less than x.
mod(l, I) is the modulus of l divided by I and we define mod(qI, I) = q− 1(q ∈ Z+) here.
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3. Angular-Domain BTT Vibration Reconstruction Algorithms under VRS

3.1. Uniform BTT Sensor Configuration

To reconstruct any sampled signal in the analog domain, a sampling function can be used to
perform weighted interpolation on discrete sampling points. For angularly sampled signals under
uniform BTT sensor configuration, we can use this reconstruction process to recover continuous-angle
signals. Similarly, the Shannon sampling theorem in the time domain can be extended as follows in
angular domain.

Shannon sampling theorem in angular domain: The maximum order of sampled signal is denoted
as EOmax. If the angular sampling frequency is larger than EOmax/2, then the continuous-angle signal
can be reconstructed perfectly as Equation (8).

y(θ) =
∞

∑
n=−∞

y[k]
sin π(EOs × θ − k)

π(EOs × θ − k)
(8)

where y[k] is the angular sampling signal, EOs is the angular sampling frequency and k is the number
of angular samplings.

In practice, the number of BTT sensors is small, and EO of interest is always high, so that order
aliasing will exist, and it is difficult to extract high EOs using Equation (8). However, for a high EO of
interest, we can only focus on a band-pass signal z(θ) with center order EO0 and order bandwidth E0,
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i.e., EO ∈ [EO0 − E0/2, EO0 + E0/2]. Then an angular-domain BTT vibration reconstruction algorithm
under uniform sensor configuration is proposed as follows based on the band-pass sampling theorem.

First, z(θ) is shifted by EO0 in the order domain and we will have

s(θ) = z(θ)e−j2πEO0θ (9)

So s(θ) becomes a low-pass signal with zero center order and bandwidth E0. Let the angular
sampling frequency in the BTT method be EOs. According to the above Shannon sampling theorem
in angular domain, we can reconstruct s(θ) from the angular sampling signal s[k] as follows if only
E0 < EOs.

ŝ(θ) = Re

[
∞

∑
k=−∞

s̃[k] sin c(EOs × θ − k)

]
(10)

where s̃[k] is the analytic version of s[k].
It should be pointed out that here EOs is just equal to the number of BTT sensors, thus, the criterion

of choosing E0 is to satisfy E0 < I. Furthermore, the band-pass signal z(θ) can be reconstructed as:

ẑ(θ) = Re

[
∞

∑
n=−∞

s̃[k] sin c(EOs × θ − k) exp
(

j2π
EO0

EOs
(EOs × θ − k)

)]
(11)

It can be seen from Equation (10) that the band-pass signal z(θ) can be reconstructed without
error from the sub-sampled signal s[k]. That is to say, it does not need to satisfy EOs > 2EO0 + E0,
so that we can use few BTT sensors to extract high EO in blade vibrations. Here, how to choose E0

depends on the practical requirement. Assuming that the frequency band of interest is [ fmin, fmax],
the corresponding order band can be chosen as [EOmin, EOmax],

EOmin = [ fmin/ f r
max], EOmax = [ fmax/ f r

min] (12)

where ‘[ ]’ is the integer operator and f r
min, f r

max are the minimum and maximum blade rotating
frequencies, respectively. In this case, E0 can be chosen as:

E0 =
EOmax + EOmin

2
(13)

The order width BEO can be calculates as:

BEO = EOmax − EOmin (14)

It is obvious that the reconstruction performance depends crucially on the choice of the
interpolation function. The sinc function in Equation (11) decays very slowly, so its calculation
often consumes significant time. Many other functions have been studied thoroughly in sampling.
In particular, there are several advantages to using splines for reconstruction. First, the best kernels
that are able to achieve minimum approximation error can be expressed using derivatives of B-splines
of approximation order. Second, spline functions have the minimum support among all the functions
with the same order of approximation. Third, B-splines are easily and straightforwardly used in
the discrete domain. Therefore, an optimal reconstruction kernel function KB(θ) based on six-order
B-Splines is applied here to replace the sinc function. Then Equation (11) can be rewritten as:

ẑ(θ) = Re

[
∞

∑
n=−∞

s̃[k]KB(EOs × θ − k) exp
(

j2π
EO0

EOs
(EOs × θ − k)

)]
(15)

In the end, it should be emphasized that the center order EO0 and order bandwidth E0

are not arbitrarily selected. The aim of the proposed method is to reconstruct orders among
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[EO0 − E0/2, EO0 + E0/2], so EO0 and E0 should be selected to make each EO of interest satisfy
EO ∈ [EO0 − E0/2, EO0 + E0/2]. Furthermore, in practice, we need to estimate EOs of interest related
to damages in advance by using finite element analysis or experimental testing. In this case, any order
among [EO0 − E0/2, EO0 + E0/2] can be reconstructed for blade vibration monitoring, including
synchronous and asynchronous vibrations. Otherwise, they cannot be detected.

