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Abstract: This paper presents a mid-infrared dimethyl sulfide (CH3SCH3, DMS) sensor based on
tunable laser absorption spectroscopy with a distributed feedback interband cascade laser to measure
DMS in the atmosphere. Different from previous work, in which only DMS was tested and under pure
nitrogen conditions, we measured DMS mixed by common air to establish the actual atmospheric
measurement environment. Moreover, we used tunable laser absorption spectroscopy with spectral
fitting to enable multi-species (i.e., DMS, CH4, and H2O) measurement simultaneously. Meanwhile,
we used empirical mode decomposition and greatly reduced the interference of optical fringes and
noise. The sensor performances were evaluated with atmospheric mixture in laboratory conditions.
The sensor’s measurement uncertainties of DMS, CH4, and H2O were as low as 80 ppb, 20 ppb,
and 0.01% with an integration time 1 s, respectively. The sensor possessed a very low detection
limit of 9.6 ppb with an integration time of 164 s for DMS, corresponding to an absorbance of
7.4 × 10−6, which showed a good anti-interference ability and stable performance after optical
interference removal. We demonstrated that the sensor can be used for DMS measurement, as well as
multi-species atmospheric measurements of DMS, H2O, and CH4 simultaneously.

Keywords: chemical sensor; mid-infrared dimethyl sulfide sensor; tunable laser absorption
spectroscopy; distributed feedback interband cascade laser; spectral fitting; multi-species
measurement; simultaneous measurement; empirical mode decomposition

1. Introduction

Dimethyl sulfide (CH3SCH3, DMS) is a poisonous and easily explosive volatile organic sulfur
compound, which originates not only from numerous production and consumption processes of
phytoplankton within the marine eco-system, but also comes from the emissions of volcanoes and
vegetation [1–4]. Moreover, it is a component of the smell produced from cooking certain vegetables,
notably maize, cabbage, beetroot and seafood. Thus, DMS exists widely on the ocean’s surface as well
as in the atmosphere [5–7]. DMS primarily comes from dimethyl sulfoniopropionate, a major secondary
metabolite in some marine algae, and oxidized in the marine atmosphere to various sulfur-containing
compounds, such as sulfur dioxide, dimethyl sulfoxide, dimethyl sulfone, methanesulfonic acid
and sulfuric acid [8,9]. Among these compounds, sulfuric acid has the potential to create new
aerosols which act as cloud condensation nuclei; through this interaction with cloud formation,
the massive production of atmospheric DMS over the oceans may have a significant impact on the
Earth’s climate [10–12]. Furthermore, DMS has an odor threshold value that varies from 0.6 to 40 ppb
(parts per billion) between different persons and it is highly flammable and irritant to eyes and skin
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with concentration more than 1 ppm (parts per million) [13–15]. In conventional municipal wastewater
treatment, incubation of activated sludge has 1–10 mg/L dimethyl sulfoxide produced dimethyl sulfide
(DMS) in the headspace gas, a concentrations that exceeded the odor threshold by approximately four
orders of magnitude [16]. The concentration of DMS in natural gas field is about 1.8 ppm. Moreover,
it is about 6.5 ppm in the exhaust fumes from the chemical plant [17]. Therefore, it is necessary to
monitor DMS continuously from ppb to ppm levels for the purpose of environmental protection as
well as human safety.

Common methods for detecting DMS include Tunable Laser Absorption Spectroscopy (TLAS) [13],
Gas Chromatography (GC) [18], Gas Chromatography-Mass Spectrometry (GC-MS) [19], chemical
gas sensors [20,21], Gas Chromatography–Flame Photometric Detection (GC-FPD) [22,23], Fourier
Transform Infrared Spectrometer (FTIR) [24], etc. However, whether GC, GC-MS, or GC-FPD, although
they have a detection limit down to ppb or ppt (parts per trillion) levels, the DMS should be collected
with material resistant to adsorption and oxidation. Furthermore, it requires a complex pre-treatment
procedure. These methods are either costly or have a short lifetime. Chemical gas sensors such as
ZnO gas sensor are made and tested for concentration as low as 2 ppm of DMS [20]. However, the
processing and production steps of ZnO gas sensor are very complicated, and the accuracy of the
sensor is affected by ambient humidity. FTIR is used to perform rapid measurement of DMS [24].
However, FTIR is often frustrated by interference from water and carbon dioxide for low spectral
resolution. TLAS is a promising technique for trace gas measurement in situ or on line, which is usually
used to modulate laser and scan the spectral line; thus, we can get the absorption line of molecules.
It can not only realize point sampling measurement with a multi-pass gas cell, but can also be used for
remote monitoring with open optical path.

