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Abstract: Three-dimensional SiO2-based inverse opal (SiO2-IO) nanostructures were prepared for use
as biosensors. SiO2-IO was fabricated by vertical deposition and calcination processes. Antibodies
were immobilized on the surface of SiO2-IO using 3-aminopropyl trimethoxysilane (APTMS),
a succinimidyl-[(N-maleimidopropionamido)-tetraethyleneglycol] ester (NHS-PEG4-maleimide)
cross-linker, and protein G. The highly accessible surface and porous structure of SiO2-IO were
beneficial for capturing influenza viruses on the antibody-immobilized surfaces. Moreover, as the
binding leads to the redshift of the reflectance peak, the influenza virus could be detected by simply
monitoring the change in the reflectance spectrum without labeling. SiO2-IO showed high sensitivity
in the range of 103–105 plaque forming unit (PFU) and high specificity to the influenza A (H1N1) virus.
Due to its structural and optical properties, SiO2-IO is a promising material for the detection of the
influenza virus. Our study provides a generalized sensing platform for biohazards as various sensing
strategies can be employed through the surface functionalization of three-dimensional nanostructures.
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1. Introduction

Influenza is an acute infectious disease caused by the influenza virus. The virus, which belongs
to a genus of the Orthomyxoviridae family, is divided into three types: influenza A, B, and C [1].
The influenza A virus has recurrent epidemics and is recognized as a serious public health hazard [2].
A rapid and precise diagnosis is therefore important to prevent the spread of the disease. Existing
virus detection techniques, such as enzyme-linked immunosorbent assay (ELISA) or polymerase chain
reaction (PCR), have drawbacks, such as requiring time-consuming and specialized processes [3–6].
Therefore, a technique that is convenient, rapid, sensitive and selective is required for the detection of
pandemic viruses. Recently, diverse integrated optical biosensors, based on interferometers, grating
couplers, microring resonators, photonic crystals, or micro/nanophotonics transducers, have been
studied for the detection of various bio-markers [7,8]. These techniques can be utilized to produce
highly-sensitive and ultra-compact biosensors using light–matter interactions [9,10]. Additionally,
because integrated optical biosensors have the advantage of direct, real-time, and label-free detection,
they are appropriate for the detection of biohazards such as viruses and bacteria. Among integrated
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optical biosensors, photonic crystals (PCs) are able to make interesting biosensors due to interaction of
structural properties and light.

PCs, as optical materials with a periodic nanostructure, have attracted much attention due to
their unique optical property known as the photonic band gap (PBG) [11]. A PBG is a specific range of
wavelengths in which light propagation is forbidden [12–14]. The wavelength and width of PBG are
determined by the periodicity and refractive index of the nanostructures. Since PCs were intensively
studied by John [15] and Yablonovitch [16] in 1987, various PCs have been developed by top-down
and bottom-up approaches [17]. PCs have diverse applications, including in displays [18], lasers [19],
and sensors [20]. In particular, PC-based plasmonic sensors have been reported to be effective for
virus detection [21,22]. However, these sensors have limitations. For example, only metal surfaces can
be used as substrates, and highly expensive processes, such as e-beam lithography, are required [23].
Among PC nanostructures, inverse opals (IOs) are three-dimensionally ordered porous structures with
a regular arrangement of spherical cavities in a solid matrix, assembled through colloidal self-assembly.
IO nanostructures are fabricated from an opal template which is composed of closely-packed spherical
particles in a face-centered cubic (FCC) lattice [24,25]. The optical properties of IO nanostructures are
determined by the lattice constant and refractive index of the cavities and matrix. Because these factors
can be tuned by external stimuli, IO nanostructures can be used as sensing materials for the detection
of target molecules [26]. Previous studies of IO-based sensors generally focused on the detection
of small molecules or changes in environmental conditions. For example, Li et al. demonstrated a
TiO2-based IO nanostructure as a label-free immunosensor in which the diffraction peak was shifted
by physical adsorption on the porous surface. This system is limited by its non-specific binding and
low sensitivity [27]. Jiang et al. suggested an enzyme-based IO structure for biocatalysis. This IO
nanostructure showed better stability in alkaline pH and at high temperatures [28]. In addition,
Couturier et al. reported a hydrogel-based IO sensor for the recognition of systems such as lectins by
specific sugars and avidin by biotin. The molecules were detected by tuning the lattice spacing caused
by structural changes such as swelling and shrinking [29]. Recently, an IO structure with a hydrogel
backbone was used to successfully detect rotavirus by surface functionalization [30].

In this study, we report the detection of the influenza virus by SiO2-based IO (SiO2-IO)
nanostructures. The fabrication of SiO2-IO nanostructures is a low-cost process providing a large
surface area, high mechanical stability, and unique optical properties for utilization as biosensors.
A silanized SiO2 surface was used for the immobilization of the influenza virus antibody by chemical
and biological linkers. With the antibody-immobilized SiO2-IOs (Ab-SiO2-IOs), the influenza virus
was selectively captured on the surface of