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Abstract: Movement analysis of infants’ body parts is momentous for the early detection of various
movement disorders such as cerebral palsy. Most existing techniques are either marker-based or
use wearable sensors to analyze the movement disorders. Such techniques work well for adults,
however they are not effective for infants as wearing such sensors or markers may cause discomfort
to them, affecting their natural movements. This paper presents a method to help the clinicians for
the early detection of movement disorders in infants. The proposed method is marker-less and does
not use any wearable sensors which makes it ideal for the analysis of body parts movement in infants.
The algorithm is based on the deformable part-based model to detect the body parts and track them in
the subsequent frames of the video to encode the motion information. The proposed algorithm learns
a model using a set of part filters and spatial relations between the body parts. In particular, it forms a
mixture of part-filters for each body part to determine its orientation which is used to detect the parts
and analyze their movements by tracking them in the temporal direction. The model is represented
using a tree-structured graph and the learning process is carried out using the structured support
vector machine. The proposed framework will assist the clinicians and the general practitioners in the
early detection of infantile movement disorders. The performance evaluation of the proposed method
is carried out on a large dataset and the results compared with the existing techniques demonstrate
its effectiveness.
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1. Introduction

Normal human movements, such as, moving an arm, look simple but require a complex
coordination of control between the brain and the musculoskeletal system. Any disruption in the
coordination system may result in inhabit unwanted movements, trouble in making the intended
movements or both [1]. These may appear due to abnormal development of the brain, injury in the
brain of a child during the pregnancy or at birth, or genetic disorders. Studies e.g., [2–6], have shown
that the early detection of movement disorders plays an important role in the early intervention and
establishing a therapy program for the recovery. To diagnose the movement disorders, the spontaneous
movements of an infant are observed by the doctors or the physiotherapists along with the family
medical history. This examination is known as the general movement assessment (GMA) [2,7]. However,
it is a subjective procedure based on observer’s expertise and does not have any standardized criteria
to measure the outcomes. Moreover, it is time consuming procedure to manually analyze every infant,
therefore an automatic system is needed to accurately analyze the movements in various body parts
of infant.
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In recent years, numerous computer-based techniques have been proposed to assess the
infant’s motion information and to perform quantitative analysis, using various techniques like
movement tracking [8–14]. Some of them used wearable motion sensors [15–17] while the others used
markers [4,18] on the infant’s body parts and tracked them using the visual sensors to encode the
motion information. However, wearing a large number of sensors or markers may cause discomfort to
the young patients [19] which may affect their natural body part movements. Several other techniques
e.g., [20–22] have exploited the Microsoft Kinect to analyze the movement patterns in human body.
They either use the Kinect’s integrated body tracking information [22] or body part model fitting
technique [23] on depth images to encode the motion information of human body parts by detecting
and tracking them in the subsequent frames of a video. Although the invention of Kinect sensor
has triggered a lot of research on human motion analysis, rehabilitation, and clinical assessment;
its limitations—that the subject must be in standing position and has size greater than one meter for
body tracking—make it unsuitable for infants [21]. A review to analyze the movement disorders in
infants using their spontaneous movements is presented in [24], and literature related to postural
control and efficiency of movement can be found in [25–29].

This paper presents a novel computer vision-based method to detect and track infant’s body
parts in video. The proposed method is marker-less and does not use any wearable sensors which
makes it ideal for use in infants. It is based on the principle of pictorial structure framework [30–32] in
which an object’s appearance is represented using a collection of part-templates (also called part-filters)
together with the spatial relations between the parts. That is, the human body structure is detected in
the proposed technique using the part-templates (part-filters) along with the spatial relations between
the parts. In particular, the proposed method begins by detecting the different body parts which
are based on joints’ locations, and computes angles at predicted joints such as elbow, shoulder, etc.
Later, the movement at different joints is encoded by tracking the angle orientations in the temporal
direction. To automatically detect the body parts, the proposed technique learns a model from a
set of training images by preparing a set of part-filters and the spatial relations between the parts.
Moreover, to handle the problem of appearance changes due to large articulation in human body parts,
their appearance-changes are encoded using the mixture of part-filters for the respective part and
the spatial relations between the involved parts. The model is represented using a tree-structured
graph and the learning process is carried out using the structured support vector machine (structSVM).
We recorded a dataset of 10 patients suffering from movement disorders in a local children hospital.
The patients were being treated by the therapists in the recording days. The performance of the
proposed algorithm is evaluated using two challenging ways: joints estimation accuracy and motion
encoding accuracy. The results are compared with exiting state-of-the-art techniques which reveal that
the proposed algorithm is very effective in analyzing the infantile movement disorders. The proposed
approach is influenced by [31,32] and presents the following novel contributions:

• The proposed algorithm does not require wearing markers and other wearable sensors which
makes it ideal for movement analysis of infants;

• The proposed technique performs movement analysis in videos by computing the angle
orientations at different predicted joints’ locations and tracking them in the temporal direction;

• The proposal of a simple yet novel modeling of part-templates to deal with the self-occlusion of
body parts and the rotation problems;

• A novel scoring scheme is introduced to eliminate the false positives in the detection of body parts;
• To deal with the vast variability in the different body parts, an optimal mixture size is chosen for

each part to improve the detection process.
• A detailed review of the state-of-the-art techniques to encode the human body parts movement.

