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Abstract: Underwater wireless technologies demand to transmit at higher data rate for ocean
exploration. Currently, large coverage is achieved by acoustic sensor networks with low data
rate, high cost, high latency, high power consumption, and negative impact on marine mammals.
Meanwhile, optical communication for underwater networks has the advantage of the higher data
rate albeit for limited communication distances. Moreover, energy consumption is another major
problem for underwater sensor networks, due to limited battery power and difficulty in replacing
or recharging the battery of a sensor node. The ultimate solution to this problem is to add energy
harvesting capability to the acoustic-optical sensor nodes. Localization of underwater sensor networks
is of utmost importance because the data collected from underwater sensor nodes is useful only if
the location of the nodes is known. Therefore, a novel localization technique for energy harvesting
hybrid acoustic-optical underwater wireless sensor networks (AO-UWSNs) is proposed. AO-UWSN
employs optical communication for higher data rate at a short transmission distance and employs
acoustic communication for low data rate and long transmission distance. A hybrid received signal
strength (RSS) based localization technique is proposed to localize the nodes in AO-UWSNs. The
proposed technique combines the noisy RSS based measurements from acoustic communication and
optical communication and estimates the final locations of acoustic-optical sensor nodes. A weighted
multiple observations paradigm is proposed for hybrid estimated distances to suppress the noisy
observations and give more importance to the accurate observations. Furthermore, the closed
form solution for Cramer-Rao lower bound (CRLB) is derived for localization accuracy of the
proposed technique.

Keywords: underwater sensor networks; acoustic-optical communication; energy harvesting;
localization

1. Introduction

The development of underwater wireless communication capable sensor nodes has provided new
opportunities for ocean exploration. The spatial-temporal data for oceanic exploration is of utmost
importance for the applications of marine scientific research, ocean energy development and utilization
of ecological underwater environment. Currently, the technologies used for underwater wireless
communication consists of acoustic communication, electromagnetic waves communication, and
optical communication. Acoustic communication systems have been one of the most used underwater
wireless communication technology due to its ability to provide connectivity over very long distances.
However, acoustic waves still have many drawbacks including scattering, high delay due to low
propagation speeds, high attenuation, low bandwidth. Acoustic waves also have a bad impact on the
health of underwater fishes and mammals. According to a recent report by natural resources defense
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council (NRDC), military sonar and other acoustic communication networks are rising the ocean noise,
which has a serious impact on the health of underwater mammals [1,2].

Electromagnetic waves suffer from serious attenuation in water, the attenuation in the ocean is
about 169 dB/m for the 2.4 GHz band, and the attenuation in freshwater is much higher, 189 dB/m [3].
Moreover, electromagnetic waves based underwater communication requires huge antennas and
is limited to the shallow areas of the sea. On the other hand, operating at ultra-low frequencies
yields reduced attenuation levels, in return for high hardware costs and low data rates. Underwater
propagation of light waves also exhibits distinctive characteristics in different wavelengths as shown
in [4]. In 1963, the authors [5] found that attenuation within the range of 450–550 nm wavelengths
(blue and green lights) is much smaller compared to other wavelengths. In 1966, Gilbert et al. [6]
experimentally confirmed this behavior of optical waves, which provided the foundation of underwater
optical communication. Table 1 shows the comparison between three different kinds of underwater
wireless communication carrier waves. Optical waves have the advantage of higher data rate and
low power consumption but low transmission ranges. In this paper, a novel hybrid acoustic-optical
underwater wireless sensor network (AO-UWSN) is considered that benefits from the advantages
of both underwater acoustic communication and optical communication. While the optical wireless
communication is employed to transmit at higher data for shorter range, the acoustic communication
is used for the command and control within the long ranges, which does not require high data rates.

Table 1. Underwater wireless communication channels comparison.