3.2. Non-Uniform BTT Sensor Configuration

In some cases, ideal uniform BTT sensor configuration may not be carried out due to space
limitation or/and installation errors, which will bring reconstruction errors into Equation (11).
Fortunately, even for I non-uniform BTT sensors, it can still be considered as a uniform configuration
for each BTT sensor. That is to say, the angular sampling interval of each sensor is equal to 2π. Based
on that, a new angular-domain reconstruction algorithm for non-uniform BTT sensor configuration is
proposed as follows:

Let us assume that I BTT sensors are mounted non-uniformly. In this case, if the rotation speed is
variable, the non-uniform BTT sampling function of blade vibrations in the angular domain can be
formulated as follows:

d(θ) =
I−1

∑
i=0

∞

∑
n=−∞

d(θ + αi)δ(θ − 2πn) (16)

where d(θ) is the true vibration signal in the angular domain and δ(θ) is the Dirac delta function.
Furthermore, it can be seen from Equation (16) that non-uniformly angular sampling signal is

equivalent to the sum of I uniform sample streams. αi can be looked at as the angle-offset of the ith
sample stream. The order spectrum of d(θ) is

D(EO) = 1
2π

I−1
∑

i=0
D(EO)ej2παiEO ⊗

∞
∑

n=−∞
δ(EO− n) = 1

2π

I−1
∑

i=0

[
∞
∑

n=−∞
D(EO− n)e−j2παin

]
ej2παiEO (17)

where ⊗ is the convolution operator.
Based on Equation (17), we can see that a finite number of replicas intersect with the region

[EOmin, EOmax] in the order spectrum of each sample stream. To interpolate D(EO), it is necessary
to prevent aliasing in the reconstructed signal. That is to say, all unwanted replicas of D(EO) in the
region [EOmin, EOmax] must be removed. This can be achieved by using interpolation function for each
sample stream such that all unwanted replicas sum to zero. Based on the signal reconstruction theory,
the reconstruction of d(θ) can be formulated as:

d̂(θ) =
I−1

∑
i=0

∞

∑
n=−∞

d(2πn + αi)hi(θ − 2πn) (18)

where hi(θ) is the ith interpolating function for the ith sample stream (i.e., the ith BTT sensor).
On the other hand, these unwanted replicas can be selected by truncating the sum of Equation (17)

such that

DT(EO) =
1

2π

I−1

∑
i=0

[
nmax

∑
n=nmin

D(EO− n)e−j2παin

]
ej2παiEO (19)

where nmin, nmax are integers which are defined as follows:

nmin = min(n) such that EOmax + n > EOmin, i.e., nmin = dEOmin − EOmaxe

nmax = max(n) such that EOmin + n < EOmax, i.e., nmax = bEOmax − EOminc

where bxc denotes the most integer no more than x and dxe denotes the smallest integer no less than x.
Next, the key problem is how to calculate the interpolating function hi(θ). But it is difficult

to directly derive analytical solutions of interpolating functions in the angular domain. In nature,
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the target is to use interpolating functions to remove all unwanted replicas in the region [EOmin, EOmax],
such that D(EO) = D̂(EO). Then one can solve the above problem in the order domain. To achieve it,
the ranges of [EOmin, EOmax] are separated into a number of sub-bands and each sub-band has different
intersected parts of replicas [32]. In each sub-band, simultaneous equations of the following form are
built to ensure that all unwanted replicas sum to zero by combining Equation (18) and Equation (19).

1
2π

I−1

∑
i=0

e−j2παinej2παiEOHi(EO)e−jkαi = δ(n), n ∈ [nmin, nmax] (20)

where Hi(EO) is the order spectrum of hi(θ).
Finally, Hi(EO) can be solved based on Equation (20), leading to the solution of hi(θ). It should

be noted that the number of sub-bands increases with I and BEO. In this case, large I or/and BEO

will make it difficult to solve Equation (20). On the other hand, fewer BTT sensors are expected in
practice due to some limitations. Thus, here two BTT sensors are considered, i.e., I = 2. Without loss
of generality, α0 is assumed to be zero. Then the corresponding second-order reconstruction formula
can be solved as follows by referring to the idea in Reference [33].

d̂(θ) =
∞

∑
n=−∞

{
d
(

n
E0

)
h
(

θ − n
E0

)
+ d
(

n
E0

+
α1

2πE0

)
h
(
−θ +

n
E0

+
α1

2πE0

)}
(21)

where
h(θ) = cos[2π(mE0−EOmin)θ−mα1/2]−cos(2πEOminθ−mα1/2)

2πE0θ sin(mα1/2)

+ cos[2π(E0+EOmin)θ−(m+1)α1/2]−cos[2π(mE0−EOmin)θ−(m+1)mα1/2]
2πE0θ sin[(m+1)α1/2]

(22)

where m = d2EOmin/E0e. At the same time, it must be emphasized that there are two important
costraints in Equation (22), i.e., sin(mα1/2) 6= 0 and sin((m + 1)α1/2) 6= 0. Once these constraints
cannot be satisfied, orders of interest will not be achieved. Therefore, the angular positions of two BTT
sensors should be selected carefully in engineering applications.