The techniques are also classified into various categories based on their underlying body parts
detection and motion encoding methods.
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2. Related Work

Over the last few years, numerous computer-based techniques have been proposed to
analyze the movement of human body parts for the clinical and behavioral assessment and other
applications [33–36]. These techniques can be categorized in two groups: visual sensor-based
approaches and motion sensor-based approaches. The first group of approaches either use markers on
human body region or exploit markerless solutions by incorporating the image features such as color,
edges, etc. to detect and track the different body parts in video data. The second family of approaches
use motion sensors e.g., inertial measurement unit (IMU) to encode the motion information. Figure 1
presents the categorization of existing techniques into different groups which are reviewed in the
following subsections.

Movement analysis

Motion sensors Visual sensors

Makers-based Markerless

Figure 1. The distribution of existing techniques for movement analysis of human body parts into
various categories.

2.1. Visual Sensor-Based Approaches

These techniques use color images, depth information or both for movement analysis.
The methods e.g., [37–39] attach markers on human body to represent the joints’ locations, and
use them to detect and track human skeleton in a video to compute the motion information, whereas
the others exploit image features such as color, shape, and edges to estimate the joints’ locations for
movement analysis.

2.1.1. Marker-Based Techniques

The marker-based approaches use a set of markers e.g., infrared (IR) markers, reflective spheres,
light-emitting diodes at human body, particularly, at joints’ locations to track the motion information.
Tao et al. [40] proposed a color marker-based tracking algorithm to estimate the motion information
at different joints. They attached different color markers on joints’ locations and tracked them in the
video. The algorithm proposed in [4] encodes the motion of markers in 3D (three dimensional) domain
using seven cameras. The markers are attached to the human body and their motion information is
used to predict the risk for developing movement disorders. Burke et al. [37] proposed two games for
upper limb stroke rehabilitation which are controlled by color object segmentation and its tracking
for motion detection. They attach the color markers at the upper limbs and their method detects and
tracks them using the calibration process. The system proposed in [38] uses color markers at the foot of
the adults to analyze the foot positioning and orientation for gait training. The authors in [41] encodes
the human motion information using a tiny high resolution video camera and IR-based markers.

Rado et al. [42] proposed an IR optical tracker-based motion tracking of the knees for patient
rehabilitation. Based on the computed motion information, they detect the errors in movement and
system demonstrates to the user how to perform the movement correctly. Chen et al. [39] developed
a therapy system using an IR camera with hand skateboard training device for upper limb stroke
rehabilitation. Patients participating in the therapy have a binding band attached to a hand skateboard
on the table to guide the patient in moving the hand skateboard along the designated path. A recent
survey on the evaluation of marker based system is presented in [43]. Since these markers have to
hook-up with human body parts, they require cumbersome installation and calibration process [44].
Moreover, increasing the number of markers (i.e., hooking-up with each body part of infant) will raise
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the complexity in the tracking when markers are either close to each other or become occluded due
to the size of infant’s body region. Additionally, increasing the IR-based markers makes the system
expensive too.

2.1.2. Markerless Techniques

Lately, the markerless techniques have gained attraction in the research community due to its
several computer-vision-based applications [45–48]. Instead of using several markers at human body
parts, they use image features such as shape, edges, and pixels’ location to detect and track different
body parts. The method proposed in [49] predicts the 3D positions of human joints in depth image.
It employs per pixel classification of human body parts using random forest classifier. Hesse et al. [20]
proposed an improved version of [49] by exploiting random ferns to estimate the infant’s body parts
using pixel-wise body part classification. They tracked angle orientation at predicted joints in the
successive frames to encode the motion information. However, it is very difficult to classify the
different body parts in depth images particularly when they are mixed-up with the other parts [20].
In [5,50], the authors proposed the computation of optical flow to estimate the movement patterns
in the infant’s limbs. However, such techniques are unable to localize the movements at a particular
joint. Evet et al. [51] developed a game for stroke rehabilitation. They captured the movement and
gesture of hand using an optical camera and a thermal camera. The technique, however, is limited to
recognize only two gestures: hand open and closed. A few techniques e.g., [21,52–54] use body part
model fitting technique which comprises of basic shapes on depth images to detect the infant’s body
parts and encode their movements. The accuracy of such techniques significantly degrades when the
desired body parts are occluded [23].

