
sensors

Article

A Field Procedure for the Assessment of the Centring
Uncertainty of Geodetic and Surveying Instruments

José L. García-Balboa 1,* , Antonio M. Ruiz-Armenteros 1,2 , José Rodríguez-Avi 3 ,
Juan F. Reinoso-Gordo 4 and Juan Robledillo-Román 5

1 Departamento de Ingeniería Cartográfica, Geodésica y Fotogrametría, Universidad de Jaén,
23071 Jaén, Spain; amruiz@ujaen.es

2 Centro de Estudios Avanzados en Ciencias de la Tierra (CEACTierra), Universidad de Jaén, 23071 Jaén, Spain
3 Departamento de Estadística e Investigación Operativa, Universidad de Jaén, 23071 Jaén, Spain;

jravi@ujaen.es
4 Departamento de Expresión Gráfica Arquitectónica y en la Ingeniería, Universidad de Granada,

18071 Granada, Spain; jreinoso@ugr.es
5 Independent Researcher, 18011 Granada, Spain; jrobledilloroman@gmail.com
* Correspondence: jlbalboa@ujaen.es; Tel.: +34-953-212844

Received: 27 August 2018; Accepted: 17 September 2018; Published: 20 September 2018
����������
�������

Abstract: The uncertainty evaluation of survey measurements is a daily and essential task in any
surveying work. The result of a measurement is, in fact, only complete when accompanied by a
statement of its uncertainty. Miscentring, or centring error, is one of the sources of uncertainty in
every basic survey measurement which may have a great effect on horizontal angle measurement
for short distances. In the literature, different terms and values are considered to refer to this source
of uncertainty. Standard ISO 17123 provides different procedures for assessing the measurement
uncertainty of geodetic and surveying instruments, with the aim of checking their suitability for
the intending and immediate task in field conditions. ISO 17123 is aware of the importance of
uncertainty in the instrument centring, but it does not propose any standardised procedure for its
assessment. In this study, we propose such a procedure following a Type A evaluation (through the
statistical analysis of series of observations), avoiding using values from Type B evaluations (from
manufacturer’s specifications, handbooks, personal experiences, etc.) that could be unsuitable for
the conditions of the task. Uncertainty can be individualised for a particular instrument (which
includes the plummet type), ground mark, operator, and other factors on which the results could
be dependent. The testing methodology includes a configuration of the test field, measurements,
and calculation, following the structure of each part of the standard ISO 17123. An experimental
application is included with two different total stations, which also includes a statistical analysis of
the results.

Keywords: centring error; uncertainty; plummet; tribrach; total station; GNSS; TLS

1. Introduction

The uncertainty evaluation of survey measurements is a daily and essential task in any surveying
work. The result of a measurement is, in fact, only complete when accompanied by a statement of
its uncertainty [1]. If a required accuracy needs to be satisfied, the uncertainty evaluation of the
measurements allows us to decide about the most suitable instruments and measurement procedure.
An example for the setting out of a point can be found in [2].

According to the Guide to the Expression of Uncertainty in Measurement (GUM) [1],
the uncertainty of any quantity derived from other quantities can be evaluated by the law of
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propagation of uncertainty. In this way, the uncertainties of the basic survey measurements (distances,
horizontal directions, zenith angles, etc.) are propagated to evaluate the uncertainties of derived
measurements (coordinates, surfaces, volumes, etc.) in which they are used. Only then will the results
of such derived measurements be complete. Therefore, the first stage is to carry out the uncertainty
evaluation of the basic survey measurements. This will determine the reliability of subsequent results
of uncertainty for derived quantities.

There are a great number of sources of uncertainty in every basic survey measurement. In practice,
only some of them are significant when evaluating the uncertainty of a measurement (see [3]). One of
them is miscentring, or the centring error, over the survey mark when setting up the measurement
instrument (offset from the true station centre). In [4], it is defined as the plane projection of the
deviation of the instrument’s measuring centre from the ground point including the uncertainty due
to the levelling of the tribrach. The accuracy of measurements from a total station, a Global Navigation
Satellite System (GNSS) receiver or a terrestrial laser scanner (TLS) is still highly influenced by this
error, despite the evolution in instrument manufacturing which has removed different errors that
occurred in the past.

The uncertainty of the centring of an instrument sCI relates to the horizontal positional uncertainty
of the bottom plate of a tribrach of a tripod-mounted instrument above a ground survey mark, or
of a pillar-mounted instrument around the centre mark of the pillar. Mainly in horizontal angle
measurement, this source of uncertainty may have a great effect for short distances, which emphasises
the need to set up the instrument carefully. In [5], different charts are presented with the contribution
to the uncertainty of a horizontal angle due to the uncertainty in the instrument centring. As an
example, a centring error of 1 mm causes an error of 40cc (≈ 13′ ′) in a horizontal angle of 150 grad
(= 135◦) in sights of 30 m. Because of its importance in the quality of a measure, different authors
continue investigating the assessment of this uncertainty [4,6,7], the minimization of its influence [8]
or its influence in error models [5,9]. Certain brands also continue improving the centring accuracy, for
example the Trimble SX10, which takes an image of the ground mark [10].