Parameters EM Waves Acoustic Waves Optical Waves

Communication Distance 100 m Upto 20 Km 10–100 m
Transmit Power Few mW to Hundred of Watts 10–100 W Few Watts

Cost High High Low
Data Rate Up to 100 Mbps In Kbps Up to Gbps

Notable research has been previously conducted on the energy consumption and lifetime
maximization aspects of RF wireless sensor networks. In [7], the authors proposed an energy efficient
routing protocol to transfer information in WSNs. Stable election protocol (SEP) and prolong stable
election protocol (P-SEP) are proposed to balance the energy consumption in WSNs [8] and to increase
the network stability [9]. Energy efficiency of acoustic UWSNs has been recently investigated in [10]
for amplify-and-forward scheme along with a minimum energy routing protocol. An enhanced
energy efficient protocol is addressed in [11], which also takes the depth of sensor nodes into account.
A comprehensive survey is also presented on research challenges, localization schemes, and deployment
of UWSNs in [12]. However, to the best of our knowledge, no literature exists that considers the energy
efficiency, network lifetime, energy harvesting and localization of hybrid AO-UWSNs.

Today’s UWSNs consist of battery-powered sensor nodes with a limited energy budget. Albeit the
notable research efforts on designing different protocols for underwater communication networks, no
significant research has been carried out on the energy harvesting methods for UWOSNs. However,
energy harvesting can play a significant role in performance enhancement and improve the lifetime
of UWOSNs. Since underwater sensor nodes cannot survive on the battery power for a long time,
energy harvesting is a promising solution to provide energy from the ambient sources in the aquatic
environment. Noting that energy harvesting techniques used for terrestrial communications are
not applicable for underwater sensor nodes in the aquatic environment, it is necessary to consider
alternative energy harvesting methods, e.g., acoustic piezo-electric harvesters [13] and microbial
fuel cells [14].

The underwater aquatic monitoring demands accurate localization techniques as the collected data
is only useful if the location of the nodes is known to a certain accuracy. Nonetheless, localization of
sensors within UWSNs is also a crucial and challenging task especially for the surveillance applications,
which can scale for a large number of sensor nodes. A number of acoustic underwater sensor networks’
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localization techniques based on time difference of arrival (TDoA) has already been proposed, which
consider different parameters such as signal propagation model, network topology, environmental
factors, localization accuracy, number of anchor nodes, the geometry of anchor nodes and the relative
location of the sensor node to the anchors [15–21]. However, the TDoA measurements for distance
estimation in underwater acoustic communication channels are highly affected by multipath. Received
signal strength (RSS) based distance estimation did not get much attention for UWSNs’ localization
since the multipath propagation of acoustic communication makes it hard to achieve accurate distance
estimation [22]. However, the underwater acoustic channels show good transmission features at certain
water depths and RSS based distance estimation can be considered [23]. In this paper, we propose RSS
based AO-UWSNs’ localization with the capability of energy harvesting.

The contributions of this paper are summarized as follows:

1. A novel hybrid acoustic-optical underwater wireless sensor network localization technique is
proposed in order to benefit from the advantages of both acoustic and optical communication.

2. A weighted multiple observations paradigm is proposed for hybrid estimated distances
to suppress the noisy observations and give more importance to accurate observations.
Considering the hybrid acoustic and optical RSS model, the closed form solution for
Cramer–Rao lower bound (CRLB) is also derived to improve the localization accuracy of the
proposed technique.

3. We consider energy harvesting for the battery limited sensor nodes and show the impact of
harvested energy on the network lifetime maximization and energy efficiency.

1.1. Notations and Symbols

We have used the following notations: Matrices and vectors are denoted by boldface upper-case
and boldface lower-case letters and symbols, respectively. Scalars are denoted by non-boldface
italic letters and symbols. Superscripts (·)T , (·)+ and (·)−1 denote the transpose, Moore-Penrose
pseudoinverse and inverse, respectively. For their convenience, we refer readers to Table 2 for the list
of symbols used throughout the paper.

1.2. Paper Organization

The remainder of the paper is organized as follows: The system model and problem formulation
for hybrid AO-UWSNs are presented in Section 2. In Section 2.4, the proposed localization technique
is devised for AO-UWSNs. In Section 3, we analyze the performance of the proposed technique by
deriving its CRLB. Sections 4 and 5 present the numerical results and conclusions, respectively.
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Table 2. List of symbols.

