
sensors

Article

A Study on the Model of Detecting the Variation of
Geomagnetic Intensity Based on an Adapted
Motion Strategy

Hong Li, Mingyong Liu *, Kun Liu and Feihu Zhang * ID

College of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China;
lxglh@mail.nwpu.edu.cn (H.L.); liukunkmz@126.com (K.L.)
* Correspondence: liumingyong@nwpu.edu.cn (M.L.); feihu.zhang@nwpu.edu.cn (F.Z.)

Received: 31 October 2017; Accepted: 21 December 2017; Published: 25 December 2017

Abstract: By simulating the geomagnetic fields and analyzing thevariation of intensities,
this paper presents a model for calculating the objective function ofan Autonomous Underwater
Vehicle (AUV)geomagnetic navigation task. By investigating the biologically inspired strategies,
the AUV successfullyreachesthe destination duringgeomagnetic navigation without using the
priori geomagnetic map. Similar to the pattern of a flatworm, the proposed algorithm relies on
a motion pattern to trigger a local searching strategy by detecting the real-time geomagnetic intensity.
An adapted strategy is then implemented, which is biased on the specific target. The results show
thereliabilityandeffectivenessofthe proposed algorithm.

Keywords: autonomous underwater vehicle; geomagnetic navigation; bio-inspired navigation;
gradient descent steering algorithm

1. Introduction

Autonomous Underwater Vehicles (AUVs) have been employed in various civil and military
fields [1,2], such as ocean data collection, laying pipelines, scouting, and laying mines. However,
underwater navigation is still a challenging task for AUVs, in which a trade-off between performance
and objective is required [3]. For instance, the Inertial Navigation System (INS) has a horizontal
drifting error of less than 2000 m per day, and the cost can reach over one Million CNY [4].

Why do we need geomagnetic navigation when the Global Position System (GPS) is readily
available? GPS provides a precise point location, but only measures travel direction when in constant
motion. A GPS receiver must collect several sets of latitude and longitude pairs to obtain the direction.
In addition, GPS signals may become blocked due to obstructions, adverse terrestrial and space
weather, ionospheric conditions, or being underwater or underground. Hence, geomagnetic navigation
is animmediate navigational method for air, ground, and water-based systems.

Geomagnetic fields can be treated as a major candidate for providing both the positioning
and directional cues [5,6]. Large scale oceanic travelers, such as pelagic birds, are likely to relyon
geomagnetic positioning cues during their trips [7]. Aprevious homing experiment showed that the
geomagnetic information can help adult green turtles to return to their egg laying sites [8]. Therefore,
the geomagnetic fields can be developed asvector fields to provide stable positioning information for
an AUV navigation task in this paper.

Geomagnetic navigation technology can provide a reliable navigation reference by measuring
geomagnetic fields, with the advantages of concealment, a low cost, and so on [9]. Meanwhile,
many geomagnetic sensors have been developed with a much higher sensitivity, such as Mag-03
(0.1 nT) and NS.MS (1 nT). Nowadays, the accuracy of a state-of-the-art magnetometer has reached
0.1 nT [10]. Assisted by the sensors, the geomagnetic navigation technique has also been developed.
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Most conventional geomagnetic navigation methods for underwater vehicles focus on correlation
matching [11–13]. However, the performances of the conventional techniques significantly drop when
the pre-stored geomagnetic data is missing [14].

Toavoid any dependency on a priori geomagnetic data, the bio-inspired geomagnetic navigation
method is proposed. The most informative experimental paradigms have verified that animals (like sea
turtles and pigeons) can reach their goal locations without using pre-stored geomagnetic data [15,16].
Bionics explains this biological magnetotaxis movement behavior as the response to geomagnetic
stimuli. Magnetotaxisis an orientation mechanism which does not determine the gradient direction
directly, but whichuses the searching strategy to reach the desired target by perceiving the variations
in geomagnetic fields potential occurring during the movement. For example, pigeons can always
find their home from a distant place where they have never been before [16]. It seems that pigeons
just need to perceive the real-time geomagnetic information, whilst being aware of the geomagnetic
information of their homes. Therefore, by imitating the animal’s behavior, a new navigation method
is proposed by perceiving the variation of the geomagnetic environment. Previous studies have
mainly focused on questions about the bio-inspired geomagnetic navigation, and the search algorithm
based on the evolutionary strategy was introduced to solve the multi-objective search problem [17,18].
However, the previous algorithm was inefficient and vulnerable to premature convergence under
some conditions, and to address this, we will propose an adapted searching algorithm.