Recently, a Mid-Infrared (MIR) spectral DMS sensor was developed by our group [13]. The
sensor boasted a very high sensitivity of 20 ppb with working wavelength of 3367.3 nm located at the
ν14/ν18-band of DMS. However, it was balanced by pure nitrogen and only DMS was detected, rather
than a real air condition. Although spectral interference has been considered comprehensively during
spectra investigation, practically, the sensitivity of the sensor is deteriorated by the strong spectral
interference from H2O and CH4 when working in practical air condition; there is no other method of
data processing for reducing the interference of optical fringes and noise; and the accuracy is affected
by internal optical path.

Moreover, based on our previous investigation, the atmospheric DMS concentration is about
28 ppb around a sewage treatment tower and about 500 ppb near an instant noodle factory. Thus, in
this paper, to develop a DMS sensor with strong anti-interference capability and stable performances
to detect polluted atmosphere in those factories and the surrounding environment, we utilized another
candidate spectrum with wavelength of 3336.7 nm located at the ν1/ν8-band of DMS, and deduced
the concentration of DMS, as well as atmospheric interference CH4 and H2O simultaneously by
Multi-Component Spectral Fitting (MCSF). Moreover, we reduced the interference from noise and
optical fringes by performing Empirical Mode Decomposition (EMD) and reconstruction to the
recorded spectral data. The sensor’s performances were evaluated with common air mixture in
laboratory conditions.

The remainder of this paper is arranged in three sections: (Section 2) sensor configuration;
(Section 3) sensor performance verification; and (Section 4) conclusions. Each section is divided into
several subsections, and all of these present the excellent performance of the sensor.

2. Sensor Configuration

We developed a DMS sensor based on wavelength modulation spectroscopy, whose theoretical
basis is the Beer-Lambert absorption law [25–32]. When the absorbance A < 0.05, according to
Beer-Lambert absorption law and optically thin condition, absorption coefficient α(v) = −α[ν +

a cos(ωt)] is an even periodic function in ωt and can be expanded as a Fourier cosine series:
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− α[ν + a cos(ωt)] =
∞

∑
k=0

Hk(ν, a) cos(kωt) (1)

where v is the central frequency of laser; a is the modulation amplitude, which is the wavelength
modulation of the laser generated by sinusoidal modulation; ω is the modulation frequency; Hk
are Fourier series; and k is the harmonic order. Because the second harmonic signal 2f is closely
related to the absorption and free of background, typically k = 2 is used in Wavelength Modulation
Spectroscopy (WMS). Thus, for the mixed second harmonic signal of n types of gases, they can be
expressed as follows:

H2(v, a) = −PL
π

n

∑
i=0

χi

m

∑
j=0

∫ π

−π
Sij ϕij(v + a cos(θ)) cos 2θdθ (2)

where P is the pressure, L is the length of optical path, χi is the mole fraction of the ith absorbing
species, and Sij and ϕij are the line strength and line shape function of the jth line of the ith absorbing
species, respectively. Referring to Equation (2), if the pressure and temperature remain constant, we
can ignore the variations of line profile, and it can be expressed as:

H2(v, a) =
n

∑
i=1

xi ∗ H2_i_ per (3)

where H2_i_ per is the second harmonic signal of the ith absorbing species in per unit volume
concentration, and the magnitude of the absorption-based 2f signal, H2(v, a), which is usually
measured by a lock-in amplifier, and described as [23]:

S2 f ≈
GI0

2
H2(v, a) =

n

∑
i=0

χi ∗ S2 f _i_per (4)

where S2f is the 2f signal that is measured by a lock-in amplifier, G is the electro-optical gain of the
measurement system, Io is average intensity of the laser at frequency v, and S2f_i_per is the 2f signal
of ith absorbing species in per unit volume concentration. Therefore, S2f of a mixture theoretically
equals the sum of the product of each component’s concentration and its 2f signal in per unit volume
concentration.

2.1. Working Spectral Band Selecting

The MIR fundamental absorption spectra of DMS were investigated in detail in our previous
work [13]. By compromise of the absorption intensity, spectral line interference, and convenient laser
wavelength, the spectral range located at ν14/ν18-bandwidth wavelength of 3367.3 nm was preferred,
and the strong absorption made the sensor possess much higher measurement sensitivity than other
spectral lines.

