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Abstract: In this paper, we propose an adaptive single differential coherent detection (SDCD) scheme
for the binary phase shift keying (BPSK) signals in IEEE 802.15.4 Wireless Sensor Networks (WSNs).
In particular, the residual carrier frequency offset effect (CFOE) for differential detection is adaptively
estimated, with only linear operation, according to the changing channel conditions. It was found
that the carrier frequency offset (CFO) and chip signal-to-noise ratio (SNR) conditions do not need a
priori knowledge. This partly benefits from that the combination of the trigonometric approximation
sin−1 (x) ≈ x and a useful assumption, namely, the asymptotic or high chip SNR, is considered
for simplification of the full estimation scheme. Simulation results demonstrate that the proposed
algorithm can achieve an accurate estimation and the detection performance can completely meet the
requirement of the IEEE 802.15.4 standard, although with a little loss of reliability and robustness as
compared with the conventional optimal single-symbol detector.

Keywords: single-symbol noncoherent detection; adaptive estimation; IEEE 802.15.4; wireless
sensor networks

1. Introduction

Even since its introduction, the IEEE 802.15.4 low rate wireless personal area network (LR-WPAN)
standard has found wide application in low complexity, low cost, low power consumption, and low
data rate wireless connectivity among inexpensive devices [1], e.g., the smart sensor node in pervasive
Wireless Sensor Networks (WSNs) [2]. WSNs can be applied to home automation, precision agriculture,
health care, consumer electronic, industrial wireless control, environmental monitoring, and data
collecting in battlefield awareness [3].

The specifications of the physical (PHY) layer and the medium access control (MAC) layer for IEEE
802.15.4 are defined in [1]. Much focus on its MAC protocol and capacity analysis has been witnessed
in recent years [3–5]. Specially, Piyush et al. detailedly analyzed the capacity of WSNs, where n nodes
are located in a region of area 1 m2. However, as we know, there is relatively less attention on the
reliability issue in PHY layer, which is concerned in this paper. Specifically, the noncoherent signal
detection algorithm for IEEE 802.15.4 WSNs is studied.

A binary phase shift keying (BPSK) direct sequence spread spectrum (DSSS) scheme is required
in 868/915/950 MHz bands as indicated in [1]. A noncoherent receiver is preferred as compared to a
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coherent one in IEEE 802.15.4 BPSK receivers. This is because carrier acquisition and tracking is not
required at the receiver in the battery-operated sensor node, although the complexity simplification
is achieved at the cost of a compromise in detection performance. This degradation is often directly
manifested in terms of the required signal-to-noise ratio (SNR) for a given bit error rate (BER) or
packet-error rate (PER) [6,7].

Bit-level single differential coherent detection (SDCD) is known to be more popular in IEEE
802.15.4 BPSK receivers because of its attractive performance [2,8]. This follows that the chip-level
SDCD suffers from serious performance loss due to chip-error propagation [9], while the bit-level
SDCD combines soft decision values of the chip samples for detection and compensates for the constant
carrier frequency offset effect (CFOE) in statistics after differential decoding (DD) [2].

To the best of our knowledge, all available detectors classified into this category [2,8,10] employ a
two-step approach referred to here as the bit-level SDCD (BSDCD) approach: Step 1 (postcompensation
step) estimates the residual CFOE based on a measurement derived from the whole preamble samples
at the autocorrelator output and then feeds back a coherent reference to the following autocorrelation
sample of the useful data; and Step 2 (decision step) detects the data bit-by-bit. The idea in the first
step seems to be economically attractive for WSNs because of its simple implementation. Furthermore,
the second step combines the simplicity of the approach without any compensation, with the improved
performance due to including some degree of simple phase rotation of the detection statistic after DD,
i.e., the differential detector output. Hence, this unified estimation-detection framework appears to offer
a very reasonable trade-off between error performance and detection complexity.

This unified heuristic configuration can be considered an inspiration from the idea of the
Generalized Likelihood Ratio Test (GLRT) [11], yet the receiver has partial prior knowledge of the
nuisance parameter (e.g., an unknown CFOE) from known symbols (e.g., the preamble symbols).
In principle, it can be interpreted as an approximation to the optimal coherent detectors [12].
The creative approximation is imperative for IEEE 802.15.4 WSNs where computation of the optimal
detector is too difficult and uneconomical. It can also be classified into the data-aided (DA) noncoherent
demodulation [13].

It is important to note that a similar approach was also introduced by Liu et al. in [14] for M-ary
phase shift keying (M-PSK) with single differential (SD) coding. However, in this case, the CFO
embedded in samples at differential detector input is considered to be recovered from some unknown
modulated symbols. Therefore, the nonlinear operation (e.g., Mth power for M-PSK) [15] is required
to eliminate the dependence of these datas as indicated in Equation (7) of [14]. This is because the
undesired parameter CFO is now a parameter of interest, whereas the data symbols are now just
nuisance parameters.

For the aforementioned postcompensation step, several CFOE estimation approaches have been
studied [2,8,10]. The full estimation scheme is powerful yet always not affordable, since the inverse
tangent operation is considered to be the most complex to implement in WSNs [2]. The work of
Lee et al. [8] first successfully simplifies this implementation; however, a considerable performance
compromise cannot be avoided. This is because the mathematical approximation tan−1 (x) ≈ 0 is
considered therein and thus the CFOE is quantified into four fixed values (in radians), i.e., 0, π/2,−π,
and −π/2 [10]. These phases clearly seems to be independent of the channel conditions, i.e., SNRs.
Considering the more advisable trigonometric approximation tan−1 (x) ≈ x, we recently introduced
an adaptive offset-term adjustment algorithm in [10]. It has the advantage of enabling the receiver to
intelligently adjust the four constant phases above according to the time-varying channel conditions
with respect to each packet transmission. However, a division operation is required to perform this
process. This needs a complex implementation and is energy-consuming in floating-point form [16].
An efficient symbol-timing algorithm was also deeply discussed by Bloch et al. in [2], where the
observation is necessary to be extended to three bit intervals. In this scheme, the most recent bit
detection result is required in practice as shown in Equation (8) of [2]. Under this decision-feedback
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mechanism, error propagation may take place. For more details about these eatimators, the reader is
referred to [10] and the reference therein.

