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Abstract: A non-linear filtering algorithm based on the alpha-divergence is proposed, which uses the
exponential family distribution to approximate the actual state distribution and the alpha-divergence
to measure the approximation degree between the two distributions; thus, it provides more choices
for similarity measurement by adjusting the value of α during the updating process of the equation
of state and the measurement equation in the non-linear dynamic systems. Firstly, an α-mixed
probability density function that satisfies the normalization condition is defined, and the properties
of the mean and variance are analyzed when the probability density functions p(x) and q(x) are
one-dimensional normal distributions. Secondly, the sufficient condition of the alpha-divergence
taking the minimum value is proven, that is when α ≥ 1, the natural statistical vector’s expectations
of the exponential family distribution are equal to the natural statistical vector’s expectations of the
α-mixed probability state density function. Finally, the conclusion is applied to non-linear filtering,
and the non-linear filtering algorithm based on alpha-divergence minimization is proposed, providing
more non-linear processing strategies for non-linear filtering. Furthermore, the algorithm’s validity is
verified by the experimental results, and a better filtering effect is achieved for non-linear filtering by
adjusting the value of α.

Keywords: alpha-divergence; Kullback–Leibler divergence; non-linear filtering; exponential family
distribution

1. Introduction

The analysis and design of non-linear filtering algorithms are of enormous significance because
non-linear dynamic stochastic systems have been widely used in practical systems, such as navigation
system [1], simultaneous localization and mapping [2], and so on. Because the state model and the
measurement model are non-linear and the state variables and the observation variables of the systems
no longer satisfy the Gaussian distribution, the representation of the probability density distribution of
the non-linear function will become difficult. In order to solve this problem, deterministic sampling
(such as the unscented Kalman filter and cubature Kalman filter) and random sampling (such as
the particle filter) are adopted to approximate the probability density distribution of the non-linear
function, that is to say, to replace the actual state distribution density function by a hypothetical one [3].

In order to measure the similarity between the hypothetical state distribution density function
and the actual one, we need to select a measurement method to ensure the effectiveness of the above
methods. The alpha-divergence, proposed by S.Amari, is used to measure the deviation between data
distributions p(x) and q(x) [4]. It can be used to measure the similarity between the hypothetical
state distribution density function and the actual one for the non-linear filtering. Compared with
the Kullback–Leibler divergence (the KL divergence), the alpha-divergence provides more choices
for measuring the similarity between the hypothetical state distribution density function and the
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actual one. Therefore, we use alpha-divergence as a measurement criterion to measure the similarity
between the two distribution functions. Indeed, adjusting the value of parameter α in the function
can ensure the interesting properties of similarity measurement. Another choice of α characterizes
different learning principles, in the sense that the model distribution is more inclusive (α → ∞) or
more exclusive (α → −∞) [5]. Such flexibility enables α-based methods to outperform KL-based
methods with the value of α being properly selected. The higher the similarity of the two probability
distributions p(x) and q(x), the smaller the value of alpha-divergence will be. Then, it can be proven
that in a specific range of value, q(x) can fully represent the properties of p(x) when the value of
alpha-divergence is minimum.

Because the posterior distribution of non-linear filtering is difficult to solve, given that the
posterior probability distribution is p(x), we can use the probability distribution q(x) to approximate
the posterior probability distribution p(x) of non-linear filtering. The approximate distribution q(x) is
expected to be a distribution with a finite moment vector. This in turn means that a good choice for the
approximate distribution is from the exponential family distribution, which is a practically convenient
and widely-used unified family of distributions on finite dimensional Euclidean spaces.

The main contributions of this article include:

1. We define an α-mixed probability density function and prove that it satisfies the normalization
condition when we specify the probability distributions p(x) and q(x) to be univariate normal
distributions. Then, we analyze the monotonicity of the mean and the variance of the α-mixed
probability density function with respect to the parameter when p(x) and q(x) are specified to
be univariate normal distributions. The results will be used in the algorithm implementation to
guarantee the convergence.

2. We specify the probability density function q(x) as an exponential family state density function
and choose it to approximate the known state probability density function p(x). After the α-mixed
probability density function is defined by q(x) and p(x), we prove that the sufficient condition
for alpha-divergence minimization is when α ≥ 1 and the expected value of the natural statistical
vector of q(x) is equivalent to the expected value of the natural statistical vector of the α-mixed
probability density function.

3. We apply the sufficient condition to the non-linear measurement update step of the non-linear
filtering. The experiments show that the proposed method can achieve better performance by
using a proper α value.

2. Related Work

It has become a common method to apply various measurement methods of divergence to
optimization and filtering, among which the KL divergence, as the only invariant flat divergence,
has been most commonly studied [6]. The KL divergence is used to measure the error in the Gaussian
approximation process, and it is applied in the process of distributing updated Kalman filtering [7].
The proposal distribution of the particle filter algorithm is regenerated using the KL divergence after
containing the latest measurement values, so the new proposal distribution approaches the actual
posterior distribution [8]. Martin et al. proposed the Kullback–Leibler divergence-based differential
evolution Markov chain filter for global localization for mobile robots in a challenging environment [9],
where the KL-divergence is the basis of the cost function for minimization. The work in [3] provides a
better measurement method for estimating the posterior distribution to apply KL minimization to the
prediction and updating of the filtering algorithm, but it only provides the proof of the KL divergence
minimization. The similarity of the posterior probability distribution between adjacent sensors in the
distributed cubature Kalman filter is measured by minimizing the KL divergence, and great simulation
results are achieved in the collaborative space target tracking task [10].
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As a special situation of alpha-divergence, the KL divergence is easy to calculate, but it provides
only one measurement method. Therefore, the studies on the theory and related applications of
the KL divergence are taken seriously. A discrete probability distribution of minimum Chi-square
divergence is established [11]. Chi-square divergence is taken as a new criterion for image thresholding
segmentation, obtaining better image segmentation results than that from the KL divergence [12,13].
It has been proven that the alpha-divergence minimization is equivalent to the α-integration of
stochastic models, and it is applied to the multiple-expert decision-making system [6]. Amari et al. [14]
also proved that the alpha-divergence is the only divergence category, which belongs to both
f-divergence and Bregman divergence, so it has information monotonicity, a geometric structure
with Fisher’s measurement and a dual flat geometric structure. Gultekin et al. [15] proposed to use
Monte Carlo integration to optimize the minimization equation of alpha-divergence, but this does not
prove the alpha-divergence minimization. In [16], the application of the alpha-divergence minimization
in approximate reasoning has been systematically analyzed, and different values of α can change the
algorithm between the variational Bayesian algorithm and expectation propagation algorithm. As a
special situation of the alpha-divergence (α = 2q− 1), q-entropy [17,18] has been widely used in the
field of physics. Li et al. [19] proposed a new class of variational inference methods using a variant of
the alpha-divergence, which is called Rényi divergence, and applied it to the variational auto-encoders
and Bayesian neural networks. There are more introductions about theories and applications of the
alpha-divergence in [20,21]. Although the theories and applications of alpha-divergence have been
very popular, we focus on providing a theory to perfect the alpha-divergence minimization and apply
it to non-linear filtering.