4. Numerical Simulations and Validations

4.1. Simulated Vibration Signals with Variable Frequencies

It is assumed that the rotating speed increases from rL to rH during N revolutions and two
synchronous blade vibrations are generated. The corresponding engine orders are denoted as EO1

and EO2, respectively. Then each resonant frequency is calculated as follows:

fi = EOi×
(

rL +
(n− 1)K

2

)
/60 (23)

where K = (rH − rL)/N, i = 1, 2, n = 1, . . . , N.
Then a multi-frequency signal is simulated as follows:

x(t) = A1 sin(2π f1t + ϕ1) + A2 sin(2π f2t + ϕ2) + A3 sin(2π f3t + ϕ3) (24)

where f1 and f2 are the two resonant vibration frequencies and f3 is an asynchronous vibration
frequency. Here, the simulation parameters are chosen as: N = 1000, rL = 5000 RPM, rH = 5625 RPM,
EO1 = 8, EO2 = 9, f3 = 750 Hz, A1 = 1 mm, A2 = 0.5 mm, A3 = 1 mm, and ϕ1 = ϕ2 = ϕ3 = 0.

Then the waveforms of both x(t) and the rotating speed are shown in Figure 3. Furthermore,
the short-time Fourier transform (STFT) of the original signal is plotted as Figure 4, where we can see
two time-variable frequency components and a constant frequency one.
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4.2. Reconstruction Results under Uniform BTT Sensor Configuration

For uniform BTT sensor configuration, three BTT sensors are mounted uniformly around the
circumference. That is to say, the angular interval of two adjacent blades is equal to 120 degree.
Under variable rotation speeds, the period of each revolution can be calculated by using measured
instantaneous rotating speeds. Based on it, the sampling times of each BTT sensor can be estimated.
Then we can get the sampled vibration signals of three BTT sensors by substituting the sampling times
into Equation (24) and the corresponding BTT sampling signals are shown in Figure 5.
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Figure 5. Uniformly sampled signals of three BTT sensors.

Frequency spectrums of sampled signals from both each BTT sensor and three BTT sensors
are shown in Figure 6. Obviously, we cannot see the resonant and asynchronous frequencies.
The reasons may include: (i) The maximum sampling frequency is 281.25 Hz, so the sampled signals
are under-sampled, and the corresponding power spectrums are not true; and (ii) the rotating speed is
variable, so the sampled signals tend to be non-stationary. In this case, their frequency spectrums are
also not accurate. Next, the angular-domain BTT vibration reconstruction algorithm in Section 3.1 is
used to extract the true vibration frequencies.

To apply Equation (11), the center order EO0 and order bandwidth E0 should be selected in
advance. Here, EOs = 3 and the orders of interest are EO1 = 8, EO2 = 9. In this case, we choose
E0 = 2, so that EOs > E0. As mentioned before, the selection criterion of EO0 is to satisfy EO1, EO2 ∈
[EO0 − E0/2, EO0 + E0/2]. Here we choose EO0 = 8.5 as an example. In addition, θ in Equation (11)
is a continuous-time variable, so it needs to be discretized for engineering applications. Therefore,
a re-sampling frequency EOres in angular domain is used so that the Shannon sampling theorem is
satisfied, namely EOres > 2EO0 + E0. Here we choose EOres = 80. The angular-domain reconstruction
signal of the under-sampled BTT signal under VRS is shown in Figure 7. Furthermore, its Fourier
transform was calculated, and the order spectrum is shown in Figure 8. Obviously, we can see the 8th
EO and the 9th EO, so two synchronous vibration frequencies are accurately reconstructed.
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Figure 6. Frequency spectrums of sampled signals from both (a) each BTT sensor and (b) three
BTT sensors.
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Figure 8. Order spectrum of the angular-domain reconstruction signal.

