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Abstract: With the recent advancement in wearable computing, sensor technologies, and data
processing approaches, it is possible to develop smart clothing that integrates sensors into garments.
The main objective of this study was to develop the method of automatic recognition of sedentary
behavior related to cardiovascular risk based on quantitative measurement of physical activity.
The solution is based on the designed prototype of the smart shirt equipped with a processor,
wearable sensors, power supply and telemedical interface. The data derived from wearable sensors
were used to create feature vector that consisted of the estimation of the user-specific relative
intensity and the variance of filtered accelerometer data. The method was validated using an
experimental protocol which was designed to be safe for the elderly and was based on clinically
validated short physical performance battery (SPPB) test tasks. To obtain the recognition model
six classifiers were examined and compared including Linear Discriminant Analysis, Support
Vector Machines, K-Nearest Neighbors, Naive Bayes, Binary Decision Trees and Artificial Neural
Networks. The classification models were able to identify the sedentary behavior with an accuracy of
95.00% ± 2.11%. Experimental results suggested that high accuracy can be obtained by estimating
sedentary behavior pattern using the smart shirt and machine learning approach. The main advantage
of the developed method to continuously monitor patient activities in a free-living environment and
could potentially be used for early detection of increased cardiovascular risk.

Keywords: wearable computing; smart clothing; activity recognition; telemedicine; sedentary
behavior recognition; pervasive computing

1. Introduction

Demographic changes and increasing societal demands require more effective methods of
providing health services based on novel technologies information and telecommunications (ICT),
artificial intelligence and telemedicine. According to the Eurostat during the period from 2016 to
2080 older persons will likely account for an increasing share of the general population. Those aged
65 years or over will represent 29.1% of the population of EU Member States by 2080, compared to
19.2% in 2016. As a result, the EU Member States’s old-age dependency ratio is projected to almost
double from 29.3% in 2016 to 52.3% by 2080. Therefore, this ratio will decrease from approximately
three working-age people for every person aged 65 or over to one [1]. According to the Center for
Disease Control and Prevention, the leading major causes of morbidity, disability, and mortality in 2015
were cardiovascular diseases (CVD) [2]. Treatment of these diseases is challenging for the healthcare
systems in all developed countries due to the ageing population, limited access to the healthcare service

Sensors 2018, 18, 3219; doi:10.3390/s18103219 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/1424-8220/18/10/3219?type=check_update&version=1
http://dx.doi.org/10.3390/s18103219
http://www.mdpi.com/journal/sensors


Sensors 2018, 18, 3219 2 of 17

and increasing healthcare costs. The main risk factors linked to cardiovascular disease are physical
inactivity, poor diet, smoking and excessive alcohol consumption [3]. According to the recommendation
of the European Guidelines on prevention of cardiovascular disease in clinical practice, the measures
should be considered to promote a healthy lifestyle at the population level. Research revealed that
the elimination of health risk behaviors would prevent at least 80% of CVDs [2]. According to the
guidelines of the National Institute for Health and Care Excellence, the evidence on how to solve the
problem of a sedentary lifestyle is not well developed and remains an area for further study [3].

Sedentary behavior analysis has been explored using wrists, hips or thigh mounted accelerometers
using elastic belts. Sasai [4] overview of assessment of sedentary behavior using wearable devices and
concluded that most commonly used wearable devices were activPAL, ActiGraph, and Active style Pro.
However, those devices are not integrated with clothes but rather attached to the body using elastic
belts. He noticed that those devices produce different outputs what makes it difficult to compare them.
He found that the major disadvantage of wearable devices used for sedentary behavior analysis is the
inability to detect the contextual information as well as time-consuming computation. Peterson et al. [5]
showed that overall accuracy in measuring sedentary behavior using AcitGraph GT3X+ among
university student was 94.7–97.8%. Koster et al. [6] examined the impact of accelerometer wear location
on physical activity and sedentary behavior assessment among older adults. Participants were asked
to simultaneously wear ActiGraph accelerometers on the dominant, and nondominant wrist and
on the hip. Authors showed that hip and wrist-worn ActiGraph accelerometers might be used to
recognize sedentary time with a moderate to high accuracy. However, Koster et al. [6] pointed out that
wrist accelerometers underestimated the sedentary time and in some scenarios sitting time may not
be distinguished from standing time-based on accelerometer data. A recent study by Trost et al. [7]
using ActiGraph accelerometer on the right hip and nondominant wrist showed 90% accuracy for
recognition of sedentary behavior among preschoolers. Authors used Radom Forest and support
vector machine classifiers.