In recent years, the Microsoft Kinect sensor is considered an effective and low cost device
in the clinical assessment and the rehabilitation places to provide a markerless motion capturing
system [21]. It consists of a visual and a depth sensor which enables to create a 3D view of the
environment. Additionally, the depth sensor of Kinect provides the skeleton tracking of human which
has been exploited by the several researchers at ambient assisted living and therapeutic places to
analyze movements in humans. For example, the authors in [22] proposed a system to encode the
motion information of a patient using the integrated skeleton information of human from the Kinect.
They compare and evaluate the patient movements with the desired exercise and generate the feedback
on screen. Guerrero et al. [55] used the Kinect skeleton information to estimate the patient’s posture
and compared it with a model posture. These postures are required in some physical exercises to
strengthen the body muscles. The technique proposed in [56] calculates the 3D coordinates distances
between 15 joints by employing the skeleton information obtained from Kinect, and uses them to
monitor the rehabilitation progress. Chang et al. [57] use the human skeleton tracking information
from Kinect and proposed a rehabilitation system to assist the therapists in their work. The system is
designed for children suffering from motor disabilities and presents the rehabilitation progress to the
therapists, as per defined standards. The researches [58,59] exploits the Kinect’s skeleton tracking to
analyze the rehabilitation in upper limbs. Chang et al. [59] also validate the tracking results of Kinect
sensor using the output of motion capturing system, known as OptiTrack. Recent survey of different
applications which encode the movement information of human body parts using Kinect can be found
in [60]. Although the Kinect sensor provides real-time skeleton tracking of human with quite a good
accuracy, its limitations—that the subject must be in standing position and has size greater than one
meter for body tracking—prevent the automatic detection and movement analysis of infants.

2.2. Motion Sensor-Based Algorithms

Motion sensors e.g., accelerometers, gyroscopes, and magnetometers, are another mean to encode
human motion information. Heinze et al. [16] proposed a system to capture the movements of
infants’ limbs using four accelerometers attached with the limbs. They use a decision tree algorithm to
classify these movements into healthy and abnormal. The technique proposed in [61] uses tri-axial
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accelerometers on the chest, thigh, and shank of the working leg to assess the rehabilitation progress of
a patient suffering with knee osteoarthritis by encoding the motion information at the respective body
parts. The authors in [62] proposed a system using a set of accelerometers and compass to capture
human motion for home rehabilitation. The sensors are attached on specified movable body parts and
the system assigns a score based on the quality of movement defined by the therapists. Chen et al. [63]
developed a motion monitoring system using a set of wireless accelerometer sensors attached with the
patient’s body parts to remotely monitor his/her movements. The movement information is shared
with the clinic too using a web-based system. The technique in [64] proposed a system to assess the
motor ability of stroke patients using four accelerometers, attached on the human upper limbs and
on the chest. The motion information at these parts are extracted within each time segment for linear
regression to predict the clinical scores of motor abilities.

Zhang et al. [65] proposed a wireless human motion monitoring system for gait analysis in
rehabilitation process using a set inertial measurement units (IMU) and a pair of smart shoes with
pressure sensors to measure the force distributions between the two feet during the walk. An IMU
is the combination of gyroscopes, accelerometers, and magnetometers, which provides the motion
information relevant to angular velocity and acceleration in the sensor/body and magnetic field around
it, respectively. The authors in [66,67] compute the motion information from a set of IMUs to monitor
the gait. Instead of hooking-up a set of individual sensors, the authors in [68] proposed a sensing
jacket consisting of 10 IMUs for home based exercise trainer system. Later, the encoded information is
compared with the desired exercise. Similarly, a smart garment is proposed in [69] using a set of IMUs
to support posture correction. The systems alerts the user by vibrating on the garment and visual
instructions on smartphone using bluetooth connection. The authors in [70] proposed the integration
of Kalman filtering with inertial sensors to improve the overall estimation of human motion.

In [71], an electrogoniometer (an electric device to measure the angles at joints) is used to
capture the motion information at different joints of children suffering from CP during the exercise.
They employed such a motion information in a virtual reality (VR)-based game and claim that patients
have shown great interest, performed more repetitions of the exercise, and generated more ankle
dorsiflexion in comparison with standalone exercise. Although, VR-based gaming applications offer an
interactive, engaging, and effective environment for physical therapy, they require expensive hardware
and software setup. Moreover, they are designed to suit a specific class of patients and could not be
useful in case of young patients as they cannot interact with such systems. In short, the limitation of
wearable sensor-based motion detection techniques is that they require to wear several sensors on the
human body which may cause discomfort to them (particularly for young patients) and may affect
their natural movements [21].

3. Proposed Infant’s Movement Analysis Algorithm

The proposed algorithm works in three steps. First, a human body model is prepared to detect the
skeleton of the infants. It generates a mixture of part-filters for each body part and encodes the spatial
relations between them. Second, the body parts are detected in a given image using the trained model.
Third, the angles are computed on different predicted joints’ locations and the motion information is
recorded temporally. A block diagram of the proposed method is shown in Figure 2. The detail of each
step is described in the following sections. To enhance the readability, the detection step is explained
prior to the training of the model.