The main contribution of this work can be highlighted as follows. The above so-called BSDCD
technique is first deduced in detail, and its receiver structure is given. Then, for the compensation
processor, some particular estimators are summarized and compared. Finally, an efficient estimator
with only addition operation is provided for the compensation processor. It is worth noting that the
high-order modulation [17], e.g., offset quadrature phase-shift keying (O-QPSK) with half-sine pulse
shape, is also employed in IEEE 802.15.4 WSNs [1]. A simple double correlation based detector has
been derived in [18,19], which however is out of the scope of this work.

To the best of our knowledge, this is the first work investigating the combination of the
trigonometric approximation sin−1 (x) ≈ x and the high chip SNR to simplify the optimal detector.
The remainder of this paper is organized as follows. Section 2 concentrates on the signal model over
an additive white Gaussian noise (AWGN) channel. The generalized BSDCD algorithm is explicitly
proposed in Section 3, while the optimal BSDCD scheme is described in Section 4. Section 5 indicates
several particular CFOE estimation schemes for the postcompensation process, and a new estimator is
proposed in Section 6. Numerical results are addressed in Section 7. Finally, some conclusions and
future work are offered in Section 8.

2. System Model

Consider transmission over an AWGN channel and ideal timing synchronisation at the receiver
in sensor node. The CFO and carrier phase offset (CPO) are assumed to be unknown and random
but constant with respect to a packet transmission [2]. Without loss of generality, we follow the
discrete-time signal model in [2] but with some changes. In particular, the baseband equivalent chip
sequence for the mth bit E[m] is

rm,k = sm,kej(2πk f Tc+θ) + ηm,k, 1 ≤ k ≤ K. (1)

Here, sm,k is the kth bipolar BPSK modulated chip, f is the CFO in Hz, and θ is arbitrary modulo-2π

reduced CPO in radians. Tc is the chip duration, ηm,k is a discrete-time, circularly symmetric, zero-mean
complex AWGN with variance σ2

m,k, and K = 15 is the length of the pseudorandom number (PN)
code [1]. We assume that f and θ are statistically independent of each other, and of the AWGN {ηm,k}.

Notice that the channel is supposed to only introduce CPO, but otherwise is assumed to be
perfectly equalized. That is to say, a phase noncoherent channel is considered. Signal distortion caused
by multipath fading is not considered for simplicity in describing detection principle, i.e., the indoor
short-range propagation model is used, where the complex channel gain equals to 1 [19]. The CFO
is due to instabilities associated with the inexpensive carrier oscillators in transmitting node and
receiving node. The bandwidth of the receiving filter B is wide enough for all of the signal energy
spread by CPO and CFO to pass [20]. In this case, all of the modeling and analysis in this work can be
performed using the discrete-time complex baseband model in [8].

3. Generalized BSDCD Scheme

The receiver performs BSDCD of the mth bit E[m] by forming a complex-represented statistic
from sample autocorrelation operation [8]:

A[m] =
L1

∑
k=1

rm,kr∗m−1,k = L1ejφm ejKωTc + η(0), (2)

where L1 is the sample number, 1 ≤ L1 ≤ K, the superscript ∗ is complex conjugate, φm ∈ {0, π} is
the actual information phase corresponding to the mth transmitted bit E[m], ω = 2π f , and η(0) is an
integrated noise sample.
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Obviously, first-order differential modulation is a means of handling only one unknown invariable
parameter in two adjacent bit intervals [14]. Thus, the CFOE ϕ , KωTc embedded in autocorrelator
output A[m] is a residual nuisance parameter, generating a multiplicative phase distortion ejϕ as
indicated in Equation (2). It is by no means evident that this impairment, referred to as phase noise,
can cause a significant performance loss if it is not wiped out. The avenue considered here is to equip
the autocorrelator with a postcompensation processor. It not only is simple to implement but has
the potential to be almost without performance degradation as the frequency shift increases. It is
important to note that the exponential term ejKωTc is referred as the CFOE in [2], but here is KωTc.

Specifically, the CFOE is first recovered based on averaged autocorrelation samples of the
preamble [8]:

Y =
1

(L2 − 1)L3

L2

∑
m=2

L3

∑
k=1

rm,kr∗m−1,k = ejKωTc + η(1). (3)

Here, L2 is the observation length in bit intervals, and 2 ≤ L2 ≤ J, where J = 32 is the bit number
in preamble field [1]. L3 is referred to as the number of the autocorrelation sample, 1 ≤ L3 ≤ K,
and η(1) is another complex-valued noise term.

Then, follow with the result reported in Equation (18) of [6], a decision rule can be intuitively
written as:

φ̂m = arg max
φi

Ξ (A[m], φi, Y) , (4)

where “argmax” denotes the argument that maximizes the following function with respect to the
variable of interest, i.e., φi. Here, φi ∈ {0, π} is the hypothetical information phase and Ξ (A[m], φi, Y)
denotes the detection metric, given by [6]

Ξ (A[m], φi, Y) = Re
{

A[m]q(Y)e−jφi
}

. (5)

In Equation (5), q(Y) is the so-called quantization function [2], which can be considered as a phase
coherent reference to compensate the effect of the CFO on A[m]. Re{x} denotes the real part of x.
Clearly, a bit detection error is generated when φ̂m 6= φm.