Rawassizadeh et al. [8] highlighted the research challenges and opportunities associated with
smartwatches. Authors identified the battery life, cost and optimizing hardware resources as the major
challenges for smartwatch acceptance in the market. They highlighted the potential of smartwatches
to persuade users towards a more active lifestyle. However, the authors indicated that algorithms that
focus on energy-efficient activity recognition need further development. Mortazavi et al. [9] examined
exergaming as a tool to fight with sedentary behavior. These authors developed a wearable exergame
SoccAR that involves high-intensity movements as the basis for control. Four Shimmer wireless inertial
measurement units equipped with accelerometers and gyroscopes were attached to the volunteer’s
wrists and legs. The game was displayed on the head-worn display—the Epson Moverio BT-100.
The emerging approach is also the use of smartphones equipped with accelerometers. Fahim et al. [10]
showed that smartphone could be used to monitor sedentary behavior. Authors developed smartphone
application “Alert Me” that notified the user in order to avoid prolonged sitting based on the analysis
of tri-axial accelerometer data. Qian et al. [11] proposed A Rhythm Analysis-Based Model of sedentary
behavior based on smartphones-sensed user activity logs that may be generated by smartphones
applications to achieve better behavior change outcomes. Shin et al. [12] noticed that many types of
research did not consider device orientation what makes it difficult to accurately classify sedentary
behavior. The device was mostly fixed to arm, wrist, hip, thigh, and shank. They proposed a method
to recognize sedentary activity with the acceleration data rotated by quaternion to face this challenge.
The emerging approach is also the use of smartphones equipped with accelerometers and information
about micro-context. Fahim et al. in [13] investigated a user-centric smartphone-based approach to
recognize the context of sedentary behavior based on the onboard accelerometers and audio sensors of
the smartphone. Authors showed that developed application is capable of reducing sedentary behavior.

Qian et al. [14] explored the contexts of information that can be sensed by subjects’ smartphones
can be used to predict their future sedentary behavior. They analyzed 49 college student data and
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using logistic regression were able to predict that subject will be sedentary in the next hour with the
recall of 87.7%.

Ma et al. [15] developed a smart cushion and system that monitor sitting postures. It features
micro controller unit, pressure sensor, Bluetooth communication unit, vibration motor, and power
supply circuit. Eight persons aged 60–65 years were recruited to the study. Participants were asked to
perform common activities on the wheelchair for about 2 h. Results showed that the overall average
recognition accuracy was 98% based on specific decision tree implementation. Authors concluded
that investigation the integration of physiological sensors data is desired in the future research.
Previous works highlighted the importance of investigating novel wearable computing platforms,
sensor modalities and algorithms for resource-constrained environments in order to monitor human
behavioral pattern for healthcare application.

This study addresses the need to encourage especially older people to be more physically
active. The main objective of this study was to develop the method of automatic recognition of
sedentary behavior related to cardiovascular risk based on quantitative measurement of physical
activity. The solution is based on the designed smart shirt equipped with a processor, wearable sensors,
power supply and telemedical interface.

The novelty of the proposed method is twofold. First, it uses sensors with two different modalities
that are fused into a feature vector and passed to classification models to estimate sedentary behavior.
Second, it uses the prototype of smart shirt integrated with the telemedical interface that integrates the
measurement chain and the computational part.

This approach may be especially useful for hospital patients who need to be constantly monitored
outside the ICUs or older adults who are unable to deal with sophisticated medical devices and need to
be monitored remotely. The hypothesis of the study is that the signals collected by smart shirt contain
information to recognize sedentary behavior during activities of daily living and can be transmitted to
the telemedical service provider for storage and further analysis.

However, there was a gap in the literature concerning the method for multimodal inactivity
recognition system optimized to wearable resource-constrained computing platforms. The proposed
method is based on a personalized approach to medicine and prevention. The focus shifts from the
treatment of the disease to its prevention based on updated continuously pattern of patient behavior,
and its interaction with the environment regardless of location. The rest of the paper is organized as
follows: related works and market demand in Section 2. Section 3 describes the material and methods.
Results are investigated in Section 4. Section 5 discusses the results. Finally, conclusions and future
work are presented in Section 6.