3. Background Work

In Section 3.1, we provide the framework of the non-linear filtering. Then, we introduce the
alpha-divergence in Section 3.2, which contains many types of divergence as special cases.

3.1. Non-Linear Filtering

The actual system studied in the filtering is usually non-linear and non-Gaussian. Non-linear
filtering refers to a filtering that can estimate the optimal estimation problem of the state variables in
the dynamic system online and in real time from the system observations.

The state space model of non-linear systems with additive Gaussian white noise is:

xk = f (xk−1) + wk−1 (1)

where xk ∈ Rn is the system state vector that needs to be estimated; wk is the zero mean value Gaussian
white noise, and its variance is E[wkwT

k ] = Qk. Equation (1) describes the state transition p(xk|xk−1) of
the system.

The random observation model of the state vector is:

zk = h(xk) + vk (2)

where zk ∈ Rm is system measurement; vk is the zero mean value Gaussian white noise, and its
variance is E[vkvT

k ] = Rk. Suppose wk and vk are independent of each other and the observed value zk
is independent of the state variables xk.

The entire probability state space is represented by the generation model as shown in Figure 1.
xk is the system state; zk is the observational variable, and the purpose is to estimate the value of state
xk. The Bayesian filter is a general method to solve state estimation. The Bayesian filter is used to
calculate the posterior distribution p(xk|zk), and its recursive solution consists of prediction steps and
update steps.
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Under the Bayesian optimal filter framework, the system state equation determines that the
conditional transition probability of the current state is a Gaussian distribution:

p(xk|xk−1, z1:k−1) = N(xk| f (xk−1), Qk) (3)

If the prediction distribution of the system can be obtained from Chapman–Kolmogorov, the prior
probability is:

p(xk|z1:k−1) =
∫

p(xk|xk−1, z1:k−1)p(xk−1|z1:k−1)dxk−1 (4)

When there is a measurement input, the system measurement update equation determines that
the measurement likelihood transfer probability of the current state obeys a Gaussian distribution:

p(zk|xk, z1:k−1) = N(zk|h(xk), Rk) (5)

According to the Bayesian information criterion, the posterior probability obtained is:

p(xk|z1:k) =
p(zk|xk, z1:k−1)p(xk|z1:k−1)

p(zk|z1:k−1)
(6)

where p(zk|z1:k−1) is the normalized factor, and it is defined as follows:

p(zk|z1:k−1) =
∫

p(zk|xk, z1:k−1)p(xk|z1:k−1)dxk (7)

Unlike the Kalman filter framework, the Bayesian filter framework does not demand that the
update structure be linear, so it can use non-linear update steps.

In the non-linear filtering problem, the posterior distribution p(xk|z1:k) often cannot be solved
correctly. Our purpose is to use the distribution q(x) to approximate the posterior distribution
p(xk|z1:k) without an analytical solution. Here, we use the alpha-divergence measurement to measure
the similarity between the two. We propose a method that directly minimizes alpha-divergence
without adding any additional approximations.

 !  "  #  $

%! &" &# &$

Figure 1. Hidden Markov Model (HMM).

3.2. The Alpha-Divergence

The KL divergence is commonly used in similarity measures, but we will generalize it to the
alpha-divergence. The alpha-divergence is a parametric family of divergence functions, including
several well-known divergence measures as special cases, and it gives us more flexibility in
approximation [20].
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Definition 1. Let us consider two unnormalized distributions p(x) and q(x) with respect to a random variable
x. The alpha-divergence is defined by:

Dα[p||q] =
1

α(1− α)

∫
αp(x) + (1− α)q(x)− p(x)αq(x)1−αdx (8)

where α ∈ R, which means Dα is continuous at zero and one.

The alpha-divergence meets the following two properties:

1. Dα[p||q] ≥ 0, if and only if p = q, Dα[p||q] = 0. This property can be used precisely to measure
the difference between the two distributions.

2. Dα[p||q] is a convex function with respect to p(x) and q(x).

Note that the term
∫
[αp(x) + (1− α)q(x)]dx disappears when p(x) and q(x) are normalized

distributions, i.e.,
∫

p(x)dx =
∫

p(x)dx = 1. The alpha-divergence in (8) is expressed by:

Dα[p||q] =
1

α(1− α)
(1−

∫
p(x)αq(x)1−αdx) (9)

In general, we can get another equivalent expression of the alpha-divergence when we set
β = 2α− 1:

Dβ[p||q] =
4

1− β2

∫ 1− β

2
p(x) +

1 + β

2
q(x)− p(x)

1+β
2 q(x)

1−β
2 dx (10)

Alpha-divergence includes several special cases such as the KL divergence, the Hellinger
divergence and χ2 divergence (Pearson’s distance), which are summarized below.