This paper presents an Adapted Motion Search Algorithm (AMSA), which utilizes the
adaptive local searching mechanism to solve the bio-inspired geomagnetic navigation problem.
Here, the pre-stored geomagnetic and geographic information isnot required, and the proposed
algorithm is based on an adapted motion strategy to search multi-objective geomagnetic
components by perceiving the variation of thegeomagnetic environment and calculatingthevaluesof
theobjectivefunctionat thecurrentposition.

The rest of this paper is structured as follows: in Section 2, the biological evidence is given and
the magnetotaxis is introduced. In Section 3, the search problem of geomagnetic navigation for an
AUV is considered. Next, the adapted algorithm based on the fuzzy logic is explained in Section 4.
Then, the simulation setup is introduced in Section 5, followed by anevaluation of the performance.
Finally, the conclusion is given in Section 6.

2. Biological Evidence

The proposed model is based on the biological evidence, which provides patterns with respect
to the navigation ability.Biological studies have demonstrated the existence of magneto-reception in
green turtles, homing pigeons, passerine birds, and spiny lobsters [19,20].

Tropotaxisis a mechanism of the central nervous system of an animal used to guide an estimate
for a guidance system, such as Phototaxis, Hygrotaxis, Chemotaxis, and Magnetotaxis, etc. Here,
the behavior of the flatworm is an example of phototaxis [21]. It has been shown that the flatworm
does not turn directly toward adarkregion. Instead, theflatworm increases its turning rate as the
light intensityincreases [22]. It shows that the flatworm can quickly adjust its direction toward the
darkregion by perceiving the light intensity of the environment, which is shown in Figure 1.

Magnetotaxis, therefore, is also an orientation mechanism, which is not employed to determine
the gradient direction, but to perceive the variations of geomagnetic fields. For example, therecorded
paths of thereleased sea turtles show that the animals can reach their homes without using an a priori
geomagnetic map, whilstbeing aware of the geomagnetic information of their homes, which is shown
in Figure 2 [15].
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Figure 1. The flatworm moves toward the dark region. 

 
Figure 2. Trajectories of migrating sea turtles. 

3. Problem Formulation 

In this paper, the motion of the AUV is considered in the 2D Cartesian coordinate system. This 
simplification is justified due to the fact that the difference of the geomagnetic in vertical direction is 
negligible. The kinematic equations of the motion are introduced as follows: 
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where k  is the time instant ( 0,1, , 1)k N= ⋅⋅ ⋅ − , kd  is the step size, and ( )kθ  is the heading of the 
AUV. 

3.1. Mathematical Model 

The geomagnetic fields include multiple geomagnetic components [11], which can be described 
as follows: 

1{ , , }nB B B= ⋅⋅⋅  (2) 

where 1, , nB B⋅ ⋅ ⋅  are defined as the geomagneticcomponents, such as the north geomagnetic field 
component xB , the east geomagnetic field component yB , and the vertical geomagnetic field 
component zB , and the total intensity FB , the horizontal magnetic field HB , the declination angle 

DB , and the inclination angle IB , which are shown in Figure 3. 
From the perspective of bionics, biological magnetotaxis behavior is the response to geomagnetic 

environment stimuli. Its physical significance is that themultiple geomagnetic parameters could 
determine the geographic locations on the earth [12]. The process of geomagnetic navigation is the 
convergence process of the geomagnetic components from the current position to the target position. 
When the geomagnetic components converge to zero, an AUV achieves the navigation task. 
Therefore, it can be considered asthe multi-objective convergence process, as follows: 
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Figure 2. Trajectories of migrating sea turtles.

3. Problem Formulation

In this paper, the motion of the AUV is considered in the 2D Cartesian coordinate system.
This simplification is justified due to the fact that the difference of the geomagnetic in vertical direction
is negligible. The kinematic equations of the motion are introduced as follows:

Xk = Xk−1 + dk cos(θ(k− 1))
Yk = Yk−1 + dk sin(θ(k− 1))
θ(k) = θ(k− 1) + η·∆θ(k)

(1)

where k is the time instant (k = 0, 1, · · · , N− 1), dk is the step size, and θ(k) is the heading of the AUV.

3.1. Mathematical Model

The geomagnetic fields include multiple geomagnetic components [11], which can be described
as follows:

B = {B1, · · · , Bn} (2)

where B1, · · · , Bn are defined as the geomagneticcomponents, such as the north geomagnetic field
component Bx, the east geomagnetic field component By, and the vertical geomagnetic field component
Bz, and the total intensity BF, the horizontal magnetic field BH , the declination angle BD, and the
inclination angle BI , which are shown in Figure 3.