2. Related Works and Market Demand

The latest developments in wearable computing technology and biosensor enable the recording
of movement and biosignals in different environments. The main advantage of these technologies is
their ability to record patient activity in a free-living environment continuously.

The most widely used method of continuous patient cardiac monitoring is the use of a portable
device for the monitoring of the electrical activity of the cardiovascular system (Holter ECG),
which allows continuous recording of the electrocardiogram signal for supporting the diagnosis
of atrial conduction dysfunction syndromes and therapy monitoring [16].

Report “Patient Monitoring Devices Market—Global Industry Analysis, Size, Share, Growth,
Trends and Forecast 2014–2020” carried out by Transparency Market Research estimated that the
global patient monitoring market size is valued at 31.4 billion USD and will grow at 14.2% annually
by 2020 [17]. The report titled “Global Markets for Telemedicine Technologies” showed that the global
telemedicine market reached 16.3 billion USD in 2013 and 19.2 billion USD in 2014, and it is forecasted
to reach approximately 43.4 billion USD in 2019 with an average annual increase 17.7% with the
home telecare as the fastest growing market sector. Its value amounted to almost USD 8.2 billion in
2014, and it is projected to USD 23.9 billion in 2019 (average annual 24% growth during the forecast
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period) [18]. The global fitness tracker market size was valued at 17.9 billion USD in 2016 according to
Applied Market Research Report and is expected to reach $62. 1 billion USD by 2023 (average annual
19.6% growth during the forecast period) [19]. The growing fitness tracker market proves the high
demand for easy to use health tracking devices, which do not limit the everyday activities. They track
the number of steps, distance, calories and sleep quality. However, they are often designed as gadgets
and not clinically validated medical devices, and they are not intended for supporting the diagnosis or
disease prevention.

The concept of using the smart shirt to acquire physiological signals is not new. With the advances
in wearable technologies, smart shirts have been introduced to the consumer market. The Hexoskin
smart shirt uses body-worn sensors to capture ECG data (one channel, 256 Hz), heart and breathing rate,
tidal volume, minute ventilation, acceleration signal (three channels, 64 Hz) and hip motion intensity
(HMI) during different body positions including lying, sitting and standing [20]. Nuubo is an elastic
vest that offers an ECG monitoring system that enables physicians to diagnose arrhythmias. It was
developed in Spain. ECG electrodes are printed in 3D into the wearable textile. The Nuubo monitoring
system enables five days autonomy battery operation and up to 30 days recording of 3 axis acceleration
and arrhythmias. Fabregat-Andres et al. used the Nuubo’s technology for cardiac screening in soccer
players and acquired the accuracy of single-lead electrocardiographic recordings during exercise testing
in the field [21]. The Equivital EQ02+ LifeMonitor provides multi-parameter monitoring capabilities,
including ECG, Respiratory and 3D accelerometer. It consists of two components: the Sensor Electronics
Module and the Sensor Belt, that can be worn 24 h/day and is machine washable. It was developed
in the United Kingdom. Akintola et al. concluded in his study that although the Equivital EQ02
can accurately measure ECG and HRV, its accuracy and precision is highly dependent on artifact
content [22]. The Zephyr BioHarness is wearable devices that is attached to the chest and can perform
real-time physiological monitoring of heart rate, breathing rate, and posture. It features 8-h run-time
on a single chargé and remote real-time viewing of data within a two-mile radius with the portable
wireless transmitter. Kim et al. [23] tested BioHarness to determine the accuracy of heart rate (HR)
and respiratory rate (RR) measurements during two exercise protocols in conjunction with either a
laboratory metabolic cart (Vmax) or a previously validated portable metabolic system. It was found
that correlation coefficients between the methods were low for HR but moderate to highly correlated
(0.49–0.99) for RR [23]. The Corscience CorBELT is a chest strap which continuously measures and
analyzes a 1-channel ECG. It can be used as ECG monitor or an event recorder. The CorBELT analyzes
the ECG and, if an arrhythmia occurs, records a 2-min ECG (1 min before and 1 min after the arrhythmia).
It can store about 20 min of recordings or 10 events. The recorded measurements are transmitted using
Bluetooth to PDA or cell phone. Steven Wieland et al. created a system for the recognition of atrial
fibrillation and calculation of risk level based on the chest strap CorBELT [24]. A survey on human
activity recognition (HAR) has found 28 prototypes of systems which were evaluated in terms of
recognition performance, energy consumption, obtrusiveness, and flexibility [25–28]. The accuracy of
HAR varied from 56% to 94% and was based mostly on acceleration data.