Observe from Equations (2) and (5) that the quantization function q(Y) is used to undo rotation
induced by CFOE in autocorrelator output A[m]. Bearing in mind that the BPSK alphabet is {+1,−1},
we can immediately arrive at another detection rule from Equation (4) in the following form:

Ê[m] =

{
0, if Re{A[m]q(Y)} ≥ 0,
1, if Re{A[m]q(Y)} < 0.

(6)

This clearly is the receiver strategy followed in [2,8,10]. In fact, equip Equation (4) with respective
quantization functions, and let truncation f actors L1 = L3 = K, L2 = J; then, we can arrive at the
conventional detection approaches.

The details of Generalized BSDCD (GBSDCD) are presented in Algorithm 1. Note that the bits
of the start-of-frame delimiter (SFD) in the first field and PHY header (PHR) in the second field of
the physical layers protocol data unit (PPDU) are not considered in Algorithm 1. This simplicity is
considered to make the ideas behind the detection principle apparent. In addition, the preamble field
of the PPDU is composed of 32 binary zeros [1], therefore the transmitted bits E[m] = 0, for 1 ≤ m ≤ 32.
It is just based on these known bits that the postcompensation process can be performed at the receiver.
This prior preamble field is primitively used for automatic gain control (AGC) convergence, diversity
selection, timing acquisition, and coarse frequency acquisition in the IEEE 802.15.4 receivers [1,2].
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The detector given here falls into those that use ad hoc methods [13], such as the
decision-feedback-based method [21], the frequency-offset estimation-based method in [14] and the
postcompensation-based method in this work. These algorithms can provide a wide range of trade-offs
among detection complexity, detection speed, and PER performance.

Algorithm 1 Framework of GBSDCD Algorithm.

Input: rm,k: baseband sample for the mth bit E[m]; L1: sample number for each bit of the actual data;

L2: observation length of the preamble in bit intervals; L3: number of the autocorrelation sample

mth bit of the preamble; J: bit number in preamble field; L: payload length of the PPDU.
Output: Ê[m]: detection of the mth bit of the actual data.

1: initial Y = 0, A[m] = 0, and J = 32
2: for m = 2; m ≤ L2; m ++ do
3: for k = 1; k ≤ L3; k ++ do
4: A[m]← A[m] + rm,kr∗m−1,k
5: end for
6: Y ← Y + A[m]
7: end for
8: compute the quantization function q(Y);
9: for m = J + 2; m ≤ J + L; m ++ do

10: for k = 1; k ≤ L1; k ++ do
11: A[m]← A[m] + rm,kr∗m−1,k
12: end for
13: Ξ← A[m]q(Y)
14: if Ξ < 0 then
15: Ê[m]← 1
16: else
17: Ê[m]← 0
18: end if
19: end for
20: return Ê[m]

The role of the differential coding is to facilitate CPO estimation and effectively translate the
noncoherent channel to a coherent AWGN channel. Furthermore, the role of the preamble symbols is
to facilitate CFOE estimation and effectively wipe out the instabilities associated with the inexpensive
carrier oscillators in transmitting node. It is such exact knowledge of these symbols that reduces the
degree of randomness and facilitates the estimation of the undesired parameter ϕ of interest. Note that,
in the postcompensation process, the undesired parameter ϕ is now the parameter of interest that we
would like to estimate, whereas the “parameters” of interest in the detection process, namely the data
symbols, are now just nuisance (or undesired) parameters (cf. [22], p. 64).

4. The Available Optimal Quantization Function

As described in the preceding section, the quantization function q(Y) can be considered as an
estimator of the phasor e−jϕ to eliminate the dependence of the residual nuisance parameter ϕ in
autocorrelator output A[m]. It exhibits an important role not only in detection performance but in
robustness to the CFO. Thus, in this section, we turn our attention towards developing q(Y) to achieve
a benchmark that can be theoretically achieved.

In this case, q(Y) in Equation (5) can be expressed as:

q(Y) = Y∗ = |Y|e−j∠Y. (7)
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Here, ∠Y is the principal value of the argument of the measurement Y, and |Y| denotes the
magnitude of Y. The positive nature of magnitude |Y|means it does not affect the decision result in
Equation (4). Hence, Equation (7) can be simplified as:

q(Y) = e−jϕ̂, (8)

where ϕ̂ must be set equal to the principal value of the argument of the measurement Y, i.e.,

ϕ̂ =


tan−1

(
Im(Y)
Re(Y)

)
, if Re(Y) > 0,

π
2 , if Re(Y) = 0, Im(Y) ≥ 0,

−π + tan−1
(

Im(Y)
Re(Y)

)
, if Re(Y) < 0,

−π
2 , if Re(Y) = 0, Im(Y) < 0.

, ϕ̂1, (9)

Here, Im(Y) denotes the imaginary part of Y. Equation (9) is referred to here as the first old
estimation model, and the receiver with it is the well-known conventional optimal receiver [2].