Symbol Variable Symbol Variable

m Number of anchor nodes σij Noise variance
n Number of sensor nodes θ0 Divergence angle
ηs Spherical spreading loss T Time duration
ηc Cylindrical spreading loss l Actual two-dimensional location of a node
α Absorption coefficient Λ Matrix of Estimated distances

dij Euclidean distance vij Weighting coefficients
d̃ij Estimated distance Φ Importance of an observation
λ Wavelength γ Controlling parameter

e(λ) Extinction coefficient L Actual locations of all the nodes
rj Number of photons L̃ Estimated locations of all the nodes
Łij Propagation loss κ Scaling factor
Prj Received power at node j Ω Rotation factor
Pti Transmitted power by node i Ψ Translation factor

ηi, ηj Optical efficiencies Et Energy consumption
θ Trajectory angle Γd̃ Noise co-variance matrix
r Transmission range δ2 Mean square error

d̃aij Estimated acoustic distance d̃oij Estimated optical distance

2. System Model and Proposed Technique

In this section, the system model and proposed localization technique are introduced.

2.1. System Model

Consider an AO-UWSN which consists of m anchor nodes and n sensor nodes embedded on
the ocean floor or suspending sensors. Assuming that m < n and anchor node locations are known
apriori, a fully connected network is considered where each sensor node is able to communicate with
close and distant neighbors using optical and acoustic channels, respectively. Every sensor node
shares its neighborhood information with the surface buoy. The proposed technique consists of three
major steps:

• Step 1: The sensor nodes sweep the neighboring region using the optical channel and find the
ranges to its neighbors.

• Step 2: Nodes which are not within the reach of an optical channel are communicated by using
the acoustic channel and computes the acoustic ranges.

• Step 3: The surface buoy fuses the optical and acoustic ranges to compute the pairwise estimated
distance matrix and applies a weighted multiple observation dimensionality reduction to find out
the location of each sensor node.

2.2. Acoustic Underwater Ranging

Underwater acoustic channels suffer from two kinds of major losses: attenuation loss and
spreading loss [24]. Attenuation loss is a result of scattering, diffraction, absorption, and leakage from
ducts while spreading loss is a combination of cylindrical and spherical losses [25]. In general, the sea
water transmission loss between any two nodes i and j is modeled as

ηt = ηs + ηc + 10−3αdij, (1)

where ηs is spherical spreading loss, ηc is the cylindrical spreading loss, α is the absorption coefficient,
and dij is the Euclidean distance between nodes i and j. Using the Thorp absorption model [26], α only
depends on the frequency f , i.e.,

α =
0.11 f 2

1 + f 2 +
44 f 2

4100 + f 2 . (2)
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Spherical spreading loss fits the measured data appropriately. Therefore, ignoring the cylindrical
loss and substituting α in (1) for spherical losses ηs = 20 log(dij), we get

ηt = 20 log(dij) + 10−3
(

0.11 f 2

1 + f 2 +
44 f 2

4100 + f 2

)
dij. (3)

Figure 1 shows the transmission loss between any two nodes i and j with respect to distance.
The acoustic ranging based distance d̃aij is estimated from (3) using the real part of Lambert W0

function [27]

d̃aij =
20000W0(1.15 exp−4 α exp0.11ηt)

2.3α
. (4)
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Figure 1. Acoustic transmission loss vs. distance

2.3. Optical Underwater Ranging

Optical light passing through the aquatic medium suffers from widening and attenuation in
angular, temporal, and spatial domains [28]. The widening and attenuation of the underwater optical
signals are dependent on the wavelength. Combining the absorption coefficient a(λ) and scattering
coefficient s(λ) results in the extinction coefficient [29] defined as

e(λ) = a(λ) + s(λ). (5)

The propagation loss is the function of distance dij and extinction coefficient e(λ) and is given by

Łij = exp−e(λ)dij . (6)

In this paper, we consider line of sight communication, where the sensor node i directs the optical light
to sensor node j. Then, the received power at sensor node j is given as [30],

Prj = Pti ηiηjŁij
Aj cos θ

2πd2
ij(1− cos θ0)