Prior work has proposed various knowledge extraction techniques from the wearable dataset.
Rawassizadeh et al. [29] investigated scalable algorithms that analyze multivariate temporal data in
order to identify human behavioral patterns. The developed solution is based on a temporal granularity
method which assumes that our daily behaviors occur in time intervals. It also employs a combination
of different sensors instead of specific sensors to reduce uncertainty by using only sensors that are
available. The developed algorithms can be implemented in smartwatches and do not require cloud
processing. Nath [30] proposed the acquisition context engine (ACE) based on context caching and
context rules for continuous sensing of the user’s context in a mobile device. He confirmed that ACE
could reduce the overall energy consumption. Wang et al. [31] showed the real-time drug use detection
method based on the outlier analysis and slide window technique using data obtained from wearable
biosensors. A recent review [32] of the latest methods used to analyze data from wearable sensors
reveals that the data mining technique is dependent on the mining task to be performed. Support
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vector machine, neural networks, and decision tree techniques applied for general health care problems
usually give satisfactory results. However, methods including neural networks, Gaussian mixture
model and frequency analysis are not efficient in real-time health monitoring systems because of their
computational complexity. Decision tree, rule-based and statistical techniques are often used for the
real-time data processing. The critical factor to consider in investigating data mining for healthcare is
adequate data labeling. A recent survey [33] of data mining systems using wearable devices reveals
that privacy and security-related concerns are arising. Authors concluded that data mining algorithms
should be optimized for cost and computation reduction. Lightweight algorithms should be computed
by the wearable device and prioritized over complex algorithms, that need to be computed in the
cloud environment.

Our previous studies focused on the investigation of various sensors and algorithms for
application in wearable healthcare monitoring systems. In [34] we described a multimodal system for
seamless surveillance of the elderly in their living environment. We also investigated the integration
of wearable ECG and accelerometer sensors for human telemonitoring [35]. Although significant
progress has been made in human activity monitoring, there are still some challenges that should be
addressed to accelerate the development and adoption of wearable telemedical services. The major
challenges are a multimodal signal acquisition, resource-constrained computing environment, difficulty
to operate, power management, device size and safety, limitation of performing activities of daily
living activities during measurements and authorized access to health data. Anthroposociological
changes will influence the development of the ubiquitous e-health services. We notice the increase
in trust and acceptance of the society for the use of telemedical services. The development of new
methods, aggregation models, and medical data analysis can affect the quality of telemedical health
care services.

3. Materials and Methods

3.1. Study Design

The intervention study was performed from 2016 to 2017 among adult volunteers. The inclusion
criteria were written informed consent. Five adults (three females and two males) participated in
this study (40 ± 10 years old, 170 ± 12 cm and 78 ± 20 kg). In contrast to previous studies that used
different types of accelerometer sensors for activity recognition mounted of the wrist, belts, legs, or arms
participants were asked to wear designed and developed a prototype of the smart shirt integrated with
not only accelerometer sensors but also with a pulse sensor and ambient sensors. A set of experiments
was designed to test the feasibility of the developed acquisition process and the accuracy of inactivity
classification algorithm, ensuring adequate evaluation of the developed method. The measurements
were performed in the home-based environment to simulate the free-living environment with each
subject performing a set of 12 directed tasks according to guided voice commands from a computer
application. The following tasks were selected:

• Ambulatory activities: lying, sitting, standing still, walking.
• Daily activities: working at the PC.
• The short physical performance battery (SPPB) test tasks: sit-to-stand, feet together standing,

semi-tandem standing, full tandem standing, 4-m walk.

We included tasks from the short physical performance battery (SPPB) test that is considered as a
not inactive state but can be safely performed by older people. Each task lasted 60 s and was proceeded
by a 60-s break for preparing for it. Full recording for one subject consisted of 28,800 samples and lasted
23 min. Each window was automatically labeled. Figure 1 exemplifies the task sequence and duration.
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3.2. System Architecture

The primary principle in the design of the wearable health monitoring system is to achieve a
real-time classification of subjects’ inactivity using smart shirt integrated with the processor, multiple
sensors, LEDs, power supply and wireless radio during activities of daily living. The developed shirt
prototype is designed to be easy to use and operate especially for older or disabled people in the
home-based environment or a clinical setting.