3.1. Proposed Template-Based Model for Infant’s Detection

Automatic detection of human body parts in an image is a challenging task due to the variations
in their appearances because of colors, shapes, sizes, occlusions etc. Moreover, the human body has
many degrees of freedom in the articulation of body parts which may result in extensive variations
in their appearances. For example, Figure 3 presents such appearance-changes in the human arm.
To cope with these problems, the proposed model prepares a mixture of part-filters for each body
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part and defines the spatial relations between the body parts. A part-filter in the same mixture may
correspond to different orientations, called the ‘state’ of the body part, for example, horizontal versus
vertical alignment of the hand. For a given image, the detection of body parts is performed on all
locations and scales using part-filters and a score for each part-filter is computed. This score represents
the likelihood of occurrence of a particular state. The score is computed by applying the part-filters to
convolve over a histogram of oriented gradients (HOG) of the test image. This exhaustive search is
carried out only once for the first frame of the video. Since the camera is fixed during the recording and
infants are not making rapid movements, the predicted location of infant in previous frame with the
relaxation of a certain threshold pixels (Ωdist) in all the directions is employed to set the search-space
in the succeeding frame. This search-space optimization is not only helpful in improving the detection
accuracy but also decreases the computation cost.

Learned model

Training images Model learning

Movement 

analysis

Body parts 

detection

Computation of 

angles at joints
Test images

Step 1: Model Training

Step 2: Infant’s detection Step 3: Infant’s motion encoding

Figure 2. An overview of the proposed method.

Figure 3. An example image illustrating the variations in the appearance of human arm due to large
articulation [72].

Let f sa
pa be a template of size M× N defined for part pa in state sa, where sa ∈ {1, ..., S} represents

the set of states and a ∈ {1, ..., K} represents the part. Let FR be the part-filter response or score in
HOG image IΦ at location l = IΦ(x, y). The response is computed by matching f sa

pa with IΦ:

FR( f sa
pa , IΦ, l) =

M

∑
m=1

N

∑
n=1

f sa
pa(m, n)IΦ(x + m, y + n) (1)

The part-filter scores are computed in a multi-scale fashion, however to keep the discussion
simple we describe the algorithm here using at full-scale. Equation (1) is indeed a cross-correlation
measure; the highest positive value represents the best matching location of respective part-filter.
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The proposed model is represented using a tree-structured graph G = (V, E), where the set of
vertices V represents the body parts (located at joints) and the edges E models the relations between
them. A kinematic tree of human body representing the relation between the body parts is shown in
Figure 4. To achieve the articulation between different parts, we used a set of ‘springs’ [31] to define a
spatial relation between a part and its parent, e.g., hand and elbow. If we have 5 different states of a
part and 5 different states of its parent, then there are 25 springs which define the relative placement
of child and its parent part giving us 25 different orientations. Let pa and pb be a body-part and its
parent-part respectively, the score for the detection of the part and its state is defined as:

Score(I, l, s) = ∑
a∈V

f sa
pa(IΦ, la) + D(pa, pb) + CO(s) (2)

Equation (2) consists of three terms. The first term is the part-filter response in IΦ at location la.
The second term D defines a spring model between part pa and pb using the distance information
between them and can be described as:

D(a, b) = ∑
a,b∈E

ζ
sa ,sb
pa ,pb Ψ(la − lb) (3)

where ζ
sa ,sb
pa ,pb is a deformation parameter which encodes the placement of a part relative to its rest

location; i.e., the relative location of pa to its parent pb based on their states sa and sb, respectively.
The term Ψ,

Ψ(pa − pb) = [dx, dy, d2
x, d2

y]
> (4)

is the relative predictive displacement of pa with respect to pb, where dx = xa − xb and dy = ya − yb.
Equation (3) computes the deformation cost, which describes the difference between the detected and
presumed relative position of a part to its parent in xy-coordinates. In particular, it penalized the score
in Equation (2) based on the deviation of predicted location from the rest location. The third term in
Equation (2) describes the co-occurrences of parts’ states as in [32]:

CO(s) = ∑
a∈V

Rsa
pa + ∑

a,b∈E
Rsa ,sb

pa ,pb (5)

The first term in Equation (5) Rsa
pa defines the assignment of one particular state for part pa,

while the pairwise feature Rsa ,sb
pa ,pb represents a trained co-occurrence between the parts pa and pb using

their states sa and sb. As described earlier that the proposed algorithm uses a tree-structured graph G
to define that which parts of the model have logical relations. It assign a positive score to the parts
having a logical relation, and a negative score to the illogical relations.