, (7)

where Pti is the optical power transmitted by node i, ηi and ηj are the optical efficiencies of node i and j,
respectively, Aj is the aperture area of node j, θ is the angle between trajectory of node i transmitter
and node j, and θ0 is the divergence angle of the transmitted signal. The most common modulation
method for optical wireless communications in the literature is the intensity modulation with direct
detection (IM/DD). The bit error rate (BER) expression for IM/DD with on-off keying is developed for
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the number of a photon arriving at the photon counter using Poisson model. The number of photons
arriving at node j in time duration T is

$ =
Prj ηjλ

TRdhć
, (8)

where Rd is the data rate, h is the Planck’s constant and ć is the free space speed of light. The BER for
the photons arriving at node j is expressed as

bj =
1
2

erfc

(√
T
2
(
√

r1 −
√

r0)

)
, (9)

where r1 = rd + rj + rb and r0 = rd + rb represent the photons required for transmission of binary 1
and 0 respectively, while rd is the dark count noise and rb is the noise produced due to background
illumination. Substituting the values of r1 and r0 in (9) and solving for rj yields

rj =

(
√

rd + rb +

√
2
T

erfc−1(2bj)

)2

− rd − rb. (10)

Substituting (7) and (8) in (10), then estimated optical distance d̃oij between node i and j is obtained
as [30],

d̃oij =
2 cos θ

e(λ)
W0

 e(λ)

2 cos θ

√
2πThćRdrj(1−cos θ0)

ηjλPti ηiηj Aj cos θ

 , (11)

where W0(.) is the real part of Lambert W function.

2.4. Proposed Localization Technique

Given that the noisy range measurements Λ = {d̃ij}m+n
i,j=1,i 6=j are available from (4) and (11), we

define our problem as finding the configuration of m + n nodes in lower dimensional space from d̃ij
such that it is well approximated by the dij. The error function for the pairwise noisy distances is
defined as

min
L

∑
i<j

vij
(
d̃ij − dij(L)

)2 , (12)

where (L) = {l1, l2, ..., lm+n} are the two-dimensional coordinates of all the nodes and vij are the
weighting coefficients. A number of different techniques are available in the literature to solve
this optimization problem, but all of them consider a single observations approach. In this paper,
we propose a dimensionality reduction technique with multiple input observations. The objective
function for the proposed technique is defined

min
Φ(u),L

R

∑
u=1

Φ(u)γ

∑
i<j

vij
(
d̃ij − dij(L)

)2 , (13)

where Φ(u) is the importance of u-th observation such that ∑R
u=1 Φ(u) = 1, γ is the controlling parameter

and R is the total number of observations. The controlling parameter for weights (γ > 1) determine
the distribution of the multiple observations. The weight of each observation is added to the error
function in (13). The logic behind using multiple observations is that, if Φ(u) is used directly, then the
observation view with small error function has Φ(u) = 1, and the rest of the observation views have
Φ(u) = 0. This behavior is not optimal as only one view is selected while all other views are ignored.
Therefore, the proposed adaptive weight learning paradigm is an intuitive solution that considers
a combination of weights for each observation view. The optimization problem in (13) is solved by
decomposing it into two sub-problems.
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2.4.1. Updating L for fixed Φ(u)

In the first sub-problem, (13) is rewritten as

min
L

(ρ1 + ρ1 − 2ρ3), (14)

where

ρ1 =
R

∑
u=1

∑
i<j

Φ(u)γ
vijd̃

(u)2

ij , (15)

ρ2 =
R

∑
u=1

∑
i<j

Φ(u)γ
vijd2

ij(L)(u), (16)

and

ρ3 =
R

∑
u=1

∑
i<j

Φ(u)γ
vijd̃

(u)
ij dij(L)(u). (17)

Optimization of this sub-problem is achieved by a majorization approach. It is clear from (14) that
the first term ρ1 is dependent on fixed weights vij and constant estimated distance d̃ij, thus ignored
from the optimization process. The second term in (14) is the sum of weighted squared distances,
which is written as

ρ2 = Tr(LT(vijΦ(u)γ
)L) = Tr(LTΘL), (18)

where Θ ∈ R((m+n)×(m+n)) with elements

Θij =


−∑R

u=1 Φ(u)γ
vij, if i 6= j,

∑m+n
j=1,j 6=i ∑R

u=1 Φ(u)γ
vij, if i = j.