The noise term η(1) in Equation (3) is not Gaussian but can be approximated as Gaussian when
chip signal-to-noise ratio (SNR) is reasonably high [23]. As a consequence, we can think of the
measurement Y in Equation (3) as the equivalent received signal at time m and η(1) as an equivalent
AWGN channel. In such condition, Equation (9) can be interpreted as data-aided maximum likelihood
(DAML) estimates of the phase ϕ and Equation (8) a DAML estimate of the phasor e−jϕ (cf. [24], p. 166).
In this case, the receiver structure is given in Figure 1 [25]. In Figure 1, the switch 1 (SW 1) should open
in the bit intervals 1 ≤ m ≤ 32, and be off otherwise. For SW 2, the opposite occurs.
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Figure 1. The optimal receiver structure.

We observe immediately from Equation (9) that the arctan operation cannot be avoided in the
postcompensation process of the optimal receiver. This requires a computational complexity that
renders its theoretical approach impractical in WSNs, where low power and low cost are of paramount
importance. Therefore, the creative approximation, thus avoiding intractable complexity in this process,
is imperative for IEEE 802.15.4 WSNs where computation of the optimal detector is too difficult and
uneconomical.

5. Summary and Analysis of Some Simplified Estimation Schemes

5.1. Simplified Estimation—Estimation A

Assuming that small CFO and high chip SNR remain
∣∣∣ Im(Y)

Re(Y)

∣∣∣ sufficiently small, we can use the

simple approximation that tan−1 (x) ≈ x, for small x, and Equation (9) can be directly approximated as

ϕ̂ ≈


Im(Y)
Re(Y) , if Re(Y) > 0,
π
2 , if Re(Y) = 0, Im(Y) ≥ 0,
−π + Im(Y)

Re(Y) , if Re(Y) < 0,

−π
2 , if Re(Y) = 0, Im(Y) < 0.

, ϕ̂2, (10)
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The detecor with Equation (10) works only for small CFO and reasonably high SNRs. This is
because

∣∣∣ Im(Y)
Re(Y)

∣∣∣ ≤ 1 is guaranteed with very high probability in this condition, and the detection effect

of approximate error in tan−1 (x) ≈ x will be as small as we expect. Otherwise, large mathematical
approximation error will introduce excessive estimation error, and, finally, unacceptable detection
penalty cannot be avoided.

5.2. Simplified Estimation—Estimation B

In order to obtain a low-complexity estimator that is not only as efficient as Equation (9) but valid
for any cases, an equivalent description for Equation (9) was given in [10] by

ϕ̂ =



tan−1
(

Im(Y)
Re(Y)

)
, if Re(Y) > 0 and |Re(Y)| ≥ |Im(Y)|,

π
2 − tan−1

(
Re(Y)
Im(Y)

)
, if Im(Y) > 0 and |Re(Y)| < |Im(Y)|,

−π + tan−1
(

Im(Y)
Re(Y)

)
, if Re(Y) < 0 and |Re(Y)| ≥ |Im(Y)|,

−π
2 − tan−1

(
Re(Y)
Im(Y)

)
, if Im(Y) < 0 and |Re(Y)| < |Im(Y)|.

(11)

Equations (9) and (11), originally obtained using different intuitive reasonings, are two approaches
for computing the principal value of the argument of the measurement Y.

We observe immediately from Equation (11) that the complex observation space is subdivided
into four equi-angular sectors illustrated in Figure 2, which are identical to the four regions presented
in Table 1 of [8]. Both of them can be distinguished from one another by only simple comparison
of the measurement magnitudes and signs of real and imaginary parts of Y. From this viewpoint,
Equation (11) differs from Equation (9) in two respects: (1) the observation space is further subdivided
into four subspaces, not two; and (2) the subspace locating criteria is redesigned. It is such
characteristics that make Equation (11) attractive for devising a simplified estimator as shown in
the following.

Re

Im

Region I

Region II

Region III

Region IV

O

Figure 2. Division of the complex observation space.

As indicated in Equation (11),
∣∣∣ Im(Y)

Re(Y)

∣∣∣ or
∣∣∣ Re(Y)

Im(Y)

∣∣∣ in an observation region is not only never more
than 1, but irrelevant to CFOE being estimated or SNR conditions. This appropriately allows us to use
the mathematical approximation that tan−1 (x) ≈ x, for small x, in Equation (11) without undesirable
calculation errors. Then, another efficient simplified detection scheme was proposed in our recent
work [10], where the estimator is valid for arbitrary CFO and SNR, given by
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ϕ̂ ≈



Im(Y)
Re(Y) , if Re(Y) > 0 and |Re(Y)| ≥ |Im(Y)|,
π
2 −

Re(Y)
Im(Y) , if Im(Y) > 0 and |Re(Y)| < |Im(Y)|,

−π + Im(Y)
Re(Y) , if Re(Y) < 0 and |Re(Y)| ≥ |Im(Y)|,

−π
2 −

Re(Y)
Im(Y) , if Im(Y) < 0 and |Re(Y)| < |Im(Y)|,

, ϕ̂3. (12)

5.3. Simplified Estimation—Estimation C

A complexity efficient detector was also deeply considered in [8]. Actually, Y is quantized into 1,
−1, j and −j in this detector, a result later used in [2]. It follows from this that its estimator can be
depicted by [10]

ϕ̂ ≈


0, if Re(Y) > 0 and |Re(Y)| ≥ |Im(Y)|,
π
2 , if Im(Y) > 0 and |Re(Y)| < |Im(Y)|,
−π, if Re(Y) < 0 and |Re(Y)| ≥ |Im(Y)|,
−π

2 , if Im(Y) < 0 and |Re(Y)| < |Im(Y)|,

, ϕ̂4. (13)

Obviously, Equation (13) can be derived from Equation (11) on condition that the approximation
tan−1 (x) ≈ 0 is involved. This avenue achieves an estimator with perfectly acceptable complexity.
The detector with it works only for the CFOE approach to four fixed values, i.e., 0, π/2, −π and
−π/2; otherwise, a large error similar to Equation (10) will be introduced. Not surprisingly, this is
expected to limit the receiver performance. A quick comparison of Equations (12) and (13) reveals that
the estimation error in the latter can be corrected by the former, where two types of adaptive offset
terms Im(Y)

Re(Y) and Re(Y)
Im(Y) are additionally provided to improve the estimated accuracy of the time-variant

undesired parameter ϕ.