From the perspective of bionics, biological magnetotaxis behavior is the response to geomagnetic
environment stimuli. Its physical significance is that themultiple geomagnetic parameters could
determine the geographic locations on the earth [12]. The process of geomagnetic navigation is the
convergence process of the geomagnetic components from the current position to the target position.
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When the geomagnetic components converge to zero, an AUV achieves the navigation task. Therefore,
it can be considered asthe multi-objective convergence process, as follows:{

min F(θ(k))
s.t. : ti = f (Bt

i , Bk
i , θ(k))

(3)

where Bt
i represents the geomagnetic components of the target position, Bk

i represents the geomagnetic
components of the current position, and F(·) is the objective function.
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3.2. General Regularized the Objective Function

The bio-inspired geomagnetic navigation is caused by the magnetotaxis, and the difference error of
the geomagnetic components between the current position and the target position is considered as the
stimulus. Then, the introduced objective function can describe the difference error of the geomagnetic
components, wherein theobjective function of the i-th geomagnetic component is followed as:

fi(θ(k)) = (Bt
i − Bk

i )
2
, i ∈ n (4)

Considering the different magnitude and unit of thegeomagnetic components, the objective
function is normalized as follows:

F(k) =
1
N

N

∑
i=1

fi(B, k)
fi(B, 0)

=
1
N

N

∑
i=1

(Bt
i − Bk

i )
2

(Bt
i − Bo

i )
2 (5)

where Bo = (Bo
1, Bo

2, · · · , Bo
n) are the geomagnetic components of the starting position.

Figure 4 shows the amplitude characteristic of the objective function F(k). Thais means that the
geomagnetic fields area concave and convex non-uniform field.

The purpose is that the objective function converges to the optimal value in the search process,
and the vector θ(k) is bound to the optimal vector θ∗, which can be expressed as:

lim
k→∞

F(θ(k))→ 0 (6)

Based on the above description, the bio-inspired geomagnetic navigation problem ofan AUV
could be generalized as themulti-objective searching problem, by using the objective function toexplore
and exploit the geomagnetic information.
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4. Method 
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4. Method

4.1.Search Strategy of AMSA

To balance the exploration and the exploitation, the searching algorithm based on an adapted
motion strategy is presented.

Magnetotaxis is an efficient orientation mechanism, which does not determine the gradient
direction directly, but perceives the variations in the geomagnetic fields. This isa single-point search
method, and each time it generates a newsolution from a current solution. The current solution
updated withthe real-time geomagnetic data is called the iteration solution, and thecorresponding
search process is called the iteration search. In consideration of the non-uniform geomagnetic fields,
the vehicle does not turn directly toward the target region. Instead, the vehicle increases its turning
angle when the intensity increases in an effort to arrive at the preferred region.

(1) Heading initialization

By randomly generating the initial heading space Q, which is defined as Q =
{

θj
∣∣j = 1, 2, · · · , n

}
,

θj can be expressed as:
θj = θ0 × j, j ∈ [1, n] (7)

where θ0 is the sampling interval, n is the number of the neighborhood of the current position, and
n = 2π

θ0
.

So, when k = 1, the initial heading can be selected as follows:

θ(1) = rand
{

θj
}

(8)

(2) Reactive rules

In Figure 5, thevariation rate of the intensity has been calculated at point (k− 2) and (k− 1).
If the variation at (k− 1) has decreased, then the target position close to the right, and the turning of
∆θ(k) clockwise (CW) is performed, and η = −1. Otherwise, the turning of ∆θ(k) counterclockwise
(CCW) is performed, and η = +1.

The choice of the turning direction is explained in the following description of the algorithm:
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Algorithm 1: The choice mechanism of the turning direction

repeat {
If ( F(k− 2)> F(k− 1) and the rotation direction is anticlockwise (CCW) at k− 1
or

F(k− 2)≤ F(k− 1) and the rotation direction is clockwise (CW) at k− 1)
Then rotate CW ∆θ(k) and move forward dk
Else rotate CCW ∆θ(k) and move forward dk

}
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Here, dk is the step size, where the turning angle is determined by the variation of the intensity.
Therefore, ∆θ(k) can be expressed as the following:

∆θ(k) =


30◦, 0 < |F(k)| ≤ γ1
|F(k)| − γ1

γ2 − |F(k)|
(θ(k− 1)− θ(k− 2)), γ1 < |F(k)| ≤ γ2

60◦, γ2 ≤ |F(k)|

(9)

where γ1 and γ2 are the experiential thresholds.