This uncertainty in instrument centring sCI depends on: (i) the state of the plummet system
(mainly optical or laser); (ii) the quality of the tripod; and (iii) the skill of the surveyor [11]. Many
problems involved with instrument centring stem from a careless attitude on the part of the surveyor
and especially a failure to test the plummet and ensure that the instrument is carefully levelled [5].
Some other parameters that influence sCI are the quality of lighting, the resolution of the observer’s
eye, the plummet zoom, and the height of the instrument over the ground target [4]. Different authors
quantify this source of uncertainty from 0.5 to 5 mm depending on the plumbing system (plumb
bob, centring rod, optical plummet or laser plummet; see Table 1). On the other hand, for a forced
(constrained) centring system, the uncertainty is quantified below 0.3 mm. In the literature, different
terms are used to refer to this source of uncertainty, mainly accuracy, standard deviation, or maximum
error, but they are not equivalent terms (see [12]). According to [1], each component that contributes
to a measurement uncertainty should be represented by a standard deviation termed “standard
uncertainty”. For the sake of brevity, in this paper, we use the term “uncertainty” to refer to “standard
uncertainty”. Standard uncertainty is also denoted by s, independently of whether it comes from an
empirical value.
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Table 1. Terminology and values in mm suggested by some authors for the centring uncertainty of the
instrument (modified from [5]).

Source Term Used Type of Centring Value (mm)

[2] Max error

Plumb bob 5
Centring rod 2

Optical plummet 1
Forced centring (pillar) 0.2

[13] Accuracy
Plumb bob 1–2

Centring rod 1
Optical plummet 1

[14] Standard deviation

Plumb bob 1–3
Optical plummet 0.5–1

Constrained centring 0.1
Pillar ≤0.1

[15] Experimental standard
deviation

Plumb bob 1–2
Optical or laser plummet 0.5

Centring rod 1

[16] Accuracy

Plumb bob 3–5
Centring rod 1

Optical plummet 0.5
Forced centring 0.03–0.1

[17,18] Accuracy at a height of 1.5 m Laser plummet 1.5

[19] σ N/A 0.5–3

[20] Accuracy
Plumb bob 3–5

Optical plummet 0.5–1
Forced centring 0.1–0.3

[10] Accuracy at a height of 1.55 m Plummet camera 0.5

Standard ISO 17123 provides different procedures for assessing the measurement uncertainty
of geodetic and surveying instruments, with the aim of checking their suitability for use in field
conditions. Manufacturers usually follow this standard to indicate the uncertainty of measurement of
their instruments. Nevertheless, it is important to note that they perform the procedures in testing
laboratories under optimal conditions, thus obtaining uncertainty values lower than those obtained
in field conditions. The proposed tests must not be confused with calibration procedures, which aim
to introduce corrections to the measurement results due to the presence of systematic measurement
errors and must always be performed in testing laboratories.

To date, ISO 17123 is structured in eight parts: Part 1 [21] is dedicated to theory, while Parts 2–8
focus on levels (measurand is height difference in 1 km double-run levelling), theodolites (horizontal
direction observed in both faces of the telescope), electro-optical distance meters (single measured
distance), total stations (x, y coordinates on both faces of the telescope), rotating lasers (height difference
between the instrument and a levelling staff), optical plumbing instruments (horizontal displacement
of a point transferred over the plumbing height), and GNSS (horizontal position and height in real-time
kinematic), respectively. Part 9 is under development and will be dedicated to TLS [22]. The aim
of ISO 17123 is not to assess each of the sources of measurement uncertainty, but the uncertainty of
the final result (a black-box approach), which is what worries a typical user in a practical context.
A Type A evaluation of uncertainty (statistical analysis of a series of observations) [1] is proposed for
each measurand.

ISO 17123 is aware of the importance of uncertainty in instrument centring, but it does not propose
any standardised procedure for its assessment. Part 3 (theodolites) declares that “special care shall
be taken when centring above the ground point”. Part 8 (GNSS in RTK) requires a sCI of 1 mm to
perform the test. Part 7 (optical plumbing instruments) could apparently be related to the assessment
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of instrument centring, but it clarifies that the proposed test is not applicable to optical plummets as
a device in tribrachs or in surveying instruments. Furthermore, Part 5 (total stations) includes a list
of sources of uncertainty not to be evaluated individually. The centring of a total station is included
in the list since it has been considered when evaluating uncertainty in distances, vertical angles, and
horizontal angles.

In this paper we develop a standardised procedure for the assessment of the uncertainty in
instrument centring. In this way, any user of a geodetic or surveying instrument could perform a
Type A evaluation avoiding using values from Type B evaluations (from manufacturer’s specifications,
handbooks, personal experiences, etc.) that could be unsuitable for the conditions of the intended task.
The uncertainty could be individualised for a particular instrument (which includes the plummet type),
ground mark, operator, and other factors on which the results could be dependent. The procedure is
designed considering the general criteria of the standard ISO 17123, and therefore developed for in situ
applications without the need for special ancillary equipment. The testing methodology is shown in
Section 2, including the configuration of the test field, measurements and calculation. An experimental
application is summarised in Section 3. Finally, the conclusions are included in Section 4.