The system consists of three types of nodes which communicate in three following overlapping
networks: Personal Area Network (PAN) that is created dynamically in the proximity of the user, Local
Area Network (LAN) and the Internet.

Body control unit (BCU) is sewn on the shirt. It creates the PAN network and waits for incoming
connections. If the network coordinator (NC) connects to the BCU, the connection is established.
BCU collects, filter and encapsulates data as well as extracts features and communicate with the
PAN network with network coordinator (NC). NC acquire and analyze data packets from BCU and
transmits results to the cloud provider (CP) via available Local Area Network (or Wireless Local Area
Network) interface. Cloud provider (CP) performs data aggregation, storage, and further analytics as
well as provides remote data access interface for authorized users. The system can be configured to
operate only within the Local Area Network to limit data exchange with the external service provider.
The system architecture is shown in Figure 2.
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3.3. Instrumentation

The main idea was to develop the prototype of wearable health monitoring system that can acquire
selected signals in a free-living environment. To face this challenge the components were integrated
into the prototype of the smart shirt. The design of the system was based on the off-the-shelves
open-hardware components. The wearable health monitoring system consists of the low-power 48 MHz
ARM Cortex M0 processor that features various peripherals which facilitate communication with
different sensors and design of the multisensor system. The processor supports software-selectable
sleep modes, up to six Serial Communication Modules (SERCOM) which can be configured to act
as UART, SPI, I2C and up to twenty-channel 350 ksps 12-bit Analog-to-Digital Converter (ADC)
with programmable gain. We used the ultra-low-power high-performance three-axis LIS3DH linear
accelerometer with digital I2C/SPI serial interface standard output. The device is capable of measuring
accelerations with output data rates from 1 Hz to 5.3 kHz and may be configured to generate interrupt
signals. It has an integrated 32-level first-in, first out (FIFO) buffer allowing the user to store data to limit
intervention by the host processor. For the ambient light sensor, we used ALS-PT19-315C. The peak
sensitivity of this sensor is around 640 nm. The temperature was measured using NCP15XH103 chip
that features high accuracy in resistance and high stability in the environment. We used an optical
heart-rate sensor based on open source hardware Pulse Sensor developed by Murphy and Gitman [36],
that was previously validated by the community. Pulse Sensor is based on the Avago light sensor (peak
sensitivity for this sensor is 565 nm) and the green super bright LED from Kingbright. The hardware
uses a filter and amplifier to increase the amplitude of the pulse wave and normalize the signal around a
reference point. Pulse sensor was connected to the microcontroller using conductive fabric. The device
is powered by three AAA rechargeable batteries to ensure safe operation with close contact with the
body and potential issues during activities of daily living. Wireless communication is facilitated by
the MDBT40 Bluetooth Low Energy (BLE) module designed based on Nordic nRF51822 SoC solution.
It features ARM Cortex M0 32 bit processor, the dual transmission mode of BLE and RF 2.4G, −93 dbm
sensitivity in Bluetooth low energy mode and low power requirements. It also provides full coverage
of BLE software stack including Heart Rate Profile, Health Thermometer Profile, and Blood Pressure
Profile. The conductive thread was used to connect system components. The system prototype is
shown in Figure 3.
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3.4. Feature Extraction and Classification Algorithm

The sedentary behavior recognition process described in this paper was divided into the following
steps. The developed method was based on supervised machine learning algorithms. The major
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challenge was to select the sensors’ sampling rate that compromises the size of the data stream,
computing power and to acquire sufficient information to describe the performed activity or health
state (abnormal state). The various windows size and sampling frequency were analyzed to face the
limits of wearable computing platform. Activity states are recognized in a prolonged 60 s time window
basis to obtain sufficient descriptive information and to support the implementation of SPPB Protocol.
Signals sampling frequency was set to 40 Hz what is higher than state of the art solutions such as
activPAL (20 Hz) or Active style Pro (32 Hz).