(3) Terminate condition

If the searching algorithm meets the termination condition, which can be expressed as:

|F(k)− F(k− 1)| < ε (10)

where ε is the small positive constant, then the searching algorithm will terminate; otherwise, go to
step (2) above.

The proposed search strategy of AMSA is shown in Figure 6.
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4.1. Online Estimation of Measurement Noise

An online estimation of the measurement noise is performed for the received signal by the
geomagnetic sensor. The process is represented as

ρi =
1
m

m

∑
j=1

∣∣gi(aj)− 0.5
(

gi(aj−1) + gi(aj+1)
)∣∣ (11)

where ρi is the variable of the measured magnetic data k-th, in particular, ρi = |gi(S(k− 1))− gi(S(k))|
when dis(S(k − 1), S(k)) ≤ l; aj is the sampling point, a1 = S(k − 1), and am = S(k); gi(·) is the
measured magnetic data at the sampling point aj; gi(S(k)) is the measured magnetic variable at S(k);
and the actual value of the magnetic variable will be in the interval [gi(S(k))− ρi(k), gi(S(k)) + ρi(k)].

Therefore, the estimation of the measurement noise is expressed as

gi(S(k)) = [gi(S(k))− ρi(k), gi(S(k)) + ρi(k)] (12)

Here, the outlier eliminating is designed to get rid of gross errors when the measured magnetic
data goes out of scope. The process is shown in Figure 7.
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5. Results

To verify the effectiveness of the proposed searchalgorithm, numerical simulations
were implemented.

5.1. Simulation Setup

The Word Magnetic Model (WMM2010) is used to provide thereal time geomagnetic data as
the geomagnetic sensor [23]. Simulations have been carried out based on the three physicalfields:
the north magnetic field Bx, the east magnetic field By, and the total intensity Bz, which are mutually
independent variables and retrieved in real time from the WMM2010.

In the simulations, we choose a rectangular area from 15◦ north latitude and 120◦ west longitude
(15 N, 120 W) to 35◦ north latitude and 100◦ west longitude (35 N, 100 W). In this scenario, thestarting
position is located at (20 N, 115 W), and the goal is located at (30 N, 105 W), where the three geomagnetic
components for the starting positions are given as:(

Bk
x = 28034 nT, Bk

y = 474.3 nT, Bk
z = 39764 nT

)
the targetposition is (

Bt
x = 24881 nT, Bt

y = 3557.9 nT, Bt
z = 47196 nT

)
where the red square “�” standsfor the starting position and the red triangle “5” stands for the target
position, which aredepicted in Figure 8. Here, the parameter settings are listed in Table 1.

Table 1. Setting navigation parameters.

No Parameters Size

1 θ0 30◦

2 γ1 0.1
3 γ2 0.3
4 ε 0.0001
5 Fmin 0.05
6 dk 500 m
7 σ 10
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5.2. Simulation Results

To demonstrate the effectiveness and efficiencyof the proposed algorithm, this article gives a
comparison of the different methods.

Comparative studies between the proposed algorithm (AMSA) and the gradient descent steering
algorithm (GDSA) were performed to evaluate the effectiveness of the proposed method.

As presented in Figure 8, both strategies can accomplish the navigation task. The input of
both the algorithms relied on the environmental stimuli, which was the variation of the objective
function. However, the GDSA has the worst performance during the whole space, which is caused
by the gradient descent method. But, the AMSA can balance the exploration and the exploitation by
perceiving the variations in geomagnetic fields with a better performance.

The beginning of two algorithms is shown in Figure 9a,b, respectively. Although the heading
in Figure 9b is far away from the target shown above, it does not affect the results of the
searching algorithms.
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5.3. Performance Evaluation of the Algorithms

5.3.1. Convergence Analysis

Figure 10 illustrates theconvergence property of the algorithms. The convergence curves of the
objective function show a significant difference between the two algorithms. The total numbers of the
iteration are 438 and 343, respectively. This shows that the AMSA has a better real-time performance,
in contrast to the GDSA algorithm, and can improve the searching efficiency by 22%.

Sensors 2018, 18, 39  10 of 13 

 

iteration are 438 and 343, respectively. This shows that the AMSA has a better real-time performance, 
in contrast to the GDSA algorithm, and can improve the searching efficiency by 22%. 

 
Figure 10. The convergence curves of the objective function. 

5.3.2. Robustness 

Figures 11 and 12 illustrate the states of the three geomagneticcomponents. It can be seen that 
the convergence of asynchronous consistency occurred in GDSA, whereas AMSA is effective with its 
rapid convergence and strong robustness. The AMSA is thus more efficient and reliable than GDSA. 