At the same time, however, there are some vague orders between the 8th EO and the 9th EO in
Figure 8. To explore these non-stationary components, STFT of the angular-domain reconstruction
signal is calculated, and the time-varying order spectrum is shown in Figure 9. Interestingly, there
is an order line which means that the order changes linearly with the angle, besides of the 8th EO
and the 9th EO. To analyze this line, we can calculate the rotating frequency at each angular sampling
point by using the curve of rotating speed shown in Figure 3. Then, the vibration frequency of
each sampling point can be obtained by multiplying its rotating frequency and the corresponding
order shown in Figure 9. Based on it, the waterfall of the angular-domain reconstruction signal is
calculated as Figure 10 based on STFT. We can see that: (i) There are two frequency components
which change linearly with the rotating speed, which are just the two EOs; and (ii) there is a constant
frequency component at about 750 Hz, which is just equal to the asynchronous vibration frequency f3.
The above results testify that the proposed algorithm can recover characteristic vibration frequencies
from under-sampled BTT vibration signals under uniform sensor configuration and VRS.
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Figure 9. Time-varying order spectrum of the angular-domain reconstruction signal.
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4.3. Reconstruction Results under Non-Uniform BTT Sensor Configuration

To validate the proposed reconstruction algorithm in Section 3.2, two BTT sensors are assumed to
be used, and their angular interval is equal to 60 degrees. Similarly, we can calculate the sampling
times, which are substituted into Equation (24) to get the sampled vibration signals of two BTT sensors.
Finally, the simulated BTT vibration signals are shown in Figure 11.

Frequency spectrums of sampled signals from both each BTT sensor and two BTT sensors
are shown in Figure 12. Similarly, we cannot see the synchronous and asynchronous frequencies.
To overcome this problem, the proposed algorithm in Section 3.2 will be used to reconstruct the
vibration signal in the angular domain.

Here E0 and α1 in Equation (21) are chosen as E0 = 2 and α1 = π/3, respectively. The interpolation
function h(θ) in Equation (22) is estimated and shown in Figure 13. Based on it, the angular-domain
reconstruction signal of the under-sampled BTT signal under VRS is shown in Figure 14. Furthermore,
its Fourier transform is calculated, and the order spectrum is shown in Figure 15. We can clearly see
that Figure 15 is almost the same as Figure 8 and two synchronous vibration frequencies are also
accurately reconstructed.
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Figure 11. Non-uniformly sampled signals of two BTT sensors in the time domain.
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Figure 12. Frequency spectrums of sampled signals from both (a) each BTT sensor and (b) two
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Figure 13. The interpolation function in Equation (22).

Furthermore, the time-varying order spectrum and waterfall of the angular-domain reconstruction
signal from two non-uniform BTT sensors are shown in Figures 16 and 17, respectively. Compared
with Figures 9 and 10, we make a similar conclusion that characteristic vibration frequencies can be
reconstructed under non-uniform sensor configuration and VRS. Therefore, the proposed algorithm
is validated.

Here, it should be emphasized that the simulated BTT signals are well under-sampled, so it is
impossible to accurately detect the vibration amplitude associated with each order. That is to say,
only the order values are reliable. However, it is enough to perform on-line blade vibration monitoring.
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Figure 14. The angular-domain reconstruction signal of the under-sampled BTT signal using two BTT
sensors under VRS.
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Figure 15. Order spectrum of the angular-domain reconstruction signal using two non-uniform BTT
sensors under VRS.
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Figure 16. Time-varying order spectrum of the angular-domain reconstruction signal using two
non-uniform BTT sensors under VRS.
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Figure 17. Waterfall of the angular-domain reconstruction signal using two non-uniform BTT sensors
under VRS.

5. Experimental Validations

5.1. Experimental Set-Up

To further validate the proposed BTT vibration reconstruction algorithms, an experimental rig
of BTT-based vibration monitoring of high-speed rotating blades was built as Figure 18. The whole
experimental system was composed of a supporting base, an electrical motor, a testing bladed disk,
a magnetic exciter, three optical fiber BTT sensors, a once-per-revolution reference sensor, and a
protection cover. The electrical motor was mounted under the supporting base. BTT sensors were
fixed around the bladed disk through the holes in the protection cover. An angular scale was presented
on the surface of the protection cover, so that the angle between two BTT sensors could be easily and
accurately adjusted. The reference sensor was mounted near the center of the bladed disk. There were
32 blades on the bladed disk, which were labeled from 1 to 32. Mechanical and geometrical features of
blades are presented in Table 1.

Table 1. Mechanical and geometrical properties of the blade used in the experiment.

Parameters Values

Blade material 40 Cr steel
Blade length 34 mm
Blade width 11 mm

Blade thickness 3 mm
Blade tip radius 103 mm

Vibration excitations were generated by six permanent magnets mounted near the blades,
and different configurations of permanent magnets can result in different excitations. A BTT vibration
measurement system was designed to collect BTT signals for analysis and validation.