(19)

The last term in (14) is the sum of weighted distances for all the observations, by Cauchy–Shwartz
inequality ρ3 is approximated as

ρ3 = ∑
i<j

(
R

∑
u=1

Φ(u)γ
vijd̃

(u)
ij

)
dij(L) ≤ Tr(LTBZ), (20)

where Z are the estimated points from previous iteration and the elements of B are defined as

bij =


−∑R

u=1 Φ(u)γ vij d̃
(u)
ij

dij(Z
, if i 6= j and dij(Z 6= 0),

0, if i 6= j and dij(Z = 0),

(21)

and

bii =
m+n

∑
j=1,j 6=i

bij. (22)

Substituting the values of ρ1, ρ2 and ρ3 in the objective function defined in (14) yields

min
L

(ρ1 + ρ1 − 2ρ3) = ρ1 + Tr(LTΘL)− 2 · Tr(LTBZ). (23)

The minimum of function in (23) is calculated by taking its partial derivative with respect to L as

∂χ

∂L
= 2ΘL− 2BZ . (24)
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By setting (24) to zero, we get
L̂ = Θ+BZ , (25)

where Θ+ represents the Moore–Penrose inverse of Θ. There are no missing elements in matrix Θ

therefore, (25) is simplified as

L̂ =
1

(m + n)∑R
u=1 Φ(u)γ BZ . (26)

The estimated locations in (26) can be refined using any linear transformation method with the
help of anchors. Here we used Helmert transformation [31] for transformation from local coordinates
to global coordinates, i.e.,

L̃ = κΩT(L̂) + Ψ, (27)

where κ, Ω and Ψ are the scaling, rotation, and translation factors for coordinates
transformation, respectively.

2.4.2. Updating Φ(u) for Fixed L

In order to simplify the notation, (13) is re-written as

ρ =
R

∑
u=1

Φ(u)γ
ρu, (28)

where ρu = ∑i<j vij
(
d̃ij − dij(L)

)2 is the u-th observation. To solve this sub-problem, we use Lagrange
multiplier by taking the assumption that ∑R

u=1 Φ(u) = 1. The Lagrangian function of ρ is

L(ρ, λ̄) =
R

∑
u=1

Φ(u)γ
ρu + λ̄

(
R

∑
u=1

Φ(u) − 1

)
, (29)

where λ̄ is the rate of change of the function. The partial derivative of (29) with respect to Φ(u) is

∂L(ρ, λ̄)

∂Φ(u)
= γΦ(u)(γ−1)

ρu − λ̄. (30)

By setting (30) equal to zero, we get

Φ(u) =

(
λ̄

γρu

) 1
λ̄−1

. (31)

Using the constraint of ∑R
u=1 Φ(u) = 1, the multiplier term λ̄ is dropped out and the optimal value

of Φ(u) is obtained as

Φ(u) =
ρ(u)

1
1−γ

∑R
u=1 ρ(u)

1
1−γ

. (32)

Note that the choice of γ in (32) depends on the correlation between different observation views.
If the observation views are highly correlated to each other, then a large value of γ is preferred because
this results in getting equal weights. But if the observation views are highly uncorrelated then small
value of γ is selected because this results in giving more importance to the accurate observation views.
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2.4.3. Impact of Energy Harvesting on Localization Performance

The energy consumed by all the nodes in the network is expressed as

Et =
m+n

∑
i=1

E fi
+ (m + n)

m+n

∑
i=1

Eri , (33)

where E fi
is the energy required for basic operation of the electronic circuitry and Eri is the energy

consumed for transmission. Eri can be expressed as

Eri = Eb

(
4πri

λ′

)2
, (34)

where Eb is the energy required for single bit transmission, ri is the transmission range of node i and λ′

is the wavelength. The energy consumption is directly proportional to the square of the transmission
range ri. Since the accuracy of the localization technique and the transmission range ri depend on the
energy arrival into the network, the efficiency η of the localization technique can be defined as

η =
Et

δ2 , (35)

where δ2 = E
(
(l̃ − l)(l̃ − l)T) is the mean square error of a single node localization. As a result, the

efficiency of the proposed localization technique increases with the energy arriving from the ambient
underwater energy sources.