5.4. Remarks

Some comments on the above estimators are as follows:

• These estimators are obtained from approximations made to a structure motivated by DAML
estimation of the CPOE.

• The estimator in Equation (10) is convenient and with acceptable complexity as compared with
Equation (9). Since it works only for very small frequency-offset values and reasonably high
SNRs, it is a CFO and SNR limited estimator. Correspondingly, a severe degradation to the system
packet error performance in the detection process will be introduced, which is not suitable for
our purposes.

• Equation (12) achieves an estimate with quite reasonable accuracy. It does so by four preconditions,
i.e., smart geometric division to the observation space, accurate subspace locating criterion,
equivalent avenue for the calculation of ∠Y, and advisable approximation tan−1 (x) ≈ x.
One arctan operation is required for a DAML estimator given in Equation (9). However,
this computationally intensive operation is completely avoided in Equation (12). Surprisingly,
such a complexity reduction results in almost no frequency-offset invariance degradation in the
detection process, as will be inferred in Section 7.

• The canonical approximation tan−1 (x) ≈ x involved in Equation (12) is much more accurate than
the atypical approximation tan−1 (x) ≈ 0 involved in Equation (13). This implies that, as such
inaccuracy frequently makes the measurement in Equation (13), either a large overestimation
or a large underestimation of the CFOE, whereas no such inappropriate estimation is likely to
occur in Equation (12). Actually, Equation (12) allows a real-time adjustment with additional one
division and one addition operations, which, however, can achieve almost 1.5 dB gains at PER of
1× 10−3 [10].

In a word, Equation (12) makes a detector with such a reasonable balance between complexity
of the postcompensation step and performance of the detection step that it may be more attractive
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for WSNs. However, a division operation is still required as indicated in Equation (12). Clearly,
division is an energy intensive and costly operation [16], and should be avoided as much as possible
in WSNs. In the following, we are concerned with further simplication to wipe off this complex
nonlinear operation in the first processing, while without unaccepted performance degradation in the
second processing.

6. Proposed Divisor-Free CFOE Estimator

The starting point of our estimation approach is the realization that the modulo-2π reduced phase
of the measurement Y can also be expressed in form of sin−1 (x), i.e., Equation (9) can be rewrote
as follows:

∠Y =

 sin−1
(

Im(Y)
|Y|

)
, if Re(Y) ≥ 0

−π − sin−1
(

Im(Y)
|Y|

)
, if Re(Y) < 0

. (14)

Observe from Equation (14) that the absolute value of the magnitude divided argument of the
inverse sine function is never more than 1 because length of any right-angle side is never more than
that of the hypotenuse. Then, we can immediately simplify Equation (14) as follows:

∠Y ≈


Im(Y)
|Y| , if Re(Y) ≥ 0,

−π − Im(Y)
|Y| , if Re(Y) < 0.

(15)

Note that the mathematical approximation sin−1 (x) ≈ x, for small x, is involved in Equation (15).
Assuming further that high SNR, known to be useful in estimation problems [26], keeps the

magnitude of the non-Gaussian noise term η(1) in Equation (3) sufficiently small, we get

|Y| = |ejKωTc + η(1)| ≈ 1. (16)

It is worth noting that this simplification is irrespective of the frequency offset being estimated.
Substituting Equation (16) into (15), we can finally improve a CFOE estimator as follows:

ϕ̂new ,

{
Im(Y), if Re(Y) ≥ 0,
−π − Im(Y), if Re(Y) < 0.

(17)

Note that Equation (14) can be rewritten in the following form:

∠Y =

 sin−1
(

Im(Y)
|Y|

)
, if Re(Y) ≥ 0,

π − sin−1
(

Im(Y)
|Y|

)
, if Re(Y) < 0.

(18)

Then, Equation (17) can also be given by:

ϕ̂new ,

{
Im(Y), if Re(Y) ≥ 0,

π − Im(Y), if Re(Y) < 0.
(19)

We provide some interpretations for the receiver whose estimator is expressed by Equation (19).

• Equation (19) are obtained from approximations made to a structure motivated by DAML
estimation scheme in Equation (14) or Equation (18), and a simple adaptive offset terms Im(Y) is
provided. This enables the receiver to intelligently adjust the estimated CPOE value according to
the time-varying channel conditions with respect to each packet transmission.



Sensors 2018, 18, 52 10 of 19

• The complex observation space is only divided into two subspaces as shown in Figure 3. They can
be easily distinguished from one another just with the sign of the real part of Y. Thus, the absolute
value operation of real and imaginary parts of Y in Equation (12) is not required in this case.
An useful assumption, namely, the asymptotic or high chip SNR, is considered for simplification
of Equation (15). Thus, the nonlinear division operation in Equation (12) is avoided.

Re

Im

Region I

Region II

O

Figure 3. New division of the complex observation space.