P1

P2

P12

P13

P14

P6P7P8 P5P4P3

P9

P10

P11

P1: Head
P2: Neck
P3: Left Shoulder
P4: Left Elbow
P5: Left Hand
P6: Right Shoulder
P7: Right Elbow
P8: Right Hand
P9: Left Hip
P10: Left Knee
P11: Left Foot
P12: Right Hip
P13: Right Knee
P14: Right Foot

Figure 4. A kinematic tree of human body representing the relation between each body part.
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The final score of a part pa is computed as the sum of local scores for all possible states sa, achieved
by maximizing Equation (2) over location l and states s. Let za represents the pixel location and state
of part pa, that is za = (la, sa). Let C{a} be children of part pa. The score of part pa is computed as:

Spa (za) = FR( f sa
pa

, IΦ, l) + ∑
a∈V

Rsa
pa
+ ∑

á∈C{a}
Scoreá(za) (6)

It can be noted from Equation (6) that the proposed model computes the local score of part pa at all
pixel locations for the state sa by gathering the score from its children using Equation (2). The overall
score is computed as,

Sb(zb) = max
za

[
Spa(za) + D(pa, pb) + Rsa ,sb

pa ,pb

]
(7)

Score in Equation (7) is computed for part pb using the best scoring location and state of its child
pa. To efficiently search the entire human body structure, we exploited the concept of ”independence”
assumption. For example, in a given torso instead of using many cascade loops for the detection of
all other parts, the proposed method searches independently the best candidates of arm, leg, and so
forth. Since we are using a tree-structured graph to encode the spatial relations between the parts,
it can be achieved efficiently using dynamic programming [31]. In particular, the proposed method
iterates over all the parts, computes the score starting from the leaf-node pa (i.e., foot) and passes
this score to its parent part, and so forth. Eventually, this computation expands till the root part
(i.e., head) by following Equations (6) and (7), and the high scoring root location determine the
body-model. The proposed algorithm may introduce many overlapping detections in one image.
Since the recorded data contains a single infant in each frame, we exploited non-maximum suppression
and the highest scoring root location is greedily picked as an estimation of infant body. Moreover, the
proposed model also maintains argmax indices in (7) (i.e., the location of a selected part) therefore,
we can easily recreate the highest scoring model based solely on the root location. To deal with
the self-occlusion of body parts which is common in case of infants’ movements, while saving the
predicted parts’ locations in Equation (7) the proposed method also saves their respective detection
scores. At retrieval, instead of just picking the highest scoring root configuration of parts, we iterate
over each individual part and compare their scores with a pre-defined threshold Ωscore. The maximum
scoring location that satisfies the Ωscore is chosen as the correct part.

3.2. Movement Analysis

The proposed method computes the angle orientation at the detected locations of body parts
and encodes their tracking in the temporal direction to describe the motion information. Since the
parts are located at joints, the skeleton information is extracted based on the predicted joints’ locations.
The angles are computed at the joints and their tracking in the subsequent frames of the video instigates
the movement in various parts, such as elbow, shoulder, knee, and etc. For example, consider the
case of knee connected with the ankle and hip. Let li, lj and lk denote the ankle, knee and hip joints
respectively (Figure 5), the following two vectors are computed:

V1 = li − lj

V2 = lk − lj
(8)

The angle θ between the vectors V1 and V2 representing the angle orientation at the knee joint is
computed as,

θ = arccos
(

V1 ·V2

|V1||V2|

)
(9)

Analogously, the angles for other joints can be computed and tracked temporally in a video
sequence to describe their respective movements. Figure 5 shows the angle orientations computed
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using the proposed algorithm on a sample image from the test dataset, and the tracking of angle at
knee joint in the subsequent frames.

Department Elektrotechnik und Informatik
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Figure 5. An example of angle computation at the predicted left knee joint and its tracking in the
subsequent 200 frames. The angle orientations at other joints are annotated at the upper-left corner of
the test image. The patient body is shown in negative to preserve the privacy of the subject.

3.3. Model Training

We used a set of positive images annotated with body parts’ locations, and a set of negative images
without any human to train a model. Each positive image in the training dataset requires 14 annotated
parts’ locations, as shown in Figure 6. The edge relations E in the tree-structured graph are defined
manually by connecting the joints. To make the model robust and scale-invariant, the images are
scaled, flipped, and rotated by a few degrees. For each annotated location of body part, the features
are computed within the bounding box around the annotated part (Figure 6). To define the size of
bounding box, the ratio between the length of each part in a given image to the median value of
the length of respective part in the whole training set is computed, and then 75 percent quantile
of the data (i.e., length) is selected to set the size of the bounding-box for all parts in that image.
We computed HOG features in each bounding box to encode the appearance of the respective part
and their orientation information is saved in 5× 5 cells. Since it can be observe that the appearance
changes in several parts (i.e., state) are based on the relative location of a part with respect to its parent.
Therefore, the relative location of part with respect to its parent in all the training images are grouped
into S clusters using the k-means clustering algorithm to define the all possible states of a part. We
assumed that each cluster describes a unique state of the part. Moreover, we have not fixed the cluster
size for each part, rather it is varying based on the degree of articulation in the part. For example, the
arm and the leg parts comprises more articulation in comparison with the torso.