The angular units used in this paper are gradian (grad) and centesimal second (cc), since they are
used by the surveying community in different countries. To assist the reader the corresponding values
in degrees and seconds of arc are given (in brackets) for some results. The following relationships
hold: 400 grad = 360◦; 1 grad = 10,000cc; 1cc = 0.0001 grad; 1 grad = 0.9◦; 1′ ′ ≈ 3cc (3.086cc); and 1cc

≈ 0.3′ ′ (0.324′ ′).

2. Testing Methodology

The main objective of the proposed testing procedure is to assess the uncertainty in the centring
of an instrument. By instrument, we mean any geodetic or surveying equipment which needs to
be set up exactly over a ground mark, usually with the assistance of optical or laser plummets
associated to tribrachs. Therefore, theodolites, total stations, GNSS receivers or TLS could be considered.
As presented in Section 1, the general criteria of standard ISO 17123 imply not requiring the use
of special ancillary equipment. The great influence of the centring error in the horizontal angle
measurement has been demonstrated. A testing procedure based on both considerations is proposed.
The foundation of the method lies in the setting up of two stable targets at short distances from the
instrument so that a small displacement in its position (due to the centring error) leads to a significant
variation of the horizontal angle between both targets. A similar strategy can be found in [7], in this
case to check the influence of the imperfection of construction of the tribrach. That approach is exactly
the opposite of the configuration of the test field in standard ISO 17123-3, which locates the targets
100–250 m away to minimise the influence of the centring error. Figure 1 illustrates a horizontal angle
α measured from Station E to Targets A and B. An error in the instrument centring eCI does not affect
angle α when the instrument is located in the position shown in Figure 1a, that is on the circumference
containing E, A, and B (α ∼= α’). In contrast, the effect is maximum when the instrument is positioned
along the angle bisector (Figure 1b,c) (α 6= α’) [3].

To find a recommended distance between the instrument and the targets, the contribution to the
uncertainty of a horizontal angle due to the uncertainty in instrument centring sCI , denoted by sαCI ,
has to be considered. It can be evaluated as (see page 185, Equation (7-7) in [19], page 177, Equation
(6.9a) in [23], page 123, Equation (7.21) in [3], among others):

sαCI =

√(
DA

E
)2

+
(

DB
E
)2 − 2DA

E DB
Ecosα

DA
E DB

E
sCI =

DB
A

DA
E DB

E
sCI =

D3

D1D2
sCI (1)
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Assuming that the distances between the instrument and the targets are equal (D1 = D2 = D)
and α = 100 grad (a right angle), Equation (1) can be simplified as:

sαCI =
D
√

2
D2 sCI =

√
2

D
sCI (2)
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Figure 1. Effect of error in the instrument centring eCI on a measured horizontal angle α. It does not
affect the angle in Case (a), but the effect is maximum in Cases (b) and (c). Erroneous lines of sight and
angle indicated by dashed lines.

Table 2 presents some results from the application of Equation (2). Assuming three different
values for sCI (0.33 mm, 0.5 mm and 1 mm) and five values for D (5, 10, 15, 20 and 25 m), we can
explore the values obtained for sαCI .

Table 2. Contribution to the uncertainty of a horizontal angle sαCI due to the uncertainty in instrument
centring sCI to targets at distance D and α = 100 grad.

sCI (mm) D (m) sαCI (
cc)

0.33

5 60
10 30
15 20
20 15
25 12

0.5

5 90
10 45
15 30
20 23
25 18

1

5 180
10 90
15 60
20 45
25 36

The value of sαCI should be significantly larger than other sources of uncertainty in the horizontal
angle. If we take the smallest value for sCI (0.33 mm) and the largest value for D (25 m), it results in
the lowest value of sαCI (12cc ≈ 4′ ′). In this case, sαCI is not significantly larger, because usual values for
sISO−THEO−Hz (standard uncertainty in a horizontal direction observed in both faces of the telescope
(ISO 17123-3)) in standard total stations are in the range of 10–20cc (≈ 3–6′ ′). If we take the largest
value for sCI (1 mm) and the smallest value for D (5 m), it results in the largest value of sαCI (180cc

≈ 60′ ′). In this case, it can be assumed that sαCI is significantly larger and therefore the uncertainty
in the horizontal angle sα can be approximated to sαCI . It is supposed that, as stated in the different
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procedures of ISO 17123, the instrument and ancillary equipment is known and acceptable states of
permanent adjustment according to the methods specified in the manufacturer’s handbook, and used
with tripods as recommended by the manufacturer.