• No limitation on the CFOE range is required for the mathematical approximation sin−1 (x) ≈ x in
our estimator. That is to say, it appears to be a full-range estimator, and the corresponding receiver
is a full-range detector, the same feature as the receiver with Equation (12). By the approximation
|Y| ≈ 1 valid at high chip SNR as illustrated in Figure 4, the result in Equation (19) may be shown
to approximately hold for arbitrary SNRs, which is also the same as Equation (12). In a word, the
CFO and chip SNR conditions do not need a priori knowledge for the mathematical approximation
involved in Equation (19). As a result, an excellent detection performance is achieved at the
receiver, which can completely meet the requirements of the IEEE 802.15.4 standard. This will be
confirmed by the numerical results shown in the following section.

cK Tw
YÐ

( )1h

cjK T
e

w

Y

Re

Im

Figure 4. Geomrtirc representation of the measurement Y.

• Clearly, the estimation error e , ϕ̂− ϕ is only introduced by the mathematical approximation
if the noise is not considered. In this case, the absolute error |e| for three simplified estimators
is summarized and compared in Table 1 and Figure 5, respectively. As shown in Figure 5,
the absolute error |e| with Equation (12) is no more than 1− π/4 for which the observation space
is divided into four subspaces as indicated in Figure 2. It increases to π/4 for Equation (13). This
is exactly half of the radians for the equi-angular sector in Figure 2. This value comes to be π/2− 1
for our improved estimator in Equation (19) where the observation space is only divided into two
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subspaces. Furthermore, when the CFOE ϕ ∈ (−π,−0.712π) ∪ (−0.288π, 0.288π) ∪ (0.712π, π),
our estimator is more efficient than Equation (12).

Table 1. Summary of the absolute error.

Region
Absolute Error |e|

Estimator in [8] Estimator in [4] Estimator in this work

[−π,−3π/4) ϕ + π (−π + tan ϕ)− ϕ ϕ− (−π − sin ϕ)
[−3π/4,−π/2) −ϕ− π/2 ϕ− (−π/2 + cot ϕ) ϕ− (−π − sin ϕ)
[−π/2,−π/4) ϕ + π/2 (−π/2− cot ϕ)− ϕ sin ϕ− ϕ

[−π/4, 0) −ϕ ϕ− tan ϕ sin ϕ− ϕ
[0, π/4) ϕ tan ϕ− ϕ ϕ− sin ϕ

[π/4, π/2) −ϕ + π/2 ϕ− (π/2− cot ϕ) ϕ− sin ϕ
[π/2, 3π/4) ϕ− π/2 (π/2− cot ϕ)− ϕ (π − sin ϕ)− ϕ
[3π/4, π) −ϕ + π ϕ− (π + tan ϕ) (π − sin ϕ)− ϕ

-0.5

0.5

Absolute Error

/4- /4- /2-3 /4-

/4

/2-1

1- /4

3 /4

Proposed in this workProposed in [9]

0.288 0.403 0.597 0.712

Convetional [7]

Figure 5. The absolute error |e| of three different estimation methods.

7. Numerical Results and Discussion

In this section, we evaluate the BER and PER performances of some BSDCD schemes. In all
simulations, the payload length of the physical layer protocol data unit (PPDU) is 20 octets [1], and
the detection procedure is repeated until enough error packets are collected. The carrier frequency
was selected as 924 MHz, i.e., the maximum values required in a 915 MHz band [1]. All of these
parameters are described in detail in Table 2. Note that the bits in the PHR, which indicates the number
of octets of the PPDU, are also considered in all simulations. All experiments in this section were
developed on a personal computer (3.2 GHz, 8 GB RAM) in a MATLAB (R2017a) (MathWorks, Beijing,
China) platform.
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Table 2. Parameters used in simulations. AWGN: additive white Gaussian noise; SNR: signal-to-noise
ratio; PN: pseudorandom number; PPDU: physical layers protocol data unit; CPO: carrier phase offset.

Parameter Detailed Description

Channel condition Complex AWGN
Power of the complex noise 1/SNR

Detection Scheme Bit-level noncoherent
Timing synchronisation Perfect

Generator polynomial of PN code 1 + x + x4

Payload length of PPDU (bits) 160
Carrier frequency (MHz) 924

CPO (rads) Uniform distribution in (−π, π) or Wiener process

7.1. Effect of the Truncation Factors

The truncation factors L1, L2 and L3 regulate the complexity and performance, so we first give
evaluation results in Figure 6 for the proposed detector, which provides us with the effect L1 has on
detection performance. Here, the CFO was randomly set to range from −80 ppm to 80 ppm with
probability density function of symmetric triangular shape [2]. The CPO was considered to be uniform
distribution in interval (−π, π). We observe that performance improves as sample length L1 increases
from 1 to 15, but improvement degrades as sample length L1 increases. For example, Figure 6 shows
that for PER of 1× 10−3, as sample length L1 increases from 1 to 3, the SNR gain is about 4.3 dB.
As L1 increases from 5 to 7, the SNR gain reduces to 1.2 dB. As L1 further increases from 13 to 15,
the SNR gain becomes 0.5 dB. Similar results were also achieved for L2 and L3, which are not given
here. In pratice, suitable truncation factors can be selected according to the specific requirements on
the performance, and a large degree of freedom in complexity can be achieved. For example, according
to [1], the PER should be less than 1× 10−2 when the SNR is 5 to 6 dB. Referring to Figure 6, five
samples are sufficient when the SNR of the input chip signal is 5 dB. In the following, the maximum
values are considered for L1, L2 and L3 to ensure the best possible performance.

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12
SNR per chip  Ec/N0 (dB)

10-6

10-4

10-2

100

BE
R

L1=1
L1=3
L1=5
L1=7
L1=9
L1=10
L1=12
L1=13
L1=14
L1=15

(a)

Figure 6. Cont.
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L1=5
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L1=9
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L1=12
L1=13
L1=14
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Figure 6. Performance impact of parameter L1. (a) BER impact of L1; (b) PER impact of L1.