To evaluate experimental results, it needs to identify a blade’s synchronous vibration parameters
in advance. First, natural frequency of a blade was estimated as 2140.3 Hz by finite element analysis
(ANSYS software). Second, the sweep-frequency fitting method in Reference [26] was used to
monitor the variations of vibration displacements with the rotating speed, and then synchronous
resonance regions of the blade was obtained as 61–65 Hz, 73–78 Hz, 92–97 Hz, and 124–129 Hz,
respectively. Finally, based on the central frequencies of resonant regions, the global autoregressive
with instrumental variables (GARIV) method in Reference [27] was used to identify the corresponding
EOs as 36, 30, 24, and 18. In the following experiments, two different configurations of permanent
magnets were used to excite different resonant blade vibrations. Then BTT signals were collected to
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calculate under-sampled blade vibrations and the proposed algorithms were used to reconstruct the
expected EOs.
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5.2. Experimental Results under Uniform Sensor Configuration

In the first experiment, three BTT sensors were mounted uniformly around the bladed disk.
Experimental data during 1000 revolutions were sampled, including BTT signals of 32 blades and the
rotating speed. The reference sensor was a once-per-revolution sensor, so it was difficult to obtain the
instantaneous rotating speed of each blade at each revolution. To solve this problem, one-dimensional
interpolation was used to estimate the instantaneous rotating speed of each blade at each revolution
based on the average rotating speed of each revolution. Next blade vibrations in the angular domain
could be calculated based on instantaneous rotating speeds and BTT signals. Here the 24th blade was
taken as an example. BTT data set between the 2500th and 4000th revolution were used for vibration
analysis. In the experiment, the angularly sampled vibration displacement and the rotating speed
of the 24th blade are shown in Figure 19. Obviously, the rotating speed was variable. It can be seen
that vibration displacement changes greatly between the 3000th and 3200th revolution. The reason
may be that high-order synchronous vibrations happen due to the magnetic excitations. Furthermore,
the corresponding range of rotating frequency was 73.4 Hz–75.8 Hz. According to prior knowledge,
we can infer that the EO of this synchronous vibration may be equal to 30. To validate it, the proposed
EO reconstruction algorithm in Section 3.1 will be used to analyze the sampled BTT signals.
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Figure 19. The angularly sampled vibration displacement and the rotating speed of the 24th blade.

Here three uniform BTT sensors were mounted, so the sampling order EOs was also equal to
three. As the same selection criterion mentioned before, here we chose E0 = 2 and EO0 = 30. Then the
sampled BTT vibration signals were processed by the Hilbert transform to obtain the analytic signals.
Based on it, vibration signals of the 24th blade were angularly reconstructed by Equation (11) and then
the order spectrum was calculated, both of which are shown in Figure 20. We can clearly see the 30th
EO in the order spectrum as expected.
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Figure 20. (a) The angular-domain reconstruction signal and (b) its order spectrum of the 24th blade.

Next, the time-varying order spectrum of the angular-domain reconstruction signal was calculated
by using the STFT method and is shown in Figure 21. It can be seen that the maximum vibration
amplitude occurs at about the 560th revolution. Moreover, the waterfall of the angular-domain
reconstruction signal is shown in Figure 22. The results show that vibration displacement of the 24th
blade reaches the maximum value when the rotating speed is equal to 4440 RPM.

The exact resonant frequency could not be extracted in the waterfall, so the order tracking
spectrum of the 30th EO was calculated and shown in Figure 23. From it, we can see that the 30th
EO resonant vibration happens at the rotating speed of 4452 RPM. In this case, the corresponding
resonant frequency was calculated as 2226 Hz. At the same time, the resonant frequency identified by
the GARIV method was equal to 2270 Hz. Thus, the estimation error is only 1.9%.
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Figure 21. Time-varying order spectrum of the angular-domain reconstruction signal of the 24th blade.Sensors 2018, 18, x FOR PEER REVIEW  20 of 25 
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5.3. Experimental Results under Non-Uniform Sensor Configuration

In the second experiment, two BTT sensors were mounted, and the angular interval was equal to
77.4 degree so they are non-uniform. At the same time, a once-per-revolution reference sensor was
used to sample the rotating speed. Here the 11th blade was taken as an example. BTT data sets of
1000 revolutions were used for vibration analysis. In the experiment, the angularly sampled vibration
displacement and the rotating speed of the 11th blade are shown in Figure 24. Similarly, the rotating
speed was variable.Sensors 2018, 18, x FOR PEER REVIEW  21 of 25 
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Figure 24. The angularly sampled vibration displacements and the rotating speed of the 11th blade.

It can be seen in Figure 24 that the vibration displacement changes greatly between the 600th
and 700th revolution. Furthermore, the corresponding range of rotating frequency was 60 Hz–64 Hz.
According to prior knowledge, we can infer that the EO of this synchronous vibration may be equal
to 36. To validate it, the proposed EO reconstruction algorithm in Section 3.2 will be used to analyze
the sampled BTT signals. The angular-domain reconstruction signal and its order spectrum of the 11th
blade are shown in Figure 25. It can be seen that the 36th EO appears in the order spectrum and the
maximum vibration amplitude occurs at about the 658th revolution.
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Figure 25. (a)The angular-domain reconstruction signal and (b) its order spectrum of the 11th blade.