We reexamined the spectral line of DMS based on minimum interference principle, including
relatively less interference lines and distant interference spectral lines, and the absorbance of absorption
line is relatively large. Thus, another spectral range of DMS was preferred based on the Pacific
Northwest National Laboratory (PNNL) and High Resolution Transmission (HITRAN) databases. The
5 ppm×m DMS within the range of 3333–3371 nm is presented in Figure 1a,b.
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Figure 1. (a) Absorption spectra of 5 ppm×m DMS (PNNL database) and air model (H2O: 1.860000%,
CO2: 0.033000%, O3: 0.000003%, N2O: 0.000032%, CO: 0.000015%, CH4: 0.000170%, O2: 20.900001%,
N2: 77.206000%) at 296 K and 1 atm over the range 3333–3371 nm; and (b) enlargement of region
ν1/ν8-band of (a).

Figure 1a shows the two regions possible for the measurement of DMS, and Figure 1b is the
spectrum located at ν1/ν8-band to be measured. Detailed analysis is presented in Table 1.

Table 1. Candidate regions for measurement of DMS concentration based on PNNL and HITRAN
databases [13].

DMS Peak
Wavelength (nm)

Peak Absorption
(1 ppm×m)

λ (nm)
(Interference)

Absorbance
(Interference)

Distance
(Interference)

3336.710 0.118 × 10−3 3336.309 0.433 × 10−5 0.401
3367.299 0.387 × 10−3 3367.554 0.911 × 10−2 0.255

The absorption peak wavelength and strength of DMS candidate regions are listed as well as
the spectral information of possible interferences from air absorptions. In Figure 1a,b and Table 1,
there are about three main absorption peaks at the ν1/ν8-band between 3333.7 and 3337.8 nm, and
the ν1/ν8-band of 3336.710 nm suffers much lower interference than ν14/ν18-band of 3367.229 nm,
including the magnitude of interference and distance between the absorption line and the interference
line. Thus, we chose 3333.7–3337.8 nm as our ultimate selection for DMS measurement with
comprehensive consideration. Furthermore, although CH4 and H2O have less interference in the
absorption of DMS, they are located at the working range of the laser. At the same time, the absorption
spectra of methane and water overlap each other, thus it is necessary to obtain the concentration of
three gases simultaneously by using the MCSF.

2.2. Setup

We developed a DMS gas sensor based on our instrument development platform [25,33–35], which
consists of a homemade digital lock-in amplifier with signal generation function, a laser controller,
a DFB-ICL, a hollow waveguide (HWG), and a photodetector. The schematic plot of the sensor is
shown in Figure 2. The digital lock-in amplifier sent out a high frequency modulation signal to the laser
controller (ILX Lightwave, Irvine, CA, USA, LDC-3908); the DFB-ICL (Nanoplus GmbH, Gerburnn,
Germany) with wavelength of 3337 nm was used as the optical source; and both the temperature
and current of the laser were controlled by the laser controller. The beam emitted from the laser was
aligned into the HWG (Polymicro Technologies, Brookfield, IL, USA, Type HWEA10001600), and then
collected by the photodetector (Thorlabs, Newton, NJ, USA, PDA20H-EC). The converted electrical
signal was sent to the homemade digital lock-in amplifier and demodulated. Through data acquisition
software, the 2f signal was processed by MCSF program to obtain the target gas concentration.
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We carefully set all the working parameters of the sensor, including the optical path, gas flow,
modulation amplitude, temperature, and so on. The instantaneous line width, dynamic tuning rate, and
slope efficiency of ICLs have been reported to be suitable for precision spectroscopy measurements [36].
The laser power before and after HWG were 5.5 mW and 0.9 mW, respectively. Effective optical path
length of the HWG was 5 m and its volume was as small as 4.7 mL. The homemade mass flow controller
was kept at 50 mL/min with consideration of reducing the influence of pressure changes inside the
HWG. The laser controller was controlled by a 10 Hz sawtooth wave with amplitude of 1.45 V and a
2.56 kHz sinusoidal signal with a VPP of 75 mV, and set to 3.5 ◦C to cover the entire measurement area.
At the same time, the digital lock-in amplifier provided a high frequency sinusoidal signal that is two
times the frequency of the laser controller to demodulate the spectral signal from the photodetector.
Finally, we obtained the 2f demodulation signal from the data acquisition software.