7.2. Detection Performance of the Receiver

The BER and PER performances of the proposed receiver versus others are shown in Figure 7.
The optimal noncoherent receiver with random CPO is considered [6,7]. The ideal coherent (perfect
carrier reference phase and no CFO) detection with SD decoding is also given for sake of comparison.
Compared to the optimal noncoherent scheme, the CFOE can be compensated by a postcompensation
processor to various degrees as shown in Figure 7. At PER of 1× 10−3, our detection shceme achieves
more than 1.3 dB gains over the method in [8]. The performance gap between the scheme in [10] and
our detector is only about 0.2 dB; however, substantial reduction in complexity is achieved. Referring to
Figure 7, only 1 dB is enough for our detector to meet specific requirements on the performance in [1].
In addition, our scheme is efficient at all SNR regions, although the approximation |Y| ≈ 1 involved in
Equation (19) is only valid at high SNRs. This follows from the fact that the BER and PER performances
of the receiver with Equations (15) and (19) are almost the same as indicated in Figure 7.−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 410−610−510−410−310−210−1 SNR per chip  Ec/N0 (dB)BER Convetioncal [7]Optimal, with CPO and CFO [2]Optimal, only with CPO [5, 6]Optimal coherentProposed in [9]Proposed in this work, with (15)Proposed in this work, with (19)

(a)

Figure 7. Cont.



Sensors 2018, 18, 52 14 of 19−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 410−410−310−210−1100 SNR per chip  Ec/N0 (dB)PER Convetioncal [7]Optimal, with CPO and CFO [2]Optimal, only with CPO [5, 6]Optimal coherentProposed in [9]Proposed in this work, with (15)Proposed in this work, with (19)
(b)

Figure 7. Performance comparison for various receivers. (a) BER performance of different receivers; (b)
PER performance of different receivers.

The BER and PER performances of the proposed receiver versus the receiver in [10] when the CFO
was randomly set to range from −6.2 ppm (i.e., the CFOE ϕ is −0.288π) to 6.2 ppm (i.e., the CFOE
ϕ is 0.288π) with triangular symmetric distribution are depicted in Figure 8. As shown in Figure 8,
our proposed estimation method in Equation (19) compensates the frequency offset effect more
efficiently than that in Equation (12), whereas substantial reduction in complexity is achieved at the
same time. This follows from the fact that the absolute estimation error |e| of our proposed estimation
method is now smaller than that of Equation (12) as indicated in Figure 5. Similar results were also
achieved for the CFOE ϕ ∈ (−π,−0.712π) ∪ (0.712π, π), which are not given here.

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5
SNR per chip  Ec/N0 (dB)

10-6

10-4

10-2

100

BE
R/

PE
R

Proposed in [9], BER
Proposed in [9], FER
Proposed in this work, BER
Proposed in this work, FER

Figure 8. BER and PER comparison for the proposed receiver and the receiver in [10].

7.3. Robustness of the Receiver

The performance of the detector in [8] versus CFO is shown in Figure 9. In Figure 9, the horizontal
line represents the detection performace when no CFO is considered, which gives us a benchmark
for comparison. As indicated in Figure 9, good performance is achieved especially when f equals
±10 ppm for the detector in [8]. This result follows from the number of the gap between actual CFOE
and its corresponding quantified value π/2 being small enough, i.e., only 0.0380π radians. However,
when this number greatly increases to 0.2340π radians, i.e., f = ±70 ppm, performance is degraded
severely by large estimation error (e.g., more than 2 dB at PER of 1× 10−2 as shown in Figure 10).
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The analysis result for the simulation in Figure 9 is described in detail in Table 3. The result for the
absolute estimation error |e| is also presented in Table 3. Observe from Figure 9 and Table 3 that the
smaller the absolute estimation error is, the better the detection performance. When |e| is close to its
maximum value 0.25π (i.g., f equals ±5 ppm, ±60 ppm or ±70 ppm), and the receiver suffers from
a serious performance penalty. Based on those observations, we see that the detector in [8] works
well only for such CFOEs that are close enough to four values, i.e., 0, π/2,−π, and −π/2. Otherwise,
a large estimation error will introduce unacceptable performance penalty.

Table 3. Robustness analysis for the detector in [8]. CFOE: carrier frequency offset effect.

CFO (ppm) Performance Rank Actual CFOE (Rads) Estimated CFOE (Rads) |e| (Rads)

5 Eighth 0.2310π 0 0.2310π
10 First 0.4620π π/2 0.0380π
20 Second 0.9240π −π 0.0768π
30 Third −0.6275π −π/2 0.1275π
40 Fourth −0.1520π 0 0.1520π
50 Fifth 0.3100π π/2 0.1900π
60 Seventh 0.7720π −π 0.2280π
70 Ninth −0.7660π −π 0.2340π
80 Sixth −0.3040π −π/2 0.1960π

-80 -60 -40 -20 0 20 40 60 80
CFO(ppm)

10-6

10-5

10-4

10-3

10-2

10-1

BE
R

SNR=1.5 dB

SNR=0 dB

SNR=-2 dB

SNR=0.5 dB

(a)

-80 -60 -40 -20 0 20 40 60 80
CFO(ppm)

10-4

10-3

10-2

10-1

100

PE
R

SNR=-2 dB

SNR=0.5 dB

SNR=0 dB

SNR=1.5 dB

(b)

Figure 9. Detection performance of [8]. (a) BER performance of [8] versus CFO; (b) PER performance
of [8] versus CFO. CFO: carrier frequency offset.