Next, the waterfall of the angular-domain reconstruction signal is shown in Figure 26. The results
show that vibration displacement of the 11th blade reaches the maximum value when the rotating
speed is equal to 3700 RPM.
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Figure 26. Waterfall of the angular-domain reconstruction signal of the 11th blade.

Furthermore, to seek the exact resonant frequency, the order tracking spectrum of the 36th EO
was calculated and shown in Figure 27. It can be seen that the 36th EO resonant vibration happens at
the rotating speed of 3705 RPM. In this case, the corresponding resonant frequency was calculated as
2223 Hz, which is close to the result obtained by the reconstruction algorithm in Section 3.1.
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Finally, resonant frequencies obtained by different methods are compared in Table 2. Taking the
theoretical value as a baseline, we can find that absolute estimation errors of the proposed algorithms
in Sections 3.1 and 3.2 are equal to only 4% and 3.86%, respectively. Therefore, the experimental results
demonstrate that the proposed algorithms can be feasible for BTT-based on-line vibration monitoring
under variable rotating speeds.

Table 2. Comparison of resonant frequencies obtained by different methods.

Different Methods Resonant Frequency Absolute Errors

Theoretical calculation 2140.4 Hz –
The GARIV method 2270 Hz 6.05%

Algorithm in Section 3.1 2226 Hz 4.00%
Algorithm in Section 3.2 2223 Hz 3.86%
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Similarly, it should be emphasized that it is impossible to accurately detect the vibration amplitude
associated for each order due to well under-sampled BTT signals. Thus, the actual aim of the proposed
methods is not to detect the amplitude associated to specific known response frequency.

6. Conclusions

Nowadays, BTT is generally regarded as an advanced technique of on-line monitoring vibrations
of high-speed rotating blades. In practice, blade damages are always formed during variable operation
conditions, so that VRS brings a significant obstacle to existing BTT vibration monitoring methods.
As for the problems of variable rotation speeds and under-sampled signals, this paper proposed
a reconstructed order analysis-based BTT vibration monitoring method. The paper contributes to
the discussion in the following ways: (i) Basic structure of angular sampling-based BTT vibration
monitoring under VRS is presented; (ii) A band-pass sampling-based EO reconstruction algorithm
is proposed for uniform BTT sensor configuration, so that few BTT sensors can be used to extract
high EOs; (iii) A periodically non-uniform sampling-based EO reconstruction algorithm is proposed
for non-uniform BTT sensor configuration, so that fewer BTT sensors can also be used to extract
high EOs; and (iv) experimental results testify that the proposed algorithms can accurately capture
characteristic EOs of synchronous and asynchronous blade vibrations under VRS, so that the demand
of classical BTT methods on constant rotating speed is released. Therefore, the proposed methods
are promising for accurately detecting blade damages during operations. In future, we will carry out
experiments for blade damages and study on extracting damage features by using the method in this
paper. In addition, other damage features can be studied, such as circular domain features [31]. At the
same time, it will be valuable to compare the results of this paper with conventional strain gauge
measurements. It is suggested that this kind of research can be undertaken in future works.

Author Contributions: This work has been done in collaboration between all authors. Z.C. and C.Z. Designed
the proposed method and prepared the manuscript. W.W. Designed the experiments. Z.C., C.Z., J.H. and J.L.
Analyzed the data.

Funding: This study was co-supported by the National Basic Research Program of China (Grant No.
2015CB057400).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Song, Z.H. Analysis of Typical Malfunction of Aero Engine; Beijing University of Aeronautics and Astronautics
Press: Beijing, China, 1993.

2. Li, H.K.; He, C.B.; Malekian, R.; Li, Z.X. Weak defect identification for centrifugal compressor blade crack
based on pressure sensors and genetic algorithm. Sensors 2018, 18, 1264. [CrossRef] [PubMed]

3. Ghoshal, A.; Sundaresan, M.; Schulz, M.; Pai, P. Structural health monitoring techniques for wind turbine
blades. J. Wind Eng. Ind. Aerodyn. 2000, 85, 309–324. [CrossRef]

4. Oberholster, A.; Heyns, P. Eulerian laser doppler vibrometry online blade damage identification on a
multi-blade test rotor. Mech. Syst. Signal Process. 2011, 25, 344–359. [CrossRef]

5. Neri, P. Bladed wheels damage detection through non-harmonic Fourier analysis improved algorithm.
Mech. Syst. Signal Pocess. 2017, 88, 1–8. [CrossRef]

6. Neri, P.; Peeters, B. Non-harmonic Fourier analysis for bladed wheels damage detection. J. Sound Vib. 2015,
356, 181–194. [CrossRef]

7. Oberholster, A.; Heyns, P. A study of the non-harmonic Fourier analysis technique. In Proceedings of the
21st International Congress on Condition Monitoring and Diagnostic Engineering Management, Prague,
Czech Republic, 10–13 June 2008; pp. 361–370.