The proposed approach is based on applying the following feature extraction method to each
time window and obtaining quantitative measures. The estimation of heart rate is based on the
analysis of the acquired pulse wave vector. The signal peaks above a threshold value of 540 (~1.74 V)
and with a minimum distance of 19 samples are marked and used for calculating the heart rate.
During our experiments we investigated the following time domain features of accelerometer and light
intensity measurements including sum, mean, standard deviation, variance and root mean square.
A vector of the dominant frequency for each axis was selected from frequency domain features of
accelerometer measurements. We examined heart rate variability measures such as the standard
deviation of beat-to-beat intervals and the square root of the mean of the squares of the successive
differences between neighboring beat-to-beat intervals. Acceleration signals were filtered using sixth
order highpass Butterworth filter with a cutoff frequency of 0.25 Hz and a window size of 10 samples.

Finally, we selected the following features: relative intensity (IR) (defined in Equation (1)) and
the variance of the acceleration signal (A) of the x-axis (superior-inferior) after filtration (defined in
Equation (2)):

IR =
ω

ϕ
× 100% (1)

where ω is heart rate, ϕ is estimated maximum heart rate.

V =
1

N − 1 ∑N
i=1|Ai − µ|2 (2)

where µ is the mean of A, µ = 1
N−1 ∑N

i=1 Ai.
In the second step, the obtained two-dimensional feature vector that passed through to the

classification model, which tried to classify the appropriate class. The first class of activities was
chosen as sedentary behavior: lying, sitting, working on the PC. The second class activity was
the remaining activities. The data acquired during experiments were labeled manually with the
appropriate class and saved in a database. We investigated the following classification models: Binary
decision trees, Discriminant Analysis model, Naive Bayes (Gaussian), k-nearest neighbors classification
(k = 5, distance = Euclidean), Support vector machines for binary classification and artificial neural
networks with the following topology: one neuron has been placed on the output layer, 12 neurons
on the hidden layer and two neurons in the input layer. We validated the classification models using
10-fold cross-validation.

4. Results

The results of the experiment confirmed the initial hypothesis about the feasibility of a developed
method to acquire and analyze multi-sensor signals during experimental protocol. Figure 4 displays
standing volunteer during experiment protocol and the plot of light intensity, acceleration, and pulse
wave signals as well as output from classification model.
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Figure 4. The diagram displays standing volunteer during experiment protocol and the plot of light
intensity, acceleration, and pulse wave signals as well as output from classification model.

Additionally, Figure 5 displays volunteer while walking and sitting and the plot of light intensity,
acceleration, and pulse wave sensor data as well as output from classification model.

In this experiment, we investigated six different classification models to measure the performance
of the proposed method. The developed methods were used to transform sensor signals into a
two-dimensional feature vector. Figure 6a–g display two-dimensional feature vectors scatter-plot
consisted of the variance of the relative intensity estimate and filtered accelerometer data. Figure 6a
displays labeled data for the reference purpose. The blue circles represent inactivity while the red
squares represent activity. Figure 6b–g display the results of investigated models classification (b)
Linear Discriminant Analysis, (c) Binary Decision Trees, (d) K Nearest Neighbors classification,
(e) Support Vector Machines Classification, (f) Naive Bayes, (g) Artificial Neural Network).

The results of the assessment of the proposed method are summarized in Table 1. The following
metrics were defied in Equations (3)–(7).

Accuracy =
TP + TN

N
(3)

where TP is true positive (the model correctly predicted the sedentary behavior pattern), TN is true
negative (the model correctly predicted the non-sedentary behavior pattern), N is nua mber of all
evaluated cases.

Sensitivity =
TP

TP + FN
(4)

where FN is faa lse negative (the model incorrectly predicted the non-sedentary behavior pattern).

Specificity =
TN

TN + FP
(5)

where TN is a true negative, FP is false positive (the model incorrectly predicts the sedentary
behavior pattern).

Precision =
TP

TP + FP
(6)

F1-Score = 2× Precision ∗ Specificity
Precision + Specificity

(7)
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Table 1. The assessment of the proposed method. 

No Method Accuracy Sensitivity Specificity Precision F1-Score 
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Figure 6. The diagram of transformation of wearable sensor signal into feature space by a machine
learning approach: two-dimensional scatter-plots (labeled data) (a), Linear Discriminant Analysis
(b), Support Vector Machines (c), K Nearest Neighbors (d), Binary Decision Trees (e), Naive Bayes (f),
Artificial Neural Network (g).
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Table 1. The assessment of the proposed method.