0 50 100 150 200 250 300 350 400 450
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of Iterations

Th
e 

su
b-

ob
je

ct
iv

e 
fu

nc
tio

n 
fi(

k)

 

 
North(nT)
East(nT)
Vertical(nT)

5 10 15 20 25 30 35 40

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

 

 

 
Figure 11. Three components convergencecurvesof the GDSA. 

0 50 100 150 200 250 300 350 400 450
0

0.2

0.4

0.6

0.8

1

1.2

1.4

The steps of iteration

T
he

 o
bj

ec
tiv

e 
fu

nc
tio

n 
F

(k
)

 

 
AMSA
GDSA

Figure 10. The convergence curves of the objective function.

5.3.2. Robustness

Figures 11 and 12 illustrate the states of the three geomagneticcomponents. It can be seen that
the convergence of asynchronous consistency occurred in GDSA, whereas AMSA is effective with its
rapid convergence and strong robustness. The AMSA is thus more efficient and reliable than GDSA.
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5.3.3. AnalysisPaths 

The straightness of a path describes the amount of turning in a given searching space. It is useful 
to measure the straightness of the observed paths, in order to evaluate the performance of the 
algorithm. 
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5.3.3. AnalysisPaths

The straightness of a path describes the amount of turning in a given searching space. It is
useful to measure the straightness of the observed paths, in order to evaluate the performance of
the algorithm.

The straightness index is a relative measure, which compares the overall displacement G of a
path with the total path length T [24,25]. If the path starts at location (x0, y0) after k steps with lengths
dk(k = 1, 2, · · · , K), and ends at (xt, yt), then the straightness index τ is given by

τ =
G
T

=
|(x0, y0), (xt, yt)|

K
∑

k=1
dk

(13)

This number lies between 0 and 1, where 1 corresponds to the movement in a straight lineand 0
corresponds to a random walk. Therefore, the straightness index is intuitivelyeasy to understand and
is also simple to compute. As seen in Table 2, the straightness index of the AMSA is greater than the
GDSA, whichmeansthat the path for AMSA issmoothing, with respect to a fast convergence speed.

Table 2. A comparison between two algorithms.

Algorithm The Steps of Iteration The Straightness Index

GDSA 438 0.6217
AMSA 343 0.7514

5.4. Discussions

The simulations show that the navigation task can besuccessfully carried out by the magnetotaxis,
which involves no determination of the gradient direction, but only themeasurementof the variation
in the geomagnetic fields. In the simulation, a prior knowledge of geomagnetic information is not
required, and the navigation task is solved, only by relying on the three axial magnetic sensor to
ascertainthe values ofgeomagnetic components. Therefore, the task of the long-distance navigationcan
be practicallyrealized.

Consideringthat the geomagnetic fields include multiple geomagnetic components and the
objective function is a non-uniform field, it is difficult to determine the optimal gradient direction
without using an a priori geomagnetic map. In this paper, the gradient descent steering algorithm
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(GDSA) is used to accomplish the navigation task, by measuring geomagnetic information about
the multi-point, which isthe neighborhood of the current position, to calculate the objectivefunction
of the multi-point and obtainthe optimal gradientdirection. In comparison, AMSA is a single-point
search strategy without using an a priori geomagnetic map to balance the global exploration and the
local exploitation.

The time complexity of the proposed algorithm is O(k), but the time complexity of GDSA is O(kn),
where n is the number of the neighborhood of the current position.

In addition, a comparison of time-consuming between the GDSA and the AMSA demonstrates
that the presented method can improve the efficiency markedly by 22%.

Therefore, the gradient descent steering algorithm (GDSA) is not suitable to be used in therealistic
navigation application.

6. Conclusions

The paper presents an active searching strategy based on the magnetotaxis, which is derived from
a biological-inspired tropotaxis behavior, for long-range navigationof an Autonomous Underwater
Vehicle (AUV). It is a novel method without using the priori geomagnetic information. Firstly,
the geomagnetic navigationproblem can be attributed to a multi-objective searching problem. Then,
the geomagnetic navigation modelis established by constructing an objective function. Meanwhile,
two algorithms are presented and compared to test the effectiveness of the proposed method. Finally,
the results indicate that the AMSA is more efficient than the GDSA.

Furthermore, by taking the complex and unknown environments for anAUVinto consideration, we
will investigate the spatial discriminationof the searching algorithm in the presence of the geomagnetic
anomaly environments.
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