8. Zhang, J.L.; Duan, F.J.; Niu, G.Y.; Jiang, J.J.; Li, J. A blade tip timing method based on a microwave sensor.
Sensors 2017, 17, 1097. [CrossRef] [PubMed]

http://dx.doi.org/10.3390/s18041264
http://www.ncbi.nlm.nih.gov/pubmed/29671821
http://dx.doi.org/10.1016/S0167-6105(99)00132-4
http://dx.doi.org/10.1016/j.ymssp.2010.03.007
http://dx.doi.org/10.1016/j.ymssp.2016.11.010
http://dx.doi.org/10.1016/j.jsv.2015.06.048
http://dx.doi.org/10.3390/s17051097
http://www.ncbi.nlm.nih.gov/pubmed/28492469


Sensors 2018, 18, 3235 23 of 24

9. Gil-Garcia, J.M.; Solis, A.; Aranguren, G.; Zubia, J. An architecture for on-Line measurement of the tip
clearance and time of arrival of a bladed disk of an aircraft engine. Sensors 2017, 17, 2162. [CrossRef]
[PubMed]

10. Carrington, I.B.; Wright, J.R.; Cooper, J.E.; Dimitriadis, G. A comparison of blade tip timing data analysis
methods. Proc. Inst. Mech. Eng. Part G 2001, 215, 301–312. [CrossRef]

11. Heath, S.; Imregun, M. A survey of blade tip-timing measurement techniques for turbomachinery vibration.
ASME J. Eng. Gas Turbines Power 1998, 120, 784–791. [CrossRef]

12. Bendali, S.; Joseph, L.; Marc, B.; Philippe, V.; Charles, B. Modal parameter identification of mistuned bladed
disks using tip timing data. J. Sound Vib. 2008, 314, 885–906.

13. Tao, O.Y.; Guo, W.L.; Duan, F.J.; Li, M.L. New method for identifying rotating blades synchronous vibration
based on tip-timing. J. Vib. Shock 2011, 30, 249–252.

14. Lawson, C.; Ivey, P. Tubomachinery blade vibration amplitude measurement through tip timing with
capacitance tip clearance probes. Sens. Actuators A Phys. 2005, 118, 14–24. [CrossRef]

15. Bastami, A.R.; Safarpour, P.; Mikaeily, A.; Mohammadi, M. Identification of asynchronous blade vibration
parameters by linear regression of blade tip timing data. ASME J. Eng. Gas Turbines Power 2018, 140, 072506.
[CrossRef]

16. Dimitriadis, G.; Carrington, I.B.; Wright, J.R.; Cooper, J.E. Blade-tip timing measurement of synchronous
vibrations of rotating bladed assemblies. Mech. Syst. Signal Process. 2002, 16, 599–622. [CrossRef]

17. Battiato, G.; Firrone, C.M.; Berruti, T.M. Forced response of rotating bladed disks: Blade tip-timing
measurements. Mech. Syst. Signal Process. 2017, 85, 912–926. [CrossRef]

18. Diamond, D.H.; Heyns, P.S.; Oberholster, A.J. A comparison between three blade tip timing algorithms for
estimating synchronous turbomachine blade vibration. In Proceedings of the World Congress on Engineering
Asset Management, Pretoria, South Africa, 28–31 October 2014.

19. Chen, Z.S.; Yang, Y.M.; Guo, B.; Hu, Z. Blade damage prognosis based on kernel principal component
analysis and grey model using subsampled tip-timing signals. Proc. Inst. Mech. Eng. Part C J. Mech. 2014,
228, 3178–3185.

20. Chen, Z.S.; Yang, Y.M.; Xie, Y.; Guo, B.; Hu, Z. Non-contact crack detection of high-speed blades based on
principal component analysis and Euclidian angles using optical-fiber sensors. Sens. Actuators A Phys. 2013,
201, 66–72. [CrossRef]

21. Hu, Z.; Lin, J.; Chen, Z.S.; Yang, Y.M.; Li, X.J. A non-uniformly under-sampled blade tip-timing signal
reconstruction method for blade vibration monitoring. Sensors 2015, 15, 2419–2437. [CrossRef] [PubMed]

22. Lin, J.; Hu, Z.; Chen, Z.S.; Yang, Y.M.; Xu, H.L. Sparse reconstruction of blade tip-timing signals for
multi-mode blade vibration monitoring. Mech. Syst. Signal Process. 2016, 85, 250–258. [CrossRef]

23. Xu, H.L.; Chen, Z.S.; Xiong, Y.P.; Yang, Y.M.; Tao, L.M. Nonlinear dynamic behaviors of rotated blades with
small breathing cracks based on vibration power flow analysis. Shock Vib. 2016, 2016, 4197203. [CrossRef]