It is obviously preferable for sISO−THEO−Hz to be as small as possible, but a relation with

sαCI should be stated. We assume that sα =
√

s2
αISO

+ s2
αCI
∼= sαCI if the contribution to the angle

uncertainty from the instrument sαISO = sISO−THEO−Hz
√

2 is 3 (or more) times smaller (better) than
sαCI . For example, if a total station with sISO−THEO−Hz = 15cc (≈ 5′ ′) is considered, sαCI should be
15
√

2× 3 = 63.6cc (≈ 21′ ′) (or more). From Equation (2), we can find that, if sCI = 0.33 mm, then D
needs to be 5 m or less; if sCI = 0.5 mm, then D needs to be 7 m or less; and, if sCI = 1 mm, then D

needs to be 15 m or less. In all these three cases, sα =
√

s2
αISO

+ s2
αCI

=

√(
15
√

2
)2

+ 63.62 = 67.0 ∼=
sαCI = 63.6cc.

Not only one but two angles, α and β, should be considered given that the eCI is two-dimensional.
As can be seen in Figure 1, α is sensitive to the component of eCI which is parallel to its bisector;
therefore the bisectors of α and β should be perpendicular.

A preliminary test with real data was performed to determine whether eCI can be estimated from
the measurement of α and β. Small predefined displacements of the instrument were introduced,
which should be clearly detected. An adhesive paper ground mark with four positions (A–D) was
designed (Figure 2), each one displaced 1 mm from a centre point P. Three stable target plates (T1–T3)
were set up, considering two conditions: they form two adjacent right angles and D = 5 m from
P (Figures 3 and 4a). These conditions can be approximated; accurate conditions are not required.
The instrument was set up over each of the four positions and α and β were measured (both faces
of the telescope). A Leica TC-1800 total station was used, with sISO−THEO−Hz = 3cc (manufacturer
specifications), optical plummet in tribrach, and dual-axis compensator. For the selection of the target
plate, we performed a simple analysis of repeatability (standard deviation from 20 measures) in
pointing to the target plate of a Leica GPR111 standard circular prism and to a Leica GRZ3 target plate
without prism (Figure 4b), with better results in the latter (3cc ≈ 1′ ′).
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In Table 2, it can be seen that, when sCI = 1 mm and D = 5 m, a variation in the horizontal angles of
180cc (≈ 60′ ′) is expected. Therefore, twice this value, 360cc (≈ 120′ ′), is expected when comparing the
value of α measured from A and C (∆α = αA − αC) and when comparing the value of β measured from
B and D (∆β = βB − βD). In Table 3, we present the results, which are ∆α = 387cc and ∆β = 401cc, which
represent a displacement of 2.2 mm, close to the predefined value of 2.0 mm. These results confirm the
theoretical data and indicate that this configuration of the test field is sensitive to instrument centring.
Therefore, we have confidence to take the next step and configure the testing methodology for the
assessment of sCI .

Table 3. Results from the preliminary test. Variation of the horizontal angles from each position.

Position Angle Value (Grad)
Difference

(cc) (mm)

A αA 100.0527
387 2.2C αC 100.0140

B βB 100.1425
401 2.2D βD 100.1024

If we fix the conditions of the preliminary test (value of D = 5 m and observations in both
face positions of the telescope), we can relate the uncertainty in instrument centring sCI and the
uncertainty in the horizontal direction sISO−THEO−Hz. It should be remembered that we assume
that sαISO = sISO−THEO−Hz

√
2 ≤ sαCI

3 , therefore sISO−THEO−Hz ≤ sCI
3·D . Table 4 shows the maximum

value (it could be smaller, i.e., better) of sISO−THEO−Hz required for the instrument to assess different
expected values of sCI in a range between 0.1 and 1 mm. As an example, only when using very
accurate total stations (sISO−THEO−Hz ≤ 4cc) could a sCI = 0.1 mm be assessed; however, if a value
of sCI = 0.5 mm is considered, a standard total station (sISO−THEO−Hz ≤ 21cc) can be used. Table 5
shows the minimum value (it could be larger, i.e., worse) of sCI which can be assessed for different
values of sISO−THEO−Hz in a range between 5cc (≈ 1.6′ ′) and 30cc (≈ 10′ ′). As an example, if we have
an instrument with sISO−THEO−Hz = 10cc (≈ 3′ ′), an instrument centring of sCI ≥ 0.24 mm could
be assessed.

Table 4. Maximum value of sISO−THEO−Hz required for the instrument for different values of sCI .

sCI (mm) sISO−THEO−Hz(
cc) (max.)

0.1 4
0.25 11
0.5 21

0.75 32
1 42
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Table 5. Minimum value of sCI which can be assessed for different values of sISO−THEO−Hz.

sISO−THEO−Hz(
cc) sCI (mm) (min .)

5 0.12
10 0.24
15 0.35
20 0.47
30 0.71

The following subsections provide details of the proposed testing methodology. They are
organised in a similar way to ISO 17123: configuration of the test field, measurements, and calculation.

In contrast to previous studies (e.g., [4,6,8]), this proposal can be applied to an instrument with
any type of plummet (laser or optical) and does not need any additional equipment. It can be applied
directly to theodolites and total stations. In the case of GNSS receivers, it could be applied if their
tribrachs are interchangeable and they incorporate the plummet; a total station or theodolite should be
mounted over this tribrach to perform the test. It could also be adapted for TLS in a similar way as ISO
17123-3 is adapted in [24] for horizontal directions.

2.1. Configuration of the Test Field

In line with the structure of each part of the standard ISO 17123, a configuration of the test field
should be performed to standardise it. We follow the same drafting style of ISO 17123-3 to define the
configuration that has already been used in the preliminary test.

An instrument, ground mark, and operator should be chosen for the test. The test area is that
which surrounds the ground mark at position P. Three fixed targets (T1–T3) shall be set up located
approximately on the same horizontal plane as the instrument, 5 m away, and situated forming two
adjacent right angles (α and β) (see Figure 5). Targets shall be used which can be observed unmistakably,
preferably target plates. They shall be stable during the test measurements. The conditions of distance
to the targets and right angles can be approximated; accurate conditions are not required.
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Table 4 can be used to know if the instrument is accurate enough (more specifically, its value
of sISO−THEO−Hz) to assess an expected uncertainty in instrument centring. Similarly, Table 5 can
be used to know the smallest value of uncertainty in instrument centring that can be assessed with
that instrument.

2.2. Measurements

As indicated in [25], standard ISO 17123 defines two test types that vary in complexity:
the simplified and full test procedures. The first is faster, based on small sample of measurement,
with limited significance of the results and only useful as an indication of the order of the measure of
the achievable precision (statistical tests are not proposed). The latter requires a larger sample size and
the computed standard deviation is more significant for the uncertainty assessment. The sample size
for our proposal is discussed below.
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Consecutive n setups of the instrument should be carried out over the ground mark. Special care
should be taken when centring. In each setup, a series of measurements shall be taken, following a
measurement procedure similar to that of ISO 17123-3. The three targets shall be observed in each set
in Face Position I of the telescope in clockwise sequence, and in Face Position II of the telescope in
anticlockwise sequence, noting the value of the six horizontal directions. The pointing error should be
minimised by bisecting with the cross-hair reticle.

After each setup, the tribrach shall be turned approximately 133 grad (120◦). This way,
the independence between consecutive setups is guaranteed and a systematic error introduced
by plummets integrated in tribrachs could be detected and also included in the uncertainty result
(as indicated by [1,12]). In addition, systematic errors in the centring due to the mark shape or
illumination (and shadows) would be included in the result. Nevertheless, this condition could slow
down the procedure, making it less practical. As an alternative, the n setups (series) could be divided
into n/3 groups, each one with the same tribrach orientation. To maintain the independence in the
centring procedure, the instrument shall be off-centred between consecutive setups in the same group.

The instrument height can influence the results. A comfortable height, mostly used by the
operator–instrument pair, should be chosen for every setup. Another alternative is to introduce
variability in the height to obtain uncertainty results for a broader range of heights. The choice should
be made depending on the intended objective.

The sample size n is a major issue. In the full test procedure, it should be small enough to
speed up the operation and large enough to obtain significant results. The confidence interval for the

standard deviation can be considered. If the data are normally distributed, the expression (n−1)s2

σ2 has a
chi-square distribution with (n− 1) degrees of freedom, where σ is the population standard deviation
and s the sample standard deviation. Taking the upper limit of the confidence interval and a 5% level
of significance for a one-tailed test, Figure 6 shows how many times (k) this limit is greater than s for
each sample size n.
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In Figure 6, k is below 2.0 for n = 7, below 1.5 for n = 14, below 1.4 for n = 18, below 1.3 for
n = 27 and below 1.2 for n = 49. We suggest for the full test procedure a value of n = 24 (k = 1.33) as a
compromise between significance and practicality. It is estimated that the field work could be carried
out in half a working day (about 4–5 h). In any case, n should be a multiple of 3, due to the turns of the
tribrach. For the faster simplified test procedure, a value of n = 6 could be considered, remembering
that it is only useful as an indication of the order of the measure of the precision achievable.
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2.3. Calculation

First, the mean values of the readings in both Face Positions I and II of the telescope are calculated:

xi,j =
xi,j,I + xi,j, I I

2
, (3)

where i = 1, . . . , n and j = 1, 2, 3, corresponding to points to T1–T3.
Next, the horizontal angles α and β are obtained for each series i:

αi = xi,2 − xi,1, β j = xi,3 − xi,2. (4)

Then, the standard deviation values of α and β are computed:

sα =
∑n

j=1
(
αj − α

)
n− 1

, sβ =
∑n

j=1
(

β j − β
)

n− 1
(5)

where α and β are the mean values of α and β, respectively.
The two-dimensional components of sCI are:

sCI−x = sα
D√

2
; sCI−y = sβ

D√
2

(6)

Finally, the uncertainty in the instrument centring is:

sCI =
sCIx + sCIy

2
(7)

which is an approximation of the circular standard deviation, valid when the quotient smin/smax is
between 1.0 and 0.6 [26].

3. Experimental Application

The proposed testing methodology described in Section 2 was applied with two different
instruments: a Leica TS-06 total station (TS1), with sISO−THEO−Hz = 15cc (≈ 5′ ′) (manufacturer
specifications) and laser plummet and a Leica TC-1800 total station (TS2), with sISO−THEO−Hz =
3cc (≈ 1′ ′) (manufacturer specifications) and optical plummet in tribrach. In both cases, these remain
the same: operator, tripod, target plates (Figure 4b), and configuration of the test field (Figure 5).

For a deeper analysis of the methodology, the number of series n was increased over the one
proposed in Section 2 (24 setups). In addition, different variables which could affect the results were
introduced: two types of ground mark (M1 and M2) (Figure 7) and different instrument heights.
For each mark and height, the three turns of the tribrach were considered and three setups were
performed in each turn (see Table 6). The number of series is n1 = 54 for TS1 and n2 = 45 for TS2.

Sensors 2018, 18, x FOR PEER REVIEW  10 of 16 

 

Finally, the uncertainty in the instrument centring is: 𝑠஼ூ = 𝑠஼ூ௫ + 𝑠஼ூ௬2  (7)

which is an approximation of the circular standard deviation, valid when the quotient smin/smax is 
between 1.0 and 0.6 [26]. 

3. Experimental Application 

The proposed testing methodology described in Section 2 was applied with two different 
instruments: a Leica TS-06 total station (TS1), with 𝑠ூௌைି்ுாைିு௭  = 15cc (≈ 5′′) (manufacturer 
specifications) and laser plummet and a Leica TC-1800 total station (TS2), with 𝑠ூௌைି்ுாைିு௭ = 3cc (≈ 
1′′) (manufacturer specifications) and optical plummet in tribrach. In both cases, these remain the 
same: operator, tripod, target plates (Figure 4b), and configuration of the test field (Figure 5). 

For a deeper analysis of the methodology, the number of series n was increased over the one 
proposed in Section 2 (24 setups). In addition, different variables which could affect the results were 
introduced: two types of ground mark (M1 and M2) (Figure 7) and different instrument heights. For 
each mark and height, the three turns of the tribrach were considered and three setups were 
performed in each turn (see Table 6). The number of series is n1 = 54 for TS1 and n2 = 45 for TS2. 

Table 6. Number of setups that have been performed for the experimental application. 

Instrument Ground Mark Height Tribrach Turn No. of Setups 

TS1 M1 
1.432 
1.549 
1.673 

A, B, C 
A, B, C 
A, B, C 

3, 3, 3 
3, 3, 3 
3, 3, 3 

 M2 
1.442 
1.594 
1.684 

A, B, C 
A, B, C 
A, B, C 

3, 3, 3 
3, 3, 3 
3, 3, 3 

TS2 M1 
1.064 
1.433 
1.654 

A, B, C 
A, B, C 
A, B, C 

3, 3, 3 
3, 3, 3 
3, 3, 3 

 M2 1.433 
1.654 

A, B, C 
A, B, C 

3, 3, 3 
3, 3, 3 

 
Figure 7. Ground marks employed for the experimental application (real size): (left) M1 is of a 
circular-type with a diameter of 5 mm; and (right) M2 is a cross-type with 0.5 points (about 0.2 mm) 
width. 

Results from the n1 series of TS1 are presented in Figure 8a. Each point in the chart represents 
the centring error of each setup. Previously, each pair j of residuals 𝛼௝ − 𝛼ത  and 𝛽௝ − 𝛽̅  from 
Equation (5) was converted into lineal values 𝑒஼ூି௑ೕ and 𝑒஼ூି௒ೕ (the two components of the centring 
error) to be plotted in the chart. A different symbol was considered for each type of ground mark. In 
91.3% of setups, the centring error was less than 0.5 mm (red circle in the figure). From Equation (6), 
the two-dimensional components of 𝑠஼ூ were 𝑠஼ூି௫ = 0.24 mm and 𝑠஼ூି௬ = 0.27 mm. Finally, from 
Equation (7), the uncertainty in the instrument centring was 𝑠஼ூ = 0.25 mm. This is quite a good 
result, which confirms that special care has been taken by the operator and that the instrument is in 
good condition. In addition, it is important to note that it is better than that indicated by the 
manufacturer in [17] (see Table 1). An expanded uncertainty 𝑈஼ூ  can be obtained by applying 

   

Figure 7. Ground marks employed for the experimental application (real size): (left) M1 is of
a circular-type with a diameter of 5 mm; and (right) M2 is a cross-type with 0.5 points (about
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Table 6. Number of setups that have been performed for the experimental application.

Instrument Ground Mark Height Tribrach Turn No. of Setups

TS1 M1
1.432 A, B, C 3, 3, 3
1.549 A, B, C 3, 3, 3
1.673 A, B, C 3, 3, 3

M2
1.442 A, B, C 3, 3, 3
1.594 A, B, C 3, 3, 3
1.684 A, B, C 3, 3, 3

TS2 M1
1.064 A, B, C 3, 3, 3
1.433 A, B, C 3, 3, 3
1.654 A, B, C 3, 3, 3

M2
1.433 A, B, C 3, 3, 3
1.654 A, B, C 3, 3, 3

Results from the n1 series of TS1 are presented in Figure 8a. Each point in the chart represents
the centring error of each setup. Previously, each pair j of residuals αj − α and β j − β from Equation
(5) was converted into lineal values eCI−Xj and eCI−Yj (the two components of the centring error) to
be plotted in the chart. A different symbol was considered for each type of ground mark. In 91.3%
of setups, the centring error was less than 0.5 mm (red circle in the figure). From Equation (6),
the two-dimensional components of sCI were sCI−x = 0.24 mm and sCI−y = 0.27 mm. Finally,
from Equation (7), the uncertainty in the instrument centring was sCI = 0.25 mm. This is quite a
good result, which confirms that special care has been taken by the operator and that the instrument
is in good condition. In addition, it is important to note that it is better than that indicated by the
manufacturer in [17] (see Table 1). An expanded uncertainty UCI can be obtained by applying different
coverage factors (k), as suggested by [1]. Factors from a circular standard distribution can be obtained
from [26]. For a probability of 90%, we can obtain UCI−90 = k90UCI = 2.1460× 0.25 = 0.54 mm and,
for 99.8%, we can obtain UCI−99.8 = k99.8UCI = 3.5× 0.25 = 0.89 mm.
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Figure 8. (a) Centring errors from setups performed with TS1 (laser plummet); and (b) centring errors
from setups performed with TS2 (optical plummet). M1 and M2 are the ground marks in Figure 7.

Similarly, results from the n2 series of TS2 are presented in Figure 8b. In 94.7% of setups,
the centring error was less than 1.5 mm (red circle in the figure). The two-dimensional components
of sCI were sCI−x = 0.77 mm and sCI−y = 0.74 mm. The uncertainty in the instrument centring was
sCI = 0.76 mm. This result is quite different from that obtained from TS1. The uncertainty in the
instrument centring was three times better (lower) in TS1 than in TS2. Moreover, the optical plummet
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of TS2 seems not to be in a good state. A systematic error introduced by the plummet system can be
inferred in Figure 8b. Points in the chart seem to be separated into three groups, one for each turn
of the tribrach. An estimation of the systematic error can be obtained if the mean is computed for
each group, obtaining a result of 1.0 mm in the three turns. This is a considerable value and therefore
the plummet system should be adjusted. In the meantime, this systematic error is included in the
uncertainty result.

Statistical Analysis

A deeper analysis of the results is included in this section. Different tests were applied for the
two components of the centring error eCI−X and eCI−Y (Figure 8a,b). They were performed using
SPSS software, version 22.0 [27]. To make a final decision on each test, the p-values obtained have
to be compared with the previously desired Type I error level α (usually 5% or 1%). The following
assumptions were checked.

• Relation between the two components: In this case, an independence test on the Pearson
correlation coefficient (r = 0.020 and p-value = 0.843) and also the Spearman rank correlation
coefficients (rs = 0.0088 and p-value = 0.941) were performed (see, for example, [28]). This implies
that both components are independent. Therefore, subsequent tests were carried out separately
for each component.

• Normality of errors: In this case, separate tests were performed for each component (eCI−X and
eCI−Y) and each instrument (TS1 and TS2) with programs written in the R language [29]. Two
tests were selected: Shapiro-Wilks [30] and Jarque-Bera [31]. Since the sample sizes were less than
5000 points, the robust version of the Jarque-Bera [32] was employed. Results are shown in Table 7.
The results are not conclusive with a high evidence of non-normality. From Shapiro-Wilks tests,
the assumption of normality could be rejected for a significance level of 0.05 in any case, but not
for a level of 0.01. From Jarque-Bera tests, the assumption of normality was clearer, with p-values
over 0.05, with the exception of component eCI−X of TS1. It is interesting to remember that ISO
17123-8 [33] (p. 10) assumes normality in the error centring.

Table 7. Results (p-values) from normality.

Test
TS1 TS2

eCI−X eCI−Y eCI−X eCI−Y

Shapiro-Wilks 0.027 0.012 0.026 0.003
Jarque-Bera 0.032 0.130 0.133 0.092

• Outliers: We considered an outlier as a data point whose absolute value is greater than three times
the standard deviation of the sample. Once the sample was standardised (for each component
and each instrument), all points had a standardised absolute value lower than 3.

• Equality of variances: To contrast the equality of variances, we calculated the Levene’s test [34] of
homogeneity of variances for each component and instrument. These comparisons were carried
out for groupings from three different variables: type of ground mark (two groups, M1 and M2),
instrument height (four groups, identified in Table 6), and tribrach turn (three groups). Results
are shown in Table 8. They show that the centring error was not affected by these variables. Only
in the case of instrument height for TS2, where the p-value is 0.045, could we find some influence
in the variance of eCI−Y due to a significative difference between the highest and lowest height.
Finally, we have proven that the variance was not homogeneous between instruments TS1 and
TS2 from a global Levene’s test (Table 9) for two groups (two instruments).
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Table 8. Results (p-values) from Levene’s test for each variable.

Variable
TS1 TS2

eCI−X eCI−Y eCI−X eCI−Y

Ground Mark 0.961 0.286 0.386 0.064
Instrument Height 0.634 0.249 0.311 0.045

Tribrach Turn 0.257 0.558 0.333 0.295

Table 9. Results (p-values) from a global Levene’s test for each instrument.

Variable eCI−X eCI−Y

Instrument <0.001 <0.001

• Homogeneity of means: This test was carried out to compare the tribrach turn in each instrument
separately. Once we proved that the variances were homogeneous, an analysis of variance
(ANOVA) was performed to compare the equality of error means [35]. The results (Table 10)
imply that differences (bias) exist in instrument TS2 because the means of each position
differ significantly.

Table 10. Results (p-values) from an ANOVA.

Variable
TS1 TS2

eCI−X eCI−Y eCI−X eCI−Y

Tribrach Turn 0.801 0.381 <0.001 <0.001

Additionally, a bootstrapping procedure [36] was developed for the centring error of TS1.
All computations were performed using programs written in the R language [29]. Sampling sizes from
2 to 50 were chosen. For each sampling size, 10,000 samples were taken with replacement. For each
sample, the standard deviation s was calculated. Finally, the quantile of 95% of the 10,000 standard
deviation was obtained for each sample size. The objective was to compare the results with the upper
limit of the confidence interval for the standard deviation (5% level of significance for a one-tailed
test) presented in Figure 6 (which was based on the assumption of normality). Figure 9 shows how
many times (k) this upper limit (grey line) and the quantile of 95% from bootstrapping (black line) are
larger than s for each sample size n. It can be observed that k was lower in bootstrapping than in the
normal distribution. This means that the experimental data from TS1 were better than expected from a
normal distribution. This difference is more important for small sample sizes and tends to disappear
when n increases. If we take the sample size suggested in Section 2.2 for the full test procedure, n = 24,
the bootstrapping results indicate a value of k = 1.28, close to and lower than the value of k = 1.33
obtained from the normal distribution. Consequently, a smaller sample size could be considered for
the full test procedure to reduce the fieldwork. The value of k = 1.33 was obtained from bootstrapping
when n = 18.
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4. Conclusions

Currently, a standardised procedure for assessing the centring uncertainty of geodetic and
surveying instruments to determine their suitability for the intended and immediate task in field
conditions is lacking. Within the framework of the standard ISO 17123, we propose such a procedure
through which any user can perform a Type A evaluation, avoiding using values from Type B
evaluations which could be unsuitable for the conditions of the intended task. The testing methodology
includes a configuration of the test field, measurements and calculation, following the structure of each
part of the standard ISO 17123. It can be directly applied to theodolites and total stations. In the case
of GNSS receivers, it could be applied if their tribrachs are interchangeable and they incorporate the
plummet. The proposal can be applied to an instrument with any type of plummet (laser or optical)
not requiring any additional equipment.

The foundation of the method lies in the setting up of stable targets at short distances from
the instrument (in the order of 5 m) so that a small displacement in the position of the latter (due
to the centring error) leads to a significant variation of the horizontal angle between both targets.
That approach is just the opposite of the configuration of the test field in the standard ISO 17123-3,
which locates the targets 100–250 m away to minimise the influence of the centring error. A circular
standard deviation is obtained as an estimation of the centring uncertainty. Expanded uncertainty
can be obtained by applying coverage factors from a circular standard distribution. The procedure
also allows detecting the presence of a systematic error in the centring, which is also included in the
uncertainty result.

An experimental application was performed with two total stations TS1 and TS2 with different
horizontal angle uncertainties (sISO−THEO−Hz = 15cc and 3cc respectively) and plummet types (laser
and optical). In addition, different instrument heights were considered as well as two types of ground
mark. The centring uncertainty results are quite different for both instruments. For TS1, a result of
0.25 mm was obtained, which is better than that indicated by the manufacturer. The result for TS2 was
quite higher, 0.76 mm, and furthermore the plummet system seems to have been clearly affected by a
systematic error.

A set of statistical tests was performed. Results point out that both components (X and Y) of
the centring error are independent but they are not conclusive about the normality. The two types
of ground mark used did not have any influence on the variance of the centring error, neither did
the instrument height. The results also confirmed the lower uncertainty in the centring of TS1 and
the presence of a systematic error (bias) in the plummet system of TS2. In addition, a bootstrapping
procedure from data of TS1 indicated that the repeatability was better than that expected from a normal
distribution. Therefore, the required sample size could be reduced to speed up the fieldwork.
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Future research includes the adaptation of the procedure for TLS. In addition, a wide analysis of
the influence on the centring uncertainty of different types of ground mark remains an interesting topic.
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