We optimized the modulation amplitude of the DFB-ICL to enable measurement of multi-species
spectra without overlap. We optimized the modulation amplitude according to Spectral Discrimination
(SD) and normalized amplitude of the DMS WMS-2f signal [26]. Traditional optimal modulation
coefficient (2.2) [29] can no longer meet the requirements because of the interference of noise and
optical fringes. Therefore, according to the cross of SD curve and normalized amplitude curve of the
DMS WMS-2f signal, modulation amplitude of 0.27 cm−1 was chose as our optimized selection. Thus,
the modulation amplitude of 0.27 cm−1 was preferred to improve the Signal-to-Noise Ratio (SNR) and
measurement accuracy.

A MCSF algorithm to reduce spectral interference was developed in our previous work [25],
as shown in Figure 3. The algorithm is an improved Levenberg-Marquardt (L-M) algorithm, which is
based on nonlinear least squares curve-fitting algorithm [28]. In this algorithm, the reference signal of
each component and their mixed signals are given first. Because the mixed signals equal the product of
the concentration of each gas and their corresponding reference signals, we set the initial concentration
of each component and through iterative method, we can get each component’s actual concentration.
The algorithm first calculates the concentration of each gas, and then multiplies the corresponding
pure absorption signal and sums them. Once the variance between the added mixed signal and the
measured signal reaches the minimum, the algorithm converges. After that, the best fitting parameters
were the concentrations of all components.

As for the wide-band characteristics of the MIR fingerprint absorption, the measurement
sensitivity and accuracy are always deteriorated by overlap with adjacent spectrum, optical fringes,
and noise. A solution by EMD and reconstruction to the recorded spectral data was developed in
our previous work [26], as shown Section 1 in Figure 3. EMD decomposes the signal into a series of
Intrinsic Mode Function (IMF) components; these components have different physical meanings. Thus,
we can eliminate optical fringes and noise according to the characteristics of signal, and reconstruct
the original signal. In view of the above, we combined the MCSF and EMD to calculate and optimize
the multi-component concentration in a mixture. Steps of this algorithm are displayed in Figure 3.
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Figure 3. Multi-spectral fitting flow chart [23].

The algorithm includes two parts: (1) EMD is used to decompose and reconstruct the measured
spectral data for reducing the optical fringes and noise; and (2) the 2f signal of each component is
normalized, the initialization concentration parameters of each component are estimated, and the 2f
signals of single component concentration and mixed concentrations participating in the fitting are
produced. If the algorithm converges, the best fitting parameters are obtained. In our simulation, the
results of the algorithm basically did not depend on the initial concentration. When the concentration
of DMS is within the range of 1–20 ppm, the algorithm always converges.

The initialization concentrations of DMS, methane, and water were set as 1 ppm, 1 ppm, and 1%,
respectively. Each component used 370 points to participate in fitting, and the program usually cycles
fewer than 100 times. Once the algorithm converges, the best fitting parameters are determined.

2.3. Reference WMS-2f Signal Acquisition for MCSF

We obtained superior reference signals of DMS, CH4, and H2O for the MCSF algorithm of the
sensor with elaborately planned experiments. The HWG was filled with N2 first and then with a
reference gas, therefore, the difference between the 2f signals of the reference gas and N2 could be
used as reference signal. The reference signals of DMS and CH4 were obtained using reference gases
with concentrations of 20.2 ppm and 3 ppm, respectively. In contrast, the reference signal of H2O
was obtained using high humidity air that subtracted air background, and the high humidity air was
obtained by a humidifier. With the EMD method [26], we reduced the optical fringes and noise the
most. Thus, the measured reference 2f signal of each component with less optical fringe and noise
between 3333.7 and 3337.8 nm of DMS, CH4, and H2O are shown in Figure 4a–c, respectively.
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We reduced the interference from noise and optical fringes by decomposing the measured 2f 
signals of the mixture and reconstructing them with the EMD method. Take the mixture of H2O 
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signal was reconstructed, as shown in Figure 5a–d. 
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Figure 5. (a) The detected 2f signals; (b) the reconstructed 2f signal versus simulated 2f signal; (c) the 
residuals between simulation and reconstruction signals; and (d) the collection of IMFs that EMD 
decomposed from the detected 2f signal. 

Figure 4. (a) The simulated absorbance and reference WMS-2f signals of DMS (20.2 ppm × 5 m); (b) the
simulated absorbance and reference WMS-2f signals of CH4 (3 ppm × 5 m); and (c) the simulated
absorbance and reference WMS-2f signals of H2O, simulation data come from HITRAN database,
1 atm, 296 K.