Sensors 2018, 18, 52 16 of 19

-4 -3 -2 -1 0 1 2 3
SNR per chip  Ec/N0 (dB)

10-5

10-4

10-3

10-2

10-1

100

BE
R/

PE
R

Convetional [7], f=70ppm, BER
Convetional [7], f=70ppm, PER
Convetional [7], f=10ppm, BER
Convetional [7], f=10ppm, PER
Optimal [5, 6], only with CPO, BER
Optimal [5, 6], only with CPO, PER

Figure 10. BER and PER performances of [8] versus two particular CFOs. CFO: carrier frequency offset.

The limitation in [8] is avoided to some extent in our detector as depicted in Figure 11. As indicated
in Figure 11, good performance is achieved for most considered CFOs. This is because a simple additive
adaptive offset term Im(Y) is introduced as shown in Equation (19), and the maximum value for the
absolute estimation error |e| is reduced to π/2− 1. In addition, only when |ϕ| is close enough to π/2
(i.g., the CFO f equals ±10 ppm), large degradation in performance is observed. This is because a
relatively large approximation error in sin−1 (x) ≈ x is now achieved as shown in Figure 5. However,
note that no limitation on the CFOE range is required for direct application of the mathematical
approximation sin−1 (x) ≈ x, for small x, in our estimator.

-80 -60 -40 -20 0 20 40 60 80
CFO(ppm)

10-6

10-5

10-4

10-3

10-2

10-1

BE
R

SNR=1.5 dB
SNR=0.5 dB

SNR=0 dB

SNR=-2 dB

(a)

-80 -60 -40 -20 0 20 40 60 80
CFO(ppm)
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10-3

10-2

10-1

100

PE
R

SNR=-2 dB

SNR=1.5 dBSNR=0.5 dB

SNR=0 dB

(b)

Figure 11. Detection performance of proposed receiver. (a) BER performance of proposed receiver
versus CFO; (b) PER performance of proposed receiver versus CFO. CFO: carrier frequency offset.

7.4. Performance under Dynamic Channel

Finally, the behavior of the proposed receiver under dynamic channel conditions has been
investigated. Our noncoherent receiver is robust to phase jitter as observed from Figure 12 and 13.
The phase θ of received chip sequence {rm,k}, 1 ≤ k ≤ K, is modeled as a Wiener process according
to θm+1 = θm + ∆m, where ∆m are zero-mean independent Gaussian random variables with known
variance σ2

m in each bit interval, and the initial phase θ1 is considered to be uniform distribution.
A jitter standard deviation up to four degrees does not degrade significantly the receiver performance.
Another feature of the curves in Figures 12 and 13 is that they exhibit an irreducible error floor as SNR
increases. Furthermore, the smaller the standard deviation is, the lower the error floor. The explanation
is that the random phase increment ∆m generates a phasor ej∆m in the autocorrelator output A[m],
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which, in turn, produces decision errors even in the absence of noise. The smaller the standard
deviation, the lesser the effect of the phasor ej∆m on the autocorrelator output A[m].

-4 -2 0 2 4 6 8 10 12 14 16
SNR per chip  Ec/N0 (dB)
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m=0 degree
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m=3 degree
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Figure 12. BER performance of proposed receiver versus dynamic CPO. CPO: carrier phase offset.
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Figure 13. PER performance of proposed receiver versus dynamic CPO. CPO: carrier phase offset.

8. Conclusions

We have presented a BSDCD scheme of BPSK signals for IEEE 802.15.4 WSNs. Then, a more
meaningful and practical estimate scheme, i.e., an approximate ML estimator with only linear operation,
is proposed for extracting a phase reference from preamble signal. Simulations suggest that our lower
complexity in implementation does not sacrifice much in terms of detection performance, which can
completely meet the requirements of the IEEE 802.15.4 standard. Therefore, it is the most attractive
SDCD solution of choice for WSNs, especially when it used in consumer electronics.

It is important to note that our idea in [10] as well as in this work can be used for simplification
of Equation (8) in [14], where arctan operation is indispensable to performing an initial CFO
estimation process. Loosely speaking, these schemes can be further classified into the hard receiver.
It makes use of only the estimates of the nuisance parameters as if they were the true values for the
noncoherent detection. In the so f t receiver, the postcompensation processor is required to compute
posterioris or conditional probability density functions of the nuisance parameters embedded in the
chip sequence [12]. Thus, the detection process can incorporate a statistical characterization of the
nuisance parameters (instead of the estimated ones). The latter is, of course, nonimplementable
in general.

Furthermore, unlike those who were researching ways to use BSDCD to combat the effect of
chip-error propagation [9], we add that the theory developed here is easily extended to multiple
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differential coherent detection (MDCD). That is to say, the extension of the proposed scheme to
account for multiple-symbols situation is straightforward. As a consequence, the performance gap
between ideal coherent detection and BSDCD, indicated in Figure 7, can be narrowed. Not surprisingly,
multiple unknown CFOEs after DD are necessary to be initially removed. Complexity reduction
techniques may be developed based on the Viterbi algorithm [27], the fast algorithm in [28] and an
algorithm based on subset search [29]. Of course, owing to the reduced PER that this augmented
scheme yields, a much more reasonable trade-off can be achieved and is clearly desirable for both
the battery-operated transmitter and receiver, which benefit from less energy that will be consumed
by retransmissions between sensor nodes [30]. Finally, the complexity and energy efficiency can be
deeply analyzed with the model given in [30]. These subjects will be reported on by the authors in a
forthcoming paper.
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