2.4.4. Complexity Analysis of the Proposed Technique

In order to find the location of given sensor nodes, the first step is to find all the pairwise distances.
Then, a procedure should be followed to minimize the discrepancy between the pairwise distances and
their actual Euclidean distances in a low-dimensional space. To find the pairwise distances between
non-neighboring nodes, single hop local distances or numerical methods for distance estimation are
used [32,33]. The time complexity to find out all the pairwise distances is O(Z3), where Z = m + n are
the total number of nodes. The time complexity of the proposed multiple observation technique to
compute the pairwise distances is on the order of O(Z3). The transformation from the local coordinates
to global coordinates using anchor nodes requires O(m2) + O(Z) amount of time. Thus, the total
complexity of the proposed technique is

Complexity = O(Z3) + O(m2) + O(Z), (36)

which can be regarded as O(Z3) as the overall complexity is dominated by the first term.

3. Performance Analysis

The Cramer–Rao lower bound (CRLB) defines the lower bound for the variance of any unbiased
estimator, when the range measurement error is zero mean Gaussian distributed [34]. The probability
density function for d̃ij, conditioned on li and l j, can be written as

f (d̃ij|li, l j) =
1√

2πσ2
ij

e

(
− 1

2σ2
ij
(d̃ij−dij)

2

)
, (37)



Sensors 2018, 18, 51 10 of 16

where d̃ij is the estimated distance, dij =‖ li − l j ‖=
√
(xi − xj)2 + (yi − yj)2 is the Euclidean distance,

and σ2
ij is the noise variance. The expression for the Fisher information matrix (FIM) becomes

I(l) = E f (d̃/l)

{[
∂ ln( f (d̃/l))

∂l

]T [
∂ ln( f (d̃/l))

∂l

]}
. (38)

It is assumed that the noise added to the ranging measurements is zero mean Gaussian process
with variance σd̃. Therefore, the RSS based noise co-variance matrix is Γd̃ = diag(σd̃1

, σd̃2
, ..., σd̃n

).
Then, the likelihood ratio is computed as

ln( f (d̃/l)) = ln

 1

(2πΓd̃)
(n)
2

 (39)

−1
2
(
d̃− d(l)

)T
Γ−1

d̃

(
d̃− d(l)

)
.

The FIM is constructed from the likelihood ratios, given by

χd̃ = ΘT
d Γ−1

d Θd, (40)

where

Θd = −β


xi−xj

d2

yi−yj
d2


T

, (41)

and β is the path loss exponent. The elements of χd̃ are derived as

{χd̃}1,1 =
5
(
d̃− d(l)

)T

5x
Γ−1

d
5
(
d̃− d(l)

)
5x

, (42)

{χd̃}1,2 =
5
(
d̃− d(l)

)T

5x5 y
Γ−1

d
5
(
d̃− d(l)

)
5x5 y

, (43)

and

{χd̃}2,2 =
5
(
d̃− d(l)

)T

5y
Γ−1

d
5
(
d̃− d(l)

)
5y

. (44)

Simplifying (42)–(44), we get

{χd̃}1,1 =
β2(xi − xj)

TΓ−1
d (xi − xj)

d4 , (45)

{χd̃}1,2 =
β2(xi − xj)

TΓ−1
d (yi − yj)

d4 , (46)

and

{χd̃}2,2 =
β2(yi − yj)

TΓ−1
d (yi − yj)

d4 . (47)

The CRLB is computed as the inverse of the diagonal elements of the FIM, i.e.,

CRLB = {χd̃}
−1
1,1 + {χd̃}

−1
2,2 . (48)
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Finally, the mean square error of each node should satisfy the following condition:

∑n
i=1(li − l̃i)

2

n
≥ {χd̃}

−1
1,1 + {χd̃}

−1
2,2 . (49)

The condition in (49), gives the theoretical lower accuracy bound for the proposed localization
technique which is valuable to design a localization system.