Within the aforementioned described scenario, our goal is to obtain a set of templates for each
body part and the spatial relations between them such that the model assigns a high positive score
to the predicted parts in the positive image and a low score to the parts in the negative image.
More precisely, in a given training set of positive images {Ipos, lpos, spos} and negative images {Ineg},
the learning of model parameters consists of finding a set of part-filters and deformation parameters
which are computed using the structured prediction objective function proposed in [31]. Let’s assume
that zn = (ln, sn) and β is the set of part-filters and the relations between them, then using
Equation (2) we can write S(I, z) = β.(IΦ, z). In particular, these parameters should satisfy the
following two constraints:

β.(Ipos, z) ≥ +1 ∀Ipos

β.(Ineg, z) ≤ −1 ∀Ineg
(10)
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Figure 6. An illustration of model training, and the detection and the tracking of body parts. The patient
body is shown in negative to preserve the privacy of the subject.

To learn the model parameters, the following optimization problem is solved:

arg min
β

1
2
‖ β ‖2 +C(∑

pos
ξpos + ∑

neg
ξneg)

s.t. β · (Ipos, z) ≥ 1− ξpos, ξpos ≥ 0, ∀Ipos

β · (Ineg, z) ≤ −1 + ξneg, ξneg ≥ 0, ∀Ineg,

where ξpos and ξneg are the slack variables representing the loss functions for positive and negative
images respectively, and C is a user-defined regularization parameter which plays an important role
in maximizing the margin and minimizing the loss function. To learn a set of part-filters and their
spatial relations, structSVM [73] is an optimal solution however, we used an extension of structSVM
proposed in [74]. Similar to the liblinear SVM [75], it uses a dual coordinate descent technique to find
an optimal solution in a single pass. The required change in the above derivation is the ability of linear
constraints that it should share the same slack variable for all the negative examples belonging to the
same image Ineg and solve the dual problem coordinate-wise by considering one variable at a time.
The above formulation can be described as,

arg min
β,ξn≥0

1
2
‖ β ‖2 +C ∑

n
ξn

s.t. β · (In, z) ≥ 1− ξn, ∀n ∈ pos

β · (In, z) ≤ −1 + ξn, ∀n ∈ neg.

(11)

4. Experiments and Results

4.1. Evaluation Dataset

To the best of our knowledge, there is no public dataset available to analyze the movement
disorders in infants. Therefore, we captured a dataset in local children hospital using Microsoft Kinect.
It is worth mentioning that we used only RGB data from Kinect in the proposed algorithm therefore,
any other simple camera can be used too. We selected 10 patients of ages 2 weeks to 6 months with
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both genders, having movement disorders and currently they are being treated by the therapists.
The informed consent was obtained from all participating individuals, the therapists and the infants’
parents. The camera was fitted on a tripod at height of 1.5 m with an angle of 90◦ from the table
surface. Figure 7 shows the camera setup during used in the recording. The subjects were lying
on a table in supine lying position (i.e., lying on back), wearing only diapers which helped us to
clearly capture their movements. For each patient, the recording session usually lasted for 15 minutes.
A total of 20 video sequences comprising more than 25,000 frames were captured and used in the
experiments. The ground truth of the test dataset was obtained through manual delineation. A team
of three members carefully analyzed each case and manually marked the positions of the joints in each
test image.

Figure 7. Camera setup in dataset acquisition.

4.2. Experimental Setup

To train the model, we selected 650 positive images. All positive images were flipped and rotated
between −15◦ to +15◦ with the interval of 5◦ to obtain a robust model. This helps the model to learn
the various states of the body parts. As described earlier that each positive image has 14 annotated
locations of body parts, we computed HOG features in a bounding box around the marked location
to encode the appearance of the respective body part. To describe the states of a particular part, the
relative locations of that part with respective parent part in all images are clustered. The cluster size
S depends on the degree of variation in the body part. The parts with large variety of appearances
require more part-filters for accurate detection. We used the Bayesian information criterion (BIC) [76]
to estimate the cluster size S for each body part. The BIC also known as Schwarz criterion is a
criterion designed to select an optimal model among a finite set of models. To represent the different
appearances of a part, we use k-means clustering with S number of clusters. The BIC value is computed
as in [77]:

BIC = n · ln
(

R
n

)
+ k · ln(n) (12)

where n is the size of the data, R is the residual sum of squares, and k represents the number of model
parameters. The parameter k = S(d + 1), where S as the number of clusters and d is the dimension of
data. The BIC value is computed for each body-part at varying the number of clusters S and the value
of S that gives the minimum BIC value is chosen as the optimal number of clusters for that body-part.
A plot of BIC values and clusters for all body-parts is shown in Figure 8. The optimal number of clusters
found though BIC approach are listed in Table 1. We also experimentally tested different cluster sizes