• As α approaches one, Equation (8) is the limitation form of 0
0 , and it specializes to the KL

divergence from q(x) to p(x) as L’Hôpital’s rule is used:

lim
α→1

Dα[p||q] = lim
α→1

1
α(1− α)

∫
αp(x) + (1− α)q(x)− p(x)αq(x)1−αdx

= lim
α→1

1
1− 2α

∫
p(x)− q(x)− p(x)αlog(p(x))q(x)1−α + p(x)αq(x)1−αlog(q(x))dx

=
∫

p(x)log
p(x)
q(x)

− p(x) + q(x)dx = KL[p||q]

(11)

When p(x) and q(x) are normalized distributions, the KL divergence is expressed as:

KL[p||q] =
∫

p(x)log
p(x)
q(x)

dx (12)

• As α approaches zero, Equation (8) is still the limitation form of 0
0 , and it specializes to the dual

form of the KL divergence from q(x) to p(x) as L’Hôpital’s rule is used:

lim
α→0

Dα[p||q] = lim
α→0

1
α(1− α)

∫
αp(x) + (1− α)q(x)− p(x)αq(x)1−αdx

= lim
α→0

1
1− 2α

∫
p(x)− q(x)− p(x)αlog(p(x))q(x)1−α + p(x)αq(x)1−αlog(q(x))dx

=
∫

q(x)log
q(x)
p(x)

+ p(x)− q(x)dx = KL[q||p]

(13)

When p(x) and q(x) are normalized distributions, the dual form of the KL divergence is
expressed as:

KL[q||p] =
∫

q(x)log
q(x)
p(x)

dx (14)
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• When α = 1
2 , the alpha-divergence specializes to the Hellinger divergence, which is the only dual

divergence in the alpha-divergence:

D 1
2
[p||q] = 2

∫
(p(x) + q(x)− 2p(x)

1
2 q(x)

1
2 )dx = 2

∫
(
√

p(x)−
√

q(x))2dx = 4Hel2[p||q] (15)

where Hel[p||q] = 1
2

∫
(
√

p(x)−
√

q(x))2dx is the Hellinger distance, which is the half of the
Euclidean distance between two random distributions after taking the difference of the square
root, and it corresponds to the fundamental property of distance measurement and is a valid
distance metric.

• When α = 2, the alpha-divergence degrades to χ2-divergence:

D2[p||q] =
−1
2

(
∫

2p(x)− q(x)− p(x)2

q(x)
dx)

=
1
2
(
∫ p(x)2 + q(x)2 − 2p(x)q(x)

q(x)
dx) =

1
2

∫
(p(x)− q(x))2

q(x)
dx

(16)

In the later experiment, we will adapt the value of α to optimize the distribution similarity
measurement.

4. Non-Linear Filtering Based on the Alpha-Divergence

We first define an α-mixed probability density function, which will be used in the non-linear
filtering based on the alpha-divergence minimization. Then, we show that the sufficient condition
for the alpha-divergence minimization is when α ≥ 1 and the expected value of the natural statistical
vector of q(x) is equivalent to the expected value of the natural statistical vector of the α-mixed
probability density function. At last, we apply the sufficient condition to the non-linear measurement
update steps for solving the non-linear filtering problem.

4.1. The α-Mixed Probability Density Function

We first give a definition of a normalized probability density function called the α-mixed
probability density function, which is expressed as pα(x).

Definition 2. We define an α-mixed probability density function:

pα(x) =
p(x)αq(x)(1−α)∫
p(x)αq(x)(1−α)dx

(17)

We can prove that when both p(x) and q(x) are univariate normal distributions, then pα(x) is still
the Gaussian probability density function.

Suppose that p(x) ∼ N(µp, σ2
p) and q(x) ∼ N(µq, σ2

q ), so the probability density functions can be
expressed as follows:

p(x) =
1√

2πσp
exp

{
−
(x− µp)2

2σ2
p

}
and q(x) =

1√
2πσq

exp

{
−
(x− µq)2

2σ2
q

}
(18)

Then we can combine these two functions with parameter α:

p(x)αq(x)(1−α) = (2πσ2
p)
− α

2 (2πσ2
q )
− 1−α

2 exp

{
−

α(x− µp)2σ2
q + (1− α)(x− µq)2σ2

p

2σ2
pσ2

q

}

=
Sα√
2πσα

exp
{
− (x− µα)2

2σ2
α

} (19)
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where µα =
αµpσ2

q+(1−α)µqσ2
p

ασ2
q+(1−α)σ2

p
is the mean of the α-mixed probability density function; σ2

α =
σ2

q σ2
p

ασ2
q+(1−α)σ2

p

(which can be reduced to 1
σα

= α 1
σp

+ (1− α) 1
σq

) is the variance of the α-mixed probability density
function; Sα is a scalar factor, and the expression is as follows:

Sα = (2πσ2
α)

1
2 (2πσ2

p)
− α

2 (2πσ2
q )
− 1−α

2 exp

{
−

α(1− α)(µp − µq)2

2[ασ2
q + (1− α)σ2

p ]

}

= (2πσ2
α)

α+1−α
2 (2πσ2

p)
− α

2 (2πσ2
q )
− 1−α

2 exp

{
−

α(1− α)(µp − µq)2

2[ασ2
q + (1− α)σ2

p ]

}

= (
σ2

q

ασ2
q + (1− α)σ2

p
)

α
2 (

σ2
p

ασ2
q + (1− α)σ2

p
)

1−α
2 exp

{
−

α(1− α)(µp − µq)2

2[ασ2
q + (1− α)σ2

p ]

} (20)

Therefore, pα(x) is a normalized probability density function, satisfying the normalization
conditions

∫
pα(x)dx = 1. It is clear that the product of two Gaussian distributions is still a Gaussian

distribution, which will bring great convenience to the representation of probability distribution of the
latter filtering problem.

At the same time, we can get that the variance of pα(x) is σ2
α , which should satisfy the condition

that its value is greater than zero. We can know by its denominator when σ2
q ≥ σ2

p , the value of α can

take any value on the real number axis; when σ2
q < σ2

p , the scope of α is α <
σ2

p

σ2
p−σ2

q
. Then, it is easy to

know that the closer σ2
p is to σ2

q , the greater the range of values of α.
In addition, the influence of the mean and the variance of the two distributions on the mean and

variance of the α-mixed probability density function can be analyzed to facilitate the solution of the
algorithm latter. As for the variance, when σ2

q > σ2
p , σ2

α decreases with the increase of α; when σ2
q = σ2

p ,
it can be concluded that σ2

α = σ2
q = σ2

p ; when σ2
q < σ2

p , σ2
α increases with the increase of α. As for the

mean value, when σ2
q = σ2

p , µα = (µp − µq)α + µq; if σ2
q 6= σ2

p , µα =
µpσ2

q−µqσ2
p

σ2
q−σ2

p
+

(µq−µp)σ2
q σ2

p

(σ2
q−σ2

p)2α+(σ2
q−σ2

p)σ
2
p
.

It is clear that if µp > µq, then µα increases with the increase of α; if µp < µq, then µα decreases with
the increase of α. The summary of the properties is shown in Table 1.

Table 1. The monotonicity of the mean µα and the variance σ2
α of the α-mixed probability

density function.

σ2
q < σ2

p σ2
q = σ2

p σ2
q > σ2

p

σ2
α Increases with the Increase of α σ2

α = σ2
q = σ2

p σ2
α Decreases with the Increase of α

µp > µq µα increases with the increase of α

µp = µq µα = µp = µq

µp < µq µα decreases with the increase of α

The monotonicity of the mean µα and the variance σ2
α with respect to α is shown in Figure 2.

It is clear that when µp < µq and σ2
q > σ2

p , µα decreases with the increase of α and σ2
α decreases

with the increase of α; when µp < µq and σ2
q < σ2

p , µα decreases with the increase of α and σ2
α increases

with the increase of α; when µp > µq and σ2
q > σ2

p , µα increases with the increase of α and σ2
α decreases

with the increase of α; when µp > µq and σ2
q < σ2

p , µα increases with the increase of α and σ2
α increases

with the increase of α.
When α ∈ (0, 1), the α-mixed probability density function is the interpolation function of p(x)

and q(x), so its mean value and the variance are all between p(x) and q(x), as shown in Figure 2,
and its image curve is also between them.

The above analysis will be used in the algorithm implementation of the sufficient condition in the
non-linear filtering algorithm.



Sensors 2018, 18, 3217 8 of 17

0 20 40 60 80 100 120 140 160 180 200
0

0.005

0.01

0.015

0.02

0.025

0.03

2

p q p

2

q

2

0 20 40 60 80 100 120 140 160 180 200
0

0.005

0.01

0.015

0.02

0.025

0.03

2

p q p

2

q

2

0 20 40 60 80 100 120 140 160 180 200
0

0.005

0.01

0.015

0.02

0.025

0.03

2

p q p

2

q

2

0 20 40 60 80 100 120 140 160 180 200
0

0.005

0.01

0.015

0.02

0.025

0.03

2

p q p

2

q

2

Figure 2. The monotonicity of the mean µα and the variance σ2
α with respect to α.

4.2. The Alpha-Divergence Minimization

In the solving process of the alpha-divergence minimization, either the posterior distribution itself
or the calculation of the maximized posterior distribution is complex, so the approximate distribution
q(x) with good characterization ability is often used to approximate the true posterior distribution
p(x). As a result, a higher degree achieves better approximation. Here, we restrict the approximate
distribution q(x) to be an exponential family distribution; denote pe(x), with good properties, defined
as follows:

pe(x) = h(x)exp
{

φT(θ)u(x) + g(φ(θ))
}

(21)

Here, θ is a parameter set of probability density function; c(x) and g(φ(θ)) are known functions;
φ(θ) is a vector composed of natural parameters; u(x) is a natural statistical vector. u(x) contains
enough information to express the state variable x in the exponential family distribution completely;
φ(θ) is a coefficient parameter that combines u(x) based on parameter set θ.

In the non-linear filtering, assume the exponential family distribution is pe(x); arbitrary function
is p(x), and we use pe(x) to approximate p(x), measuring the degree of approximation by the
alpha-divergence. Therefore, the alpha-divergence of p(x) relative to pe(x) is obtained, defined as:

J = Dα[p||pe] =
1

α(1− α)
[1−

∫
p(x)α pe(x)1−α]

=
1

α(1− α)

{
1−

∫
p(x)α[h(x)exp(φT(θ)u(x) + g(φ(θ)))]1−α

} (22)

We state and prove in Theorem 1 that the alpha-divergence between the exponential family
distribution and the probability density function of arbitrary state variable is minimum, if and
only if the expected value of the natural statistical vector in the exponential family distribution
is equal to the expected value of the natural statistical vector in the α-mixed probability state density
function. In Corollary 1, given α = 1, the equivalence condition can be obtained in the case of KL[p||q].
In Corollary 2, we conclude that the specialization of the exponential family distribution is obtained
after being processed by the Gaussian probability density function.

Theorem 1. The alpha-divergence between the exponential family distribution and the known state probability
density function takes the minimum value; if and only if α ≥ 1, the expected value of the natural statistical
vector in the exponential family distribution is equal to the expected value of the natural statistical vector in the
α-mixed probability state density function, that is:

Epe {u(x)} = Epα {u(x)} (23)
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Proof of Theorem 1. Sufficient conditions for J minimization are that the first derivative and the
second derivative satisfy the following conditions:

∂J
∂φ(θ)

= 0 and
∂2 J

∂φ(θ)2 > 0 (24)

First, we derive Equation (22) with respect to φ(θ), and according to the conditions in the first
derivative, the outcome is:

∂J
∂φ(θ)

=
−1

α(1− α)

∫
p(x)α(1− α)pe(x)−α pe(x)

{
u(x) + (

∂g(φ(θ))
∂φ(θ)

)

}
dx

=
−1
α

∫
p(x)α pe(x)1−α

{
u(x) + (

∂g(φ(θ))
∂φ(θ)

)

}
dx

= − 1
α

∫
p(x)α pe(x)1−αu(x)dx− 1

α

∫
p(x)α pe(x)1−α(

∂g(φ(θ))
∂φ(θ)

)dx

(25)

Let the above equation be equal to zero, then:

∂g(φ(θ))
∂φ(θ)

= −
∫ p(x)α pe(x)1−α∫

p(x)α pe(x)1−αdx
u(x)dx = −

∫
pα(x)u(x)dx (26)

In addition, since pe(x) is a probability density function, it satisfies the normalization condition:∫
pe(x)dx =

∫
h(x)exp

{
φT(θ)u(x) + g(φ(θ))

}
dx = 1 (27)

Derive φ(θ) in the above equation, and the outcome is:

∂

∂φ(θ)
pe(x) =

∫
pe(x)u(x)dx +

∂g(φ(θ))
∂φ(θ)

= 0 (28)

The first item of Equation (23) can be obtained from Equations (26) and (28), which is the existence
conditions of the stationary point for J.

To ensure that Equation (24) can minimize Equation (22), which means the stationary point is also
its minimum point, we also need to prove that the second derivative satisfies the condition. Derive φ(θ)

in Equation (25); the outcome is:

∂2 J

∂φ(θ)2 =
∂

∂φ(θ)

{
− 1

α

∫
p(x)α pe(x)1−αu(x)dx− 1

α

∫
p(x)α pe(x)1−α(

∂g(φ(θ))
∂φ(θ)

)dx
}

= −1− α

α

∫
p(x)α pe(x)1−α

{
u(x) + (

∂g(φ(θ))
∂φ(θ)

)

}
u(x)dx

− 1
α

∫
p(x)α pe(x)1−α ∂2g(φ(θ))

∂φ(θ)2 dx

− 1− α

α

∫
p(x)α pe(x)1−α

{
u(x) + (

∂g(φ(θ))
∂φ(θ)

)

}
∂g(φ(θ))

∂φ(θ)
dx

= − 1
α

∫
p(x)α pe(x)1−α ∂2g(φ(θ))

∂φ(θ)2 dx

− 1− α

α

∫
p(x)α pe(x)1−α

{
u(x)2 + 2u(x)(

∂g(φ(θ))
∂φ(θ)

) + (
∂g(φ(θ))

∂φ(θ)
)2
}

dx

= − 1
α

∂2g(φ(θ))

∂φ(θ)2

∫
p(x)α pe(x)1−αdx +

α− 1
α

∫
p(x)α pe(x)1−α

{
u(x) +

∂g(φ(θ))
∂φ(θ)

}2

dx

= − 1
α

∂2g(φ(θ))

∂φ(θ)2

∫
pα(x)dx +

α− 1
α

∫
p(x)α pe(x)1−α

{
u(x) +

∂g(φ(θ))
∂φ(θ)

}2

dx

(29)
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For the first item, it is easy to prove ∂2g(φ(θ))
∂φ(θ)2 < 0, and the proof is as follows.

It can be known from Equation (21):

g(φ(θ)) = −log
∫

h(x)exp
{

φT(θ)u(x)
}

dx (30)

The gradient of Equation (30) with respect to the natural parameter vector is as follows:

∂g(φ(θ))
∂φ(θ)

= −
∫ h(x)exp

{
φT(θ)u(x)

}∫
h(x)exp {φT(θ)u(x)} dx

u(x)dx =

= −
∫ h(x)exp

{
φT(θ)u(x)

}
exp {−g(φ(θ))} dx

u(x)dx = −
∫

pe(x)u(x)dx

(31)

Then, consider the matrix formed by its second derivative with respect to the natural
parameter vector:

∂2g(φ(θ))
∂φi(θ)∂φj(θ)

= − ∂

∂φj(θ)

∫ h(x)exp
{

φT(θ)u(x)
}∫

h(x)exp {φT(θ)u(x)} dx
ui(x)dx

= − ∂

∂φj(θ)

∫
h(x)exp

{
φT(θ)u(x)

}
ui(x)dx∫

h(x)exp {φT(θ)u(x)} dx

= −
∫

h(x)exp
{

φT(θ)u(x)
}

ui(x)dx
∫

h(x)exp
{

φT(θ)
}

u(x)dx
(
∫

h(x)exp {φT(θ)u(x)} dx)2

+

∫
h(x)exp

{
φT(θ)u(x)

}
ui(x)dx

∫
h(x)exp

{
φT(θ)u(x)

}
uj(x)dx

(
∫

h(x)exp {φT(θ)u(x)} dx)2

= −
{∫

pe(x)ui(x)uj(x)dx−
∫

pe(x)ui(x)dx
∫

pe(x)uj(x)dx
}

(32)

According to the definition of the covariance matrix, the content in the bracket is the covariance
matrix of the natural parameter vector with respect to the exponential family probability density
function pe(x), and for arbitrary probability density distribution pe(x), the variance matrix is a positive

definite matrix, so ∂2g(φ(θ))
∂φ(θ)2 < 0; and when α > 0, the first item is greater than zero.

The integral of the second item is the secondary moment, so α ≥ 1 or α < 0, and the second item
is greater than zero.

To sum up, when α ≥ 1, ∂2 J
∂φ(θ)2 > 0.

Corollary 1. (See Theorem 1 of [3] for more details) When α = 1, pα(x) = p(x), Dα[p||q] turns into KL[p||q].
We can obtain the above theorem under the condition of KL[p||q] and obtain the approximate distribution by
minimizing the KL divergence, which also proves that the stationary point obtained when the first derivative
of its KL divergence is equal to zero also satisfies the condition that its second derivative is greater than zero.
The corresponding expectation propagation algorithm is shown as follows:

Eq(x) {u(x)} = Ep(x) {u(x)} (33)

Corollary 2. (See Corollary 1.1 of [3] for more details) When the exponential family distribution is simplified
as the Gaussian probability density function, its sufficient statistic for u(x) = (x, x2), we use the mean and
variance of Gaussian probability density function, and the expectation of the corresponding propagation algorithm
can use the moment matching method to calculate, so the first moment and the second moment are defined
as follows:

m = Ep(x) {x} and M = Ep(x)

{
xxT

}
(34)
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The corresponding second central moment is defined as follows:

P = M−mmT = Ep(x)

{
(x−m)(x−m)T

}
(35)

The complexity of Theorem 1 lies in that both sides of Equation (23) depend on the probability
distribution of q(x) at the same time. The q(x) that satisfies the condition can be obtained by repeated
iterative update on q(x). The specific process is shown in Algorithm 1:

Algorithm 1 Approximation of the true probability distribution p(x).

Input: Target distribution parameter of p(x); damping factor ε ∈ (0, 1); divergence parameter α ∈

[1,+∞); initialization value of q(x)
Output: The exponential family probability function q(x)

1: Calculate the α-mixed probability density function pα(x)
2: According to Equation (23), we get a new q(x) using the expectation propagation algorithm

described in Corollary 1, and the new q(x) is denoted as q,(x)
3: Revalue the q(x) as

q(x) =
q(x)εq,(x)1−ε∫
q(x)εq,(x)1−εdx

(36)

4: while KL[p||q] > 0.01 do
5: Calculate the KL divergence of the old q,(x) and the new q(x)
6: end while

In the above algorithms, we need to pay attention to the following two problems: giving an initial
value of q(x) and selecting damping factors. As for the first problem, we can know that when σ2

q < σ2
p ,

the value range of α is α <
σ2

p

σ2
p−σ2

q
, according to the analysis of the α-mixed probability density function

in Section 4.1. Although the value of α is greater than one, the value range of α is limited under the
condition that σ2

p is unknown in the initial state; when σ2
q ≥ σ2

p , the value of α can take any value on
the whole real number axis, so the initial value we can choose is relatively larger, making σ2

q ≥ σ2
p and

µq > µp. When the value of α is greater than one, the mean value of the α-mixed probability density
function will decrease, and the variance will also decrease, as shown in the upper left of Figure 2.

As for the second question, when α ∈ (0, 1), the α-mixed probability density function is the
interpolation function of p(x) and q(x) according to the analysis in Section 4.1. The value range
in (0, 1) of damping factor ε is quite reasonable because the two probability density functions are
interpolated when the value range of ε is in (0, 1), and the new probability density function is between
the two. According to Equation (36), the smaller of ε, the closer the new q(x) to the old q(x); the larger
of ε, the closer the new q(x) to q,(x). The mean value and the variance of q,(x) is smaller than the real
p(x) according to the analysis of the first question. Then, we will continue to combine new q(x) with
p(x) to form a α-mixed probability density function. Similarly, we clarify that the mean value and
the variance of the new q(x) are larger than p(x), so the value of ε we choose should be as close as
possible to one.

The convergence of the algorithm can be guaranteed after considering the above two problems,
and we can get q(x) that meets the conditions. It can be known from Theorem 1 that the
approximation q(x) of p(x) can be obtained to ensure it converges on this minimum point after
repeated iterative updates.

4.3. Non-Linear Filtering Algorithm Based on the Alpha-Divergence

In the process of non-linear filtering, assuming that a priori and a posteriori probability density
functions satisfy the Assumed Density Filter (ADF), then define the prior parameter as θ−k =

{
m−k , P−k

}
;
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the corresponding distribution is prior distribution q(xk; θ−k ); define the posterior parameter as
θ+k =

{
m+

k , P+
k
}

, then the corresponding distribution is posterior distribution q(xk; θ+k ).
The prediction of the state variance can be expressed as follows:

p(xk|z1:k−1) =
∫

p(xk|xk−1, z1:k−1)dxk−1 (37a)

θ−k = arg min
θ

Dα[p(xk|z1:k−1)||q(xk; θ)] (37b)

The corresponding first moment about the origin f (xk−1) =
∫

xk p(xk|z1:k−1)dxk of p(xk|z1:k−1)

can be obtained from Equation (37a).
By Corollary 2, when the alpha-divergence is simplified to the KL divergence, the corresponding

mean value and variance are:

m−k =
∫

f (xk−1)q(xk−1; θ+k−1)dx (38a)

P−k =
∫

f (xk−1) f (xk−1)
T N(xk−1|m+

k−1, P+
k−1)dx−m−k m−T

k + Qk (38b)

Here, the prior distribution q(xk; θ−k ) can be obtained.
Similarly, the update steps of the filter can be expressed as follows:

p(xk|z1:k) =
p(zk|xk, z1:k−1)q(xk; θ−k )∫

p(xk|xk, z1:k−1)q(xk; θ−k )dxk
(39a)

θ+k = arg min
θ

Dα[p(xk|z1:k)||q(xk; θ)] (39b)

It is clear according to Theorem 1:

Eq(xk ;θ+k ) {u(x)} = Epα(x) {u(x)} =
∫

pα(x)u(x)dx =
∫

u(x)
p(xk|z1:k)

αq(xk; θ+k )1−α

π(x)
π(x)dx

≈
N

∑
i=1

u(xi)
[p(zk|xi

k, z1:k−1)q(xi
k; θ−k )]αq(xi

k; θ+k )(1−α)/π(xi)

∑j[p(zk|x
j
k, z1:k−1)q(xj

k; θ−k )]αq(xj
k; θ+k )(1−α)/π(xj)

(40)

Here, xi ∼ iidπt(xt),i = 1, · · · , N, πt is the proposal distribution. We
choose the proposal distribution as a priori distribution q(xk; θ−k ). We define wi =

[p(zk|xi
k, z1:k−1)q(xi

k; θ−k )]αq(xi
k; θ+k )1−α/π(xi), W = ∑j wj, so:

Eq(xk ;θ+k ) {u(x)} ≈ 1
W

N

∑
i=1

wiu(xi) (41)

An approximate calculation of the mean value and the variance for q(xk; θ+k ) is conducted:

m+
k =

1
W

N

∑
i=1

wixi (42a)

P+
k =

1
W

N

∑
i=1

wi(xi −mi
k)(xi −mi

k)
T (42b)

Since Equation (40) contains q(xk; θ+k ) on both sides of the equation, we must use Algorithm 1 to
conduct the iterative calculation to get the satisfied posterior distribution q(xk; θ+k ).

If α = 1, the above steps can be reduced to a simpler filtering algorithm, as shown in [3].
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In this process, we do not use the integral operation of the denominator in Equation (39a), but use
the Monte Carlo integral strategy proposed in [15], as shown in Equation (40). We cannot conduct
resampling, which greatly reduces the calculation.

5. Simulations and Analysis

According to Theorem 1, when α ≥ 1, the non-linear filtering method we proposed is feasible
theoretically. In the simulation experiment, the algorithm is validated by taking different values when
α ≥ 1. We name our proposed method as AKF and compare it with the traditional non-linear filtering
methods such as EKF and UKF.

We choose the Univariate Nonstationary Growth Model (UNGM) [22] to analyze the performance
of the proposed method. The system state equation is:

x(k) = 0.5x(k− 1) +
2.5x(k− 1)

1 + x2(k− 1)
+ 8cos(1.2(k− 1)) + w(k) (43)

The observation equation is:

y(k) =
x2(k)

20
+ v(k) (44)

The equation of state is a non-linear equation including the fractional relation, square relation
and trigonometric function relation. w(k) is the process noise with the mean value of zero and the
variance of Q. The relationship between the observed signal y(k) and state v(k) in the measurement
equation is also non-linear. v(k) is the observation noise with the mean value of zero and the variance
of R. Therefore, this system is a typical system with non-linear states and observations, and this model
has become the basic model for verifying the non-linear filtering algorithm [22,23].

In the experiment, we set Q = 10, R = 1 and set the initial state as p(x(1)) = N(x(1); 0, 1).
First, we simulate the system. When α ≥ 1, the values of α are right for the experiments; here,

the value of α is two, and the entire experimental simulation time is T = 50. The result of the state
estimation is shown in Figure 3, and it can be seen that the non-linear filtering method we proposed
is feasible; the state value can be estimated well during the whole process, and its performance is
superior to EKF and UKF in some cases.
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Figure 3. State estimation comparison of different non-linear filtering methods.
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Second, in order to measure the accuracy of state estimation, the difference between the real state
value at each moment and the estimated state value can be calculated to obtain the absolute value;
thus, the absolute deviation of the state estimation at each moment is obtained, namely:

RMS(k) = |xreal(k)− xestimated(k)| (45)

As shown in Figure 4, we can see that the algorithm error we proposed is always relatively
small where the absolute value deviation is relatively large. It can be seen that our proposed method
performs better than other non-linear methods.
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M
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EKF
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AKF

Figure 4. RMS comparison at different times.

In order to measure the overall level of error, we have done many simulation experiments.
The average error of each experiment is defined as:

RMSE(k) =
1
T

T

∑
k−1

RMS(k) (46)

The experimental results are shown in Table 2. We can see that when the estimation of T time
series is averaged, the error mean of each AKF is minimum, which indicates the effectiveness of the
algorithm, and the filtering accuracy of the algorithm is better than the other two methods under the
same conditions. Because the UNGM has strong nonlinearity and we set the variance to the state noise
as 10, which is quite large, so the performance differences between EKF, UKF and AKF are rather small.

Table 2. Average errors of experiments.

1 2 3 4 5 6 7

EKF 1.6414 1.8434 1.8245 1.7749 1.6666 1.3255 · · ·
UKF 1.5400 1.7703 1.6688 1.6387 1.6241 1.2243 · · ·
AKF 1.4819 1.5921 1.4710 1.4694 1.4389 1.1222 · · ·

Then, we analyze the influence of the initial value on the filtering results by modifying the value
of process noise. As can be seen from Table 3, AKF’s performance becomes more and more similar to
EKF/UKF as the Q becomes smaller.
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Table 3. Influence of the variance Q of state equation noise on experimental error.

Q 0.05 0.1 1 10

EKF 0.2256 0.2950 0.7288 1.7827
UKF 0.2222 0.3002 0.7396 1.6222
AKF 0.2167 0.2767 0.7144 1.5244

In the end, we analyze the performance of the whole non-linear filtering algorithm by adjusting
the value of α through 20 experiments. In order to reduce the influence of the initial value on the
experimental results, we take Q = 0.1 and then average the 20 experimental errors. The result is shown
in Figure 5. We can see that the error grows as α grows in this example, as the noise is relatively small.
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Figure 5. The error changes as α changes.

6. Conclusions

We have first defined the α-mixed probability density function and analyzed the monotonicity of
the mean and the variance under different α values. Secondly, the sufficient conditions for α to find
the minimum value have been proven, which provides more methods for measuring the distribution
similarity of non-linear filtering. Finally, a non-linear filtering algorithm based on the alpha-divergence
minimization has been proposed by applying the above two points to the non-linear filtering. Moreover,
we have verified that the validity of the algorithm in one-dimensional UNGM.

Although the filtering algorithm is effective, the alpha-divergence is a direct extension of the
KL divergence. We can try to verify that the minimum physical meaning of the alpha divergence is
equivalent to the minimum physical meaning of the KL divergence in a further study. The algorithm
should be applied to more practical applications to prove its effectiveness. Meanwhile, we can use
more sophisticated particle filtering techniques, such as [24,25], to make the algorithm more efficient.
Furthermore, the alpha-divergence method described above is applied to uni-modal approximations,
but more attention should be paid to multi-modal distributions, which are more difficult and common
in practical systems. Furthermore, it is worth designing a strategy to automatically learn the
appropriate α values.



Sensors 2018, 18, 3217 16 of 17

Author Contributions: Y.L. and C.G. conceived of and designed the method and performed the experiment. Y.L.
and S.Y. participated in the experiment and analyzed the data. Y.L. and C.G. wrote the paper. S.Y. revised the
paper. J.Z. guided and supervised the overall process.

Funding: This research was supported by a grant from the National Key Research and Development Program of
China (2016YFB0501801).

Acknowledgments: The authors thank Dingyou Ma of Tsinghua University for his help.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Grewal, M.S.; Andrews, A.P. Applications of Kalman filtering in aerospace 1960 to the present [historical
perspectives]. IEEE Control Syst. 2010, 30, 69–78.

2. Durrant-Whyte, H.; Bailey, T. Simultaneous localization and mapping: Part I. IEEE Robot. Autom. Mag. 2006,
13, 99–110. [CrossRef]

3. Darling, J.E.; Demars, K.J. Minimization of the Kullback Leibler Divergence for Nonlinear Estimation. J. Guid.
Control Dyn. 2017, 40, 1739–1748. [CrossRef]

4. Amari, S. Differential Geometrical Method in Statistics; Lecture Note in Statistics; Springer: Berlin, Germany,
1985; Volume 28.

5. Minka, T. Divergence Measures and Message Passing; Microsoft Research Ltd.: Cambridge, UK, 2005.
6. Amari, S. Integration of Stochastic Models by Minimizing α-Divergence. Neural Comput. 2007, 19, 2780–2796.

[CrossRef] [PubMed]
7. Raitoharju, M.; García-Fernández, Á.F.; Piché, R. Kullback–Leibler divergence approach to partitioned

update Kalman filter. Signal Process. 2017, 130, 289–298. [CrossRef]
8. Mansouri, M.; Nounou, H.; Nounou, M. Kullback–Leibler divergence-based improved particle filter.

In Proceedings of the 2014 IEEE 11th International Multi-Conference on Systems, Signals & Devices (SSD),
Barcelona, Spain, 11–14 February 2014; pp. 1–6.

9. Martin, F.; Moreno, L.; Garrido, S.; Blanco, D. Kullback–Leibler Divergence-Based Differential Evolution
Markov Chain Filter for Global Localization of Mobile Robots. Sensors 2015, 15, 23431–23458. [CrossRef]
[PubMed]

10. Hu, C.; Lin, H.; Li, Z.; He, B.; Liu, G. Kullback–Leibler Divergence Based Distributed Cubature Kalman
Filter and Its Application in Cooperative Space Object Tracking. Entropy 2018, 20, 116. [CrossRef]

11. Kumar, P.; Taneja, I.J. Chi square divergence and minimization problem. J. Comb. Inf. Syst. Sci. 2004, 28,
181–207.

12. Qiao, W.; Wu, C. Study on Image Segmentation of Image Thresholding Method Based on Chi-Square
Divergence and Its Realization. Comput. Appl. Softw. 2008, 10, 30.

13. Wang, C.; Fan, Y.; Xiong, L. Improved image segmentation based on 2-D minimum chi-square-divergence.
Comput. Eng. Appl. 2014, 18, 8–13.

14. Amari, S. Alpha-Divergence Is Unique, Belonging to Both f-Divergence and Bregman Divergence Classes.
IEEE Trans. Inf. Theory 2009, 55, 4925–4931. [CrossRef]

15. Gultekin, S.; Paisley, J. Nonlinear Kalman Filtering with Divergence Minimization. IEEE Trans. Signal Process.
2017, 65, 6319–6331. [CrossRef]

16. Hernandezlobato, J.M.; Li, Y.; Rowland, M.; Bui, T.D.; Hernandezlobato, D.; Turner, R.E. Black Box Alpha
Divergence Minimization. In Proceedings of the International Conference on Machine Learning, New York,
NY, USA, 19–24 June 2016; pp. 1511–1520.

17. Tsallis, C. Possible Generalization of Boltzmann-Gibbs Statistics. J. Stat. Phys. 1988, 52, 479–487. [CrossRef]
18. Tsallis, C. Introduction to Nonextensive Statistical Mechanics. Condens. Matter Stat. Mech. 2004. [CrossRef]
19. Li, Y.; Turner, R.E. Rényi divergence variational inference. In Proceedings of the Advances in Neural

Information Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 1073–1081.
20. Amari, S.I. Information Geometry and Its Applications; Springer: Berlin, Germany, 2016.
21. Nielsen, F.; Critchley, F.; Dodson, C.T.J. Computational Information Geometry; Springer: Berlin, Germany, 2017.
22. Garcia-Fernandez, Á.F.; Morelande, M.R.; Grajal, J. Truncated unscented Kalman filtering. IEEE Trans.

Signal Process. 2012, 60, 3372–3386. [CrossRef]

http://dx.doi.org/10.1109/MRA.2006.1638022
http://dx.doi.org/10.2514/1.G002282
http://dx.doi.org/10.1162/neco.2007.19.10.2780
http://www.ncbi.nlm.nih.gov/pubmed/17716012
http://dx.doi.org/10.1016/j.sigpro.2016.07.007
http://dx.doi.org/10.3390/s150923431
http://www.ncbi.nlm.nih.gov/pubmed/26389914
http://dx.doi.org/10.3390/e20020116
http://dx.doi.org/10.1109/TIT.2009.2030485
http://dx.doi.org/10.1109/TSP.2017.2752729
http://dx.doi.org/10.1007/BF01016429
http://dx.doi.org/10.1007/s00161-004-0174-4
http://dx.doi.org/10.1109/TSP.2012.2193393


Sensors 2018, 18, 3217 17 of 17

23. Li, Y.; Cheng, Y.; Li, X.; Hua, X.; Qin, Y. Information Geometric Approach to Recursive Update in Nonlinear
Filtering. Entropy 2017, 19, 54. [CrossRef]

24. Martino, L.; Elvira, V.; Camps-Valls, G. Group Importance Sampling for particle filtering and MCMC.
Dig. Signal Process. 2018, 82, 133–151. [CrossRef]

25. Salomone, R.; South, L.F.; Drovandi, C.C.; Kroese, D.P. Unbiased and Consistent Nested Sampling via
Sequential Monte Carlo. arXiv 2018, arXiv:1805.03924.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/e19020054
http://dx.doi.org/10.1016/j.dsp.2018.07.007
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Background Work
	Non-Linear Filtering
	The Alpha-Divergence

	Non-Linear Filtering Based on the Alpha-Divergence 
	The -Mixed Probability Density Function
	The Alpha-Divergence Minimization
	Non-Linear Filtering Algorithm Based on the Alpha-Divergence

	Simulations and Analysis
	Conclusions
	References