No Method Accuracy Sensitivity Specificity Precision F1-Score

1 Linear Discriminant Analysis 95.00 86.67 97.78 92.86 89.66
2 Support Vector Machines 96.67 93.33 97.78 93.33 93.33
3 K Nearest Neighbors 93.33 80.00 97.78 92.31 85.71
4 Binary Decision Trees 96.67 93.33 97.78 93.33 93.33
5 Naive Bayes 91.67 100.00 88.89 75.00 85.71
6 Artificial Neural Network 96.67 93.33 97.78 93.33 93.33

Average 95.00 91.11 96.29 90.02 90.18

The following three classifiers manifested the best performance in terms of accuracy: Support
Vector Machines, Support Vector Machines, Artificial Neural Network. The Naive Bayes classifier
manifested the worst performance in terms of accuracy. However, the average measurement results
of metrics for all investigated model were: Accuracy = 95.00% ± 2.11%, Sensitivity = 91.11 ± 6.88%,
Specificity= 96.29 ± 3.63%, Precision = 90.02 ± 7.37%, F1-Score = 90.18 ± 3.74%.

5. Discussion

The experiment results confirmed the initial hypothesis about the feasibility of a developed
method to acquire and analyze multi-sensor signals during activities of daily living based on the
electronic shirt. The classification models were able to identify the sedentary behavior with an accuracy
of 95.00% ± 2.11%.

Obtained results are satisfactory and similar to state-of-the-art results for human activity
recognition (HAR). The overall accuracy of the state of the art algorithms for HAR varied from
84% to 97% [25,37–40]. However, the accuracy level comparison is challenging due to different sensor
modalities, hardware architecture, measurement chain, sensor location and configuration as well as
experimental protocol. Ambulation, fitness and daily activities were most commonly investigated.
This is a general problem for all studies in this area and Sasai also confirmed it in his recent study [4].
Prior studies have been restricted to studies based on accelerometer mounted to the different body
parts [41] or based on portable devices [38]. In addition, computationally complex algorithms unsuited
to resource-restricted wearable platforms were used [42].

During experiments, it was observed that in some scenarios it is not possible to distinguish
standing from sitting based only on accelerometer data. We decided to investigate other modality
sensors to face this challenge, and we chose the pulse wave sensor. We observed that heart rate is
significantly higher during non-sedentary behavior in comparison to sedentary behavior.

This observation was confirmed by Koster et al. [6] who pointed out that wrist accelerometers
underestimated the sedentary time and in some scenarios sitting time may not be distinguished from
standing time based on accelerometer data. Furthermore, monitoring heart rate is desired in a clinical
parameter in the telemedical setting.

The initial hypothesis assumed that light signal might contain context information that can
differentiate sedentary behavior. Although there were some promising results for periodic activities
like sit-to-stand or walking, obtained results did not support this hypothesis. It will be investigated in
the future research.

Shin et al. [12] noticed that many types of research did not consider accelerometer device
orientation what makes it difficult to classify sedentary behavior (i.e., vector magnitude feature)
accurately. The device was mostly fixed to arm, wrist, hip, thigh and shank. They also noted that
sitting and standing are difficult do recognize because there is no much difference in acceleration.

The proposed method faces the challenges discussed in this paper because it employs multimodal
sensors and provides some advantages over portable devices in terms of wearability, ease of use
and flexibility. Furthermore, the accelerometer sensor is sewn to the center of the shirt while the
physiological sensor is attached to the conductive thread (the right-upper part of the shirt) using elastic
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cable in order to acquire pulse wave signal from three different location depending on the desired
configuration including finger, arm or ear.

Proposed feature vector was designed to face the limitation of restricted resource environment and
consisted of low computational complexity parameters that are individually calculated and includes
relative intensity parameter and filtered x-axis motion variation.