Sensors 2018, 18, 3202 12 of 20

for each body part and listed the optimal sizes in Table 1. It can be noted that for right and left elbow
parts, both empirical and BIC predicted cluster sizes are same. In other body parts, the empirically
estimated cluster size is 2–3 cluster smaller than the BIC predicted size, except the head where the
difference is 5. We observed that the performance of the proposed algorithm with BIC predicted
clusters is almost same as when empirically estimated cluster sizes are used. Increasing the number
of clusters does not improve the accuracy, it instead adversely affects the computational time of the
algorithm. From experiments we found that using the BIC predicted cluster sizes, the computational
time of the proposed method doubles without significant improvement in the detection accuracy.
Nevertheless, using BIC one can automate the cluster size estimation and this can certainly save the
time spent in experimentally estimating the cluster size for each body part.

Figure 8. The number of clusters predicted by the Bayesian information criterion (BIC) for each
body-part. A few plots are very close to each other and therefore they largely overlap and are not
visible at this scale.

Table 1. The predicted number of clusters by the Bayesian information criterion (BIC) and BIC value
for each body-part. ’Emp.’ represents the number of clusters obtained empirically for each body-part.

Body-Part BIC Value (×103) BIC Clusters Emp. Clusters

Head −0.67 9 4
Left Elbow −1.63 9 9
Left Foot −2.73 10 6
Left Hip −2.73 8 6
Left Knee −1.63 11 8
Left Shoulder −0.67 9 6
Neck −0.09 9 4
Right Elbow −3.15 9 9
Right Foot 0.55 10 6
Right Hand 0.55 10 8
Right Hand −3.15 10 8
Right Hip −0.09 8 6
Right Knee 0.37 11 8
Right Shoulder 0.37 9 6

We also input negative images to the model, the images with no human subjects. Each of the
possible root locations in a negative image represents a unique negative example in the training
set. We initialized the deformation parameters with [0, 0, 0.01, 0.01] which demonstrates that the part
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location is close to its rest location. The structSVM library [74] is used in the implementation of
the proposed method. Before the actual model is trained on full training database, a 10-fold cross
validation is performed to validate the model by selecting the optimal value of its parameter C. We used
multi-resolution search to find the optimal value of the hyper-parameter. That is, first, the parameter
values are tested from a larger range and the best configurations is selected. Then a narrow search
space is exploited around this value to select the optimal value in the second step.

4.3. Results

The trained model is evaluated on a probe (i.e., testing) dataset comprising the rest of the
recordings of infants. Since the body parts are located on joints and the accuracy of encoding the motion
information is also based on the precision of predicting the joints’ locations, the performance of the
proposed algorithm is evaluated using the estimation of joints and the encoding of motion at particular
joints. The short description of the results in each category is summarized in the subsequent sections.

4.3.1. Joints Estimation Accuracy

The performance of the proposed algorithm in estimating the joints’ locations is assessed using
two challenging matrices: Average Joint Position Error and Wost Case Accuracy. The results are
compared with the recent existing similar techniques [20,78]. Furthermore, the encoded movement at
different predicted joints are also compared with the manually annotated ground truth information.
The Average Joint Position Error (AJPE) metric measures the average difference between the predicted
locations of joints and their ground truth information. The average differences are measured in
millimeters and the results are documented in Table 2. The results show that the proposed algorithm
outperforms [20] in the detection of each body part. The mean AJPE of the method in [20] is 41,
whereas our method has just over 12.

Table 2. Average joint position error measure the average difference (in millimeter) between the
predicted and the ground truth locations. The error is reported per body part and Mean Error represents
the average error across all the body parts in the test dataset. The proposed method outperforms in the
detection of each body (i.e., having minimum error).

Body-Parts Detection Error

Body-Part Hesse et al. [20] Proposed Method

Head 37 20.3
Neck 20 11.4
Right Shoulder 27 11
Left Shoulder 73 11.4
Right Elbow 24 11.2
Left Elbow 20 12.4
Right Hand 44 11.9
Left Hand 149 14.4
Right Hip 33 11.9
Left Hip 12 11.2
Right Knee 45 11.9
Left Knee 49 11.7
Right Foot 28 14
Left Foot 30 12.8

Mean Error 41 12.7

The Worst Case Accuracy (WCA) metric is defined as the percentage of frames in which all the
joints must be detected within a certain threshold distance (Ωwca) from the ground truth information.
It must be noted that any frame exhibiting error on even one joint location larger than Ωwca would be
considered as false positive. Similar to [78], we conducted two evaluations using Ωwca 5 cm and 3 cm,
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and the results are summarized in Table 3. The results reveal that our method performs better in both
tests achieving an accuracy of more than 95% and 86%, respectively.