2.4. Optical Fringes Removal

We reduced the interference from noise and optical fringes by decomposing the measured 2f
signals of the mixture and reconstructing them with the EMD method. Take the mixture of H2O
(0.14%)-CH4 (0.19 ppm)-DMS (10.1 ppm) as an example: about four IMF components were obtained.
Thus, according to the signal characteristics of correlation coefficient, amplitude, and symmetry, the
signal was reconstructed, as shown in Figure 5a–d.
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Noise signals usually possess the characteristics of small amplitude and high frequency, while
optical fringes are similar to the profile of sinusoidal signal, and all of them have a very low correlation
coefficient relative to the absorption signal. Thus, IMF 1 in Figure 5d with a correlation coefficient
r of 0.02 was diagnosed as mixture of noise and optical fringes with comprehensive consideration
of amplitude, frequency, and correlation coefficient. IMF 2, IMF 3, IMF 4, and the rest of the signal
made up the reconstructed absorption signal, as shown in Figure 5b. The reconstructed signal with a
correlation coefficient of 0.99 meant that, in the process of decomposition and reconstruction, there
was basically no loss or distortion of absorption information.

3. Sensor Performance Verification

3.1. Detection Ability

The detection ability of sensor was usually limited by noise and optical fringes [29,37]. Thus, we
tested the detection ability of the sensor with reference gas of DMS before and after fringes removal.
We performed EMD, signal reconstruction, and MCSF on recorded spectral signals, and then calculated
the concentration of DMS. The calculated concentration was consistent with the nominal value of
the reference gas. We evaluated the sensor’s detection ability by calculating the Allan variance of
continuous DMS measurements for more than 30 min. To verify the enhancement effect of fringes
removal using EMD method, we calculated and compared the Allan variance before and after fringes
removal, as shown in Figure 6.
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A comparison was made for the sensitivity and detection limit before and after fringe removal.
In Figure 6, we can see that the sensor performances have been greatly enhanced, which presented in
two aspects: (1) the minimum of the Allan variance reduced from 13.3 ppb (with integral time 107 s) to
9.6 ppb (with integral time 164 s), which means that the sensor’s detection limit significantly improved;
and (2) the Allan variance reduced by an order of magnitude when integrated time increased to at
least 500 s, as shown in Figure 6 (the two blue dotted lines), which means that the sensor’s long-term
stability attained a distinguished improvement. After the removal of fringes, the sensitivity and
detection limit of reconstructed signals were optimized at 20 ppb and 3.7 ppb compared to measured
signals, respectively. Furthermore, the curve trend of fringes removal indicated that the sensor was
much more stable than before, which benefited from the suppression of noise and optical fringes.
As seen from the reconstructed signal, there was a detection limit of 9.6 ppb with an optimal integration
time of 164 s for DMS, corresponding to an absorbance of 7.4 × 10−6, which is sufficient to satisfy the
needs of human health. Although the detection limit is much lower than the 2.8 ppb mentioned in
Reference [13], it is because of the relatively weak absorption. Actually, our spectral lines performed
by EMD have more practical significance, and a greater anti-interference ability, which may also
contribute the improvement of detection limit in reference [13].



Sensors 2018, 18, 3216 9 of 13

3.2. Measurement Linearity and Uncertainty

Two groups of DMS concentration gradient experiments with air mixture (i.e., CH4 and H2O),
prepared with a homemade high-precision gas mixer [38], were carried out to verify the sensor’s
performance. The DMS was prepared with the Gravimetric Standards blending with nitrogen and
verified with gas chromatography method [39]. The concentration of CH4 and H2O in the air
were tested beforehand by absolute measurement of direct absorption spectroscopy. The initial
concentrations of DMS, CH4, and H2O were 20.2 ppm, 1.9 ppm, and 1.4%, respectively. Thus: (1) in the
first group, the concentration of DMS ranged from 2.02 to 10.1 ppm (in 2.02 ppm intervals), while the
concentration of CH4 and H2O remained at 0.95 ppm and 0.7%, respectively; and (2) the concentration
of CH4 ranged from 0.19 to 0.95 ppm (in 0.19 ppm), the concentration of H2O ranged from 0.14% to
0.7% (in 0.14% intervals), and the volume of DMS remained at 10.1 ppm in the second group. All of
the concentration settings were realized by adjusting the three-channel volumetric flow rate settings
in Figure 2. Specific reference concentration ratios are shown in Tables 2 and 3. Each mixture was
measured 10 times and the average was taken to reduce noise. The peak absorption of each mixture
was estimated to be less than 0.05 and satisfied the optical thin condition of WMS. All experiments
were performed at 1 atm.