24. Hu, Y.; Tu, X.T.; Li, F.C.; Li, H.G.; Meng, G. An adaptive and tacholess order analysis method based on
enhanced empirical wavelet transform for fault detection of bearings with varying speeds. J. Sound Vib. 2017,
409, 241–255. [CrossRef]

25. Feng, Z.P.; Chen, X.W.; Liang, M. Joint envelope and frequency order spectrum analysis based on iterative
generalized demodulation for planetary gearbox fault diagnosis under nonstationary conditions. Mech. Syst.
Signal Process. 2016, 16, 242–264. [CrossRef]

26. Wang, J.; Peng, Y.Y.; Qiao, W. Current-aided order tracking of vibration signals for bearing fault diagnosis of
direct-drive wind turbines. IEEE Trans. Ind. Electron. 2016, 63, 6336–6346. [CrossRef]

27. Wang, J.; Cheng, F.Z.; Qiao, W.; Qu, L.Y. Multiscale filtering reconstruction for wind turbine gearbox fault
diagnosis under varying-speed and noisy conditions. IEEE Trans. Ind. Electron. 2018, 65, 4268–4278.
[CrossRef]

28. Sapena-Bano, A.; Burriel-Valencia, J.; Pineda-Sanchez, M.; Puche-Panadero, R.; Riera-Guasp, M.
The harmonic order tracking analysis method for the fault diagnosis in induction motors under time-varying
conditions. IEEE Trans. Energy Convers. 2017, 32, 244–256. [CrossRef]

29. Fyfe, K.R.; Munck, E.D.S. Analysis of computed order tracking. Mech. Syst. Signal Process. 1997, 11, 187–205.
[CrossRef]

30. Bossley, K.M.; McKendrick, R.J.; Harris, C.J.; Mercer, C. Hybrid computed order tracking. Mech. Syst.
Signal Process. 1999, 13, 627–641. [CrossRef]

http://dx.doi.org/10.3390/s17102162
http://www.ncbi.nlm.nih.gov/pubmed/28934105
http://dx.doi.org/10.1243/0954410011533293
http://dx.doi.org/10.1115/1.2818468
http://dx.doi.org/10.1016/S0924-4247(04)00482-0
http://dx.doi.org/10.1115/1.4038880
http://dx.doi.org/10.1006/mssp.2002.1489
http://dx.doi.org/10.1016/j.ymssp.2016.09.019
http://dx.doi.org/10.1016/j.sna.2013.06.018
http://dx.doi.org/10.3390/s150202419
http://www.ncbi.nlm.nih.gov/pubmed/25621612
http://dx.doi.org/10.1016/j.ymssp.2016.03.020
http://dx.doi.org/10.1155/2016/4197203
http://dx.doi.org/10.1016/j.jsv.2017.08.003
http://dx.doi.org/10.1016/j.ymssp.2016.02.047
http://dx.doi.org/10.1109/TIE.2016.2571258
http://dx.doi.org/10.1109/TIE.2017.2767520
http://dx.doi.org/10.1109/TEC.2016.2626008
http://dx.doi.org/10.1006/mssp.1996.0056
http://dx.doi.org/10.1006/mssp.1999.1225


Sensors 2018, 18, 3235 24 of 24

31. Caesarendra, W.; Kosasih, B.; Tieu, A.K.; Moodie, C.A.S. Circular domain features based condition monitoring
for low speed slewing bearing. Mech. Syst. Signal Process. 2014, 45, 114–138. [CrossRef]

32. Coulson, A.J. A generalization of nonuniform bandpass sampling. IEEE Trans. Signal Process. 1995, 43,
694–704. [CrossRef]

33. Vaughan, R.G.; Scott, L.N.; White, D.R. The theory of bandpass sampling. IEEE Trans. Signal Process. 1991,
39, 1973–1984. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ymssp.2013.10.021
http://dx.doi.org/10.1109/78.370623
http://dx.doi.org/10.1109/78.134430
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Angular Sampling-Based BTT Vibration Monitoring under Variable Rotation Speed 
	Basic Principles of BTT-Based Vibration Monitoring 
	Problem Statements of BTT Vibration Reconstruction under VRS 
	Basic Structure of Angular Sampling-Based BTT Vibration Monitoring under VRS 

	Angular-Domain BTT Vibration Reconstruction Algorithms under VRS 
	Uniform BTT Sensor Configuration 
	Non-Uniform BTT Sensor Configuration 

	Numerical Simulations and Validations 
	Simulated Vibration Signals with Variable Frequencies 
	Reconstruction Results under Uniform BTT Sensor Configuration 
	Reconstruction Results under Non-Uniform BTT Sensor Configuration 

	Experimental Validations 
	Experimental Set-Up 
	Experimental Results under Uniform Sensor Configuration 
	Experimental Results under Non-Uniform Sensor Configuration 

	Conclusions 
	References