Table 3. Performance evaluation using WCA metric which describe the percentage number of frames
in the test dataset where all the body-parts are detected within a certain threshold distance (Ωwca)
from the ground truth location. Two experiments are carried out using Ωwca = 5 cm and Ωwca = 3 cm.
The best results are marked in bold.

Method Ωwca = 5 cm Ωwca= 3 cm

Hesse et al. [78] 90.0% 85.0%
Proposed method 95.8% 86.3%

4.3.2. Motion Encoding Accuracy

We also evaluated the performance of the proposed algorithm in the encoding of motion
information at predicted joints. The computed information is compared with the ground-truth
information. In particular, we computed the angle orientation at the predicted joint locations, such as,
shoulders, elbows, and knees. The orientation information is encoded in the temporal direction
at particular joints. Figure 9 presents the computed movement information and the ground-truth
angles. The overlapped areas represent similar movement patterns. Though there is little difference
in the computed and the ground-truth movement patterns, one can observe that the estimated
movement information (using angles) reflect the ground-truth accurately. The reason for the this small
variation in results is that the body parts are detected a few pixels away from their actual locations
(i.e., ground-truth information). In particular, the proposed algorithm estimates the joint’s location as
the center of predicted body part patch in the image, and then draws edges between the estimated
locations to calculate the angle orientation. Therefore, the deviation of part-filter window (i.e., detection
results) by a few pixels from the ground-truth information of body part generates these small variations
in computing the angles. Such plots (Figure 9) can help the doctors and the therapists to identify the
movement disorders based on the absence of specific motion information at a particular joint.

To further investigate the performance of the proposed method, Mean Absolute Error (MAE)
metric is also computed between the estimated movement information in terms of orientation angles
and the ground-truth information. The results are presented in Table 4. The results reveal that the
proposed algorithm is very accurate in computing the movement information with mean absolute
error of around 3◦ with respect to the ground-truth.

One can observe that the evaluation of the proposed method using different metrics, AJPE, WCA,
and MAE perform consistently better in estimating the joints’ locations and encoding of motion
information which reflect the efficacy of the proposed algorithm.

Table 4. Mean Absolute Error (MAE) in the estimated and the ground-truth angle orientations of
different body parts.

Left Right
Average

Elbow Knee Shoulder Elbow Knee Shoulder

3.632 2.959 2.830 3.231 3.160 2.438 3.042
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Figure 9. Predicted and the ground-truth angle orientations of (a) right shoulder, (b) left shoulder,
(c) right elbow, (d) left elbow, (e) right knee, and (f) left knee in a test video sequence with 2500 frames.

5. Conclusions and Future Work

In this paper, a novel method to identify the infantile movement disorders is presented.
Unlike existing techniques, it does not use markers or sensors on the subject’s body to analyze their
movements. A part-based model to detect and track the body parts of infants in video is proposed.
The trained model encodes the possible orientations of each part and the spatial relations between the
parts. In the probe sequence, the predicted joint locations are used to construct a skeleton and compute
the angle orientations, and their tracking in the subsequent frames facilitates the movement analysis
of a particular joint. In future, we plan to exploit the depth information to compute accurate angle
orientations in 3D domain.

A few interesting applications of the proposed algorithm would be to evaluate the patient’s
poses and movement during the therapeutic procedure. For example, motor disability is the special
kind of disease arise in human due to a damage in the central nervous system (i.e., brain and spinal
cord), associated with the body movements. It introduce several problems such as cerebral palsy,
spinal scoliosis, peripheral paralysis of arms/legs, hip joint dysplasia and various myopathies [21].
To deal with such problems, the neurodevelopmental treatment and the Vojta techniques are the
most common approaches [79]. The neurological physiotherapy aims to make available the message
path between the brain and the musculoskeletal system by assisting the patients to perform blocked
movement patterns. During the treatment, a particular stimulation is given to the patient body region
to perform these blocked movement pattern which the patient is unable to perform in a normal
way. The proposed method can be extended to detect the accurate poses and movements of the



Sensors 2018, 18, 3202 16 of 20

patient during the treatment, which ultimately reveals the accuracy of the given treatment. Since the
therapist suggests an in-home continuation of the therapy in order to accomplish the best outcomes,
an implementation of such a system may serve as in-home therapy alternative to in-hospital therapy.
This would not only be helpful for the quick recovery of the patients but also useful for the patients
who do not have access to the desired treatment in their towns.

Occlusions in some positions are unavoidable. If a body part is partially occluded, the proposed
method is able to accurately detect the movement. However, in case of significant occlusions, increasing
the number part filters (clusters) might not achieve the desired results, limiting the performance of
our method. To deal with large occlusions, in future, we plan to extend the proposed algorithm
using multiple cameras rather than using a single camera setup which would help to cater the large
occlusions and to improve the accuracy of the algorithm.
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