According to Centers for Disease Control and Prevention (Disease Control and Prevention, LINK)
relative intensity is defined as the level of effort to perform an activity. Individuals who are less fit
require a higher level of effort than fitter people to perform the same activity. It is determined as
an individual ratio of person’s measured and estimated heart rate (%HRmax), which is 220—age.
This idea laid the foundation for the developed method. Relative light intensity level 50–63% of
HRmax (or 1.1–2.9 MET) takes place while walking < 4.7 km/h or light housework work while
relative moderate intensity level 64–76% of HRmax (or 3–5.9 MET) takes place during walking briskly
(4.8–6.5 km/h), vacuuming or gardening. Based on experimental results the relative intensity during
sedentary behavior among all subjects ranged from 31% to 44% of HRmax while other tasks varied
from 45% to 61% HRmax. According to [2] doctors should evaluate the physical activity in every
patient. They should warn against inactivity and recommend adding physical activity to daily life.
However, the automatic monitoring of inactivity is a challenge, especially among older adults who are
unable to use existing medical devices on a daily basis.

During experiments we investigated the power consumption. The prototype was connected to
9 V Energizer 175 mA, and it operated for 156 min. It is estimated that using four AAA 1000 mA
batteries, it can last up to 3 days.

One of the major contributions of this research is the design of smart shirt-based multimodal
sedentary behavior monitoring system and its validation during experimental protocol which was
designed to be safe for the elderly and was based on clinically validated short physical performance
battery (SPPB) test tasks that is the gold standard for elderly clinical examination.

To the best of our knowledge, this paper is the first to study sedentary behavior using smart
shirt-based multimodal sedentary behavior monitoring system, six machine learnings models and
purposely design experiment protocol suitable for older adults as well as the design of telemedical
service. Continuous tracking of quantitative health-related parameters, as well as their context, can
contribute to better understanding of patients’ health state and may support the early detection of
diseases as well as prevention and treatment. In addition, estimating the behavior pattern can support
making better health decision before the symptoms of diseases (CVDs diseases) appear.

The way of diagnosis and treatment is also changing. ICT tools and new medical technologies
are playing an increasingly important role in this process. The contemporary paradigm of
evidence-based medicine evolves towards an approach based on personalized medicine and prevention.
The concentration shifts from the treatment of the disease to its prevention based on constantly updated
health data, its pattern of behavior and its interactions with the environment.

With the increased role of medical devices in the diagnosis and treatment process, a key aspect
in the assessment of devices is to ensure that the requirements for a specific application are met. It is
essential to take into account functional requirements, risk analysis, parameter and safety requirements
in accordance with the product application, legal requirements and regulations (e.g., European Medical
Devices Directive 93/42/EEC, FDA). Meeting these requirements can be confirmed by a certification
audit performed by an independent accredited organization. Therefore, the development of dedicated
wearable medical devices seems to be the most promising and having an advantage over general
purpose solutions.

The study has some limitations. We selected the most common activities that are performed by
older adults at home or in the hospital setting including lying, sitting, standing and walking. Other
complex activities should also be evaluated in future studies. Affective states including stress should
be investigated because are associated with a high heart rate. Our previous experiment showed that
wearable sensors could also be used to recognize affective states. We have also proved the influence
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of emotions on visual acuity, the feasibility of wearable eye-tracking-based assessment of emotional
state [43]. For patients taking medications, it is important to consider the possibility of modifying the
heart rate response.

The systems’ dependence on external telecommunication service provider is a significant threat
and limitation for the proper functioning of the service. In case of materializing the risk regarding
the lack of access to the network, it is not possible to exchange data with the central server. As a
risk-minimizing measure, data recording on the device and signaling with the use of LEDs can be used
as the communication interface with the user or personnel. Rawassizadeh et al. [44] recommended
prioritizing on-device analysis over uploading the data to the cloud service due to threats to privacy,
advances in hardware capabilities and cyber-attacks. Supervision over the storage of medical data is
an essential aspect for the stakeholders, therefore, apart from cloud solutions, it is important to provide
the possibility of using local hospital networks.

6. Conclusions

In conclusion, a sedentary behavior can be recognized from the fusion of the data from smart shirt,
individual factors, and machine learning algorithms. The findings demonstrated that the proposed
method could be used to quantitative measure sedentary behavior without limiting daily activities.
Experimental results suggested that high accuracy can be obtained by estimating the sedentary
behavior pattern using machine learning approach. In addition, personalized shirt-based health
telemonitoring system can provide clinically significant information about subjects’ behavior to
health providers or authorized users. This could potentially be used for early diagnosis, prevention,
and treatment as well as could motivate to more active lifestyle, especially for frail older adults.

7. Patents

P.418874 The method of signal acquisition, sensor sticker and control-measurement system.
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