4. Numerical Results

In this section, we present numerous simulation results executed in MATLAB (R2016b,
MathWorks, Inc., Natick, MA, USA) to investigate the performance of proposed AO-UWSNs
localization technique. Two different scenarios are generated in a square area of (10× 10) m2 for a
various number of anchor nodes and sensor nodes. To generate different observations for each scenario,
we randomly select m + n pair of noisy ranges d̃ij. Gaussian noise is added to each d̃ij, with mean dij
and variance σ2. The first scenario consists of three anchor nodes (red squares) and five sensor nodes
(green stars) as shown in Figure 2a. Four different observation views are generated for each scenario
as shown in Figure 2b–e. It is clear from Figure 2f that the multiple observations result in smaller error
function. The setup parameters for the first scenario and comparison of the error function are shown
in Table 3.
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Figure 2. (a) Actual locations of the nodes for m = 3 and n = 5; (b) Single observation at σ2 = 1.77 m;
(c) Single observation at σ2 = 0.5 m; (d) Single observation at σ2 = 0.17 m; (e) Single observation at
σ2 = 0.05 m; (f) Multiple observations.

The second scenario consists of four anchor nodes and 20 sensor nodes randomly deployed in
a square area of (10× 10) m2 as shown in Figure 3a. Figure 3b–e shows the results of four different
single observation views with different noise variance. It is clear from Figure 3f that the multiple
observations result in a smaller error function. The setup parameters for the second scenario and
comparison of the error function are shown in Table 4. The comparison for the two different scenarios
between a single observation and multiple observations is shown in Figure 4, which clearly tells us that
the proposed multiple observations approach results in a better approximation of the sensor nodes’
configuration for a large noise variance. The final location estimation for both of the scenarios are
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achieved by using the anchor nodes, and Figures 5 and 6 show the final location estimation of the first
and second scenarios with a mean square error of 0.12 m and 0.64 m, respectively.

Table 3. Parameters setup and error function comparison for the first scenario.

Observations m n σ2 Error Function

1st 3 5 1.77 m 0.11
2nd 3 5 0.56 m 0.01
3rd 3 5 0.17 m 0.001
4th 3 5 0.05 m 2.3 ×10−4

Multiple 3 5 - 2.3 ×10−6
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Figure 3. (a) Actual locations of the nodes for m = 4 and n = 20; (b) Single observation at σ2 = 1.56 m;
(c) Single observation at σ2 = 0.5 m; (d) Single observation at σ2 = 0.15 m; (e) Single observation at
σ2 = 0.04 m; (f) Multiple observations.

Table 4. Parameters setup and error function comparison for second scenario.

Observations m n σ2 Error Function

1st 4 20 1.56 m 0.19
2nd 4 20 0.49 m 0.06
3rd 4 20 0.15 m 0.018
4th 4 20 0.04 m 0.0036

Multiple 4 20 - 9.6 × 10−6

The energy efficiency of a localization technique is characterized by (35), and Figure 7 shows the
impact of energy harvested with respect to the efficiency for a target mean square error. The target
means that the square error is set to 0.12 m and 0.64 m for first and second scenario, respectively. It is
clear from Figure 7 that the efficiency of the localization technique improves with the energy harvested
from the aquatic environment. The mean square error performance of the proposed technique is
compared with well-known network localization schemes such as multidimensional scaling [35]
and manifold regularization [36]. Figure 8 shows that the proposed technique outperforms both



Sensors 2018, 18, 51 13 of 16

multidimensional scaling and manifold regularization due to the novel strategy of weighting the
multiple observation views for a single network.
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Figure 4. Error function vs. noise variance for single and multiple observations.
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Figure 5. Mean square error for m =3 and n = 5.
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Figure 6. Mean square error for m =4 and n = 20.
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Figure 8. Signal to noise ratio (SNR) vs. mean square error.

5. Conclusions

In this paper, a novel hybrid acoustic-optical underwater wireless sensor network localization
technique is proposed, in order to get the advantage of both acoustic and optical communication.
An energy harvesting scheme is devised for the battery limited sensor nodes to increase the lifetime of
the network. A weighted multiple observations paradigm is proposed for hybrid estimated distances
to suppress the noisy observations and give more importance to accurate observations. A number of
simulations are conducted to verify the performance of the proposed localization technique.
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