Table 2. The reference concentration settings of three gases in the first group.

DMS (Channel 2) N2 (Channel 3)

Flow (mL/min) Concentration (ppm) Flow (mL/min)

Air (25 mL/min,
channel 1)

5 2.02 20
10 4.04 15
15 6.06 10
20 8.08 5
25 10.1 0

Table 3. The reference concentration settings of three gases in the second group.

Air (Channel 1) N2 (Channel 3)

Flow (mL/min) Concentration of
CH4/H2O (ppm/%) Flow (mL/min)

DMS (25 mL/min,
channel 2)

5 0.19/0.14 20
10 0.38/0.28 15
15 0.57/0.42 10
20 0.76/0.56 5
25 0.95/0.70 0

We measured and fitted the concentration of DMS in the first group, as shown in Figure 7a,
and concentrations of CH4 and H2O in the second group, as shown in Figure 7b,c, whose
concentrations changed in gradient in two groups of experiments. All experiments were carried
out at room temperature.
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Figure 8. Continuous measurements of DMS, CH4, and H2O with a duration of 1 min. 

Figure 7. (a) The concentration of CH4 and H2O remained at 0.95 ppm and 0.7%, respectively, while the
concentration of DMS ranged from 2.02 ppm to 10.1 ppm (in 2.02 ppm intervals) in the first group, and
the standard deviations between nominal concentration and measured concentration are presented;
and (b,c) the volume of DMS remained at 10.1 ppm, the concentration of CH4 ranged from 0.19 ppm
to 0.95 ppm (in 0.19 ppm intervals) while the concentration of H2O ranged from 0.14% to 0.7 % (in
0.14% intervals) in the second group, and the standard deviations between nominal concentration and
measured concentration are presented.

The concentration of DMS, CH4, and H2O were measured, as shown in Figure 7a–c. The error
bars represent the difference between the measured value and the true value. The square of correlation
coefficient, R2, were all equal to 0.99, which showed a very good linear relationship between the
measured concentration and nominal concentration (i.e., reference concentration) for DMS, CH4, and
H2O. The measured accuracy of DMS, CH4, and H2O were 0.3%, 1.9%, and 2.8%, respectively. The
standard deviations could primarily be attributed to the uncertainty of the mass flow controller and
the fluctuation of H2O in the air over time. Although because of the concentration gradient, the O2

and N2 concentrations in the experiment are different from their actual concentrations in air, they have
no absorption in the spectrum that we chose and have less influence on our measurement.

Sixty measurements with 1 s intervals were performed to verify the stability and accuracy of the
sensor with the flowing gas mixture of 10.1 ppm DMS, 0.95 ppm CH4, and 0.7% H2O. The results are
shown in Figure 8.
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In Figure 8, the average concentrations of DMS, CH4, and H2O were 10.10 ± 0.08 ppm,
0.96 ± 0.02 ppm, and 0.7 ± 0.01% with a sampling interval of 1 s, respectively. Therefore, the
measurement uncertainties of DMS, CH4, and H2O were 80 ppb, 20 ppb, and 0.01%, respectively,
which shows that the sensor has an excellent performance.

4. Conclusions

In summary, we demonstrated a high-sensitivity and multi-species sensor of atmospheric DMS,
CH4, and H2O. The sensor’s working wavelength located at 3336.7 nm, i.e., the ν1/ν8-band, was
chosen to measure atmospheric DMS, which could avoid serious spectral interference from atmospheric
CH4 and H2O. Multiple techniques were specified for wide-band spectra measurement, including
modulation amplitude optimization, MCSF, and removal of optical fringes and noise by EMD, which
enhanced the performances of the sensor. Experimental results indicate that the measurement accuracy
of DMS was raised to 0.3%, and the measurement uncertainties of DMS, CH4, and H2O were improved
to 80 ppb, 20 ppb, and 0.01%, respectively. Furthermore, detection limit as low as 9.6 ppb with an
integration time of 164 s was obtained, thus the sensor can be applied in monitoring the atmosphere
around food processing plants and chemical plants. Future work can concentrate on adjusting the
structure of optical path and lengthening the HWG, which will further improve the stability and
detection limit of the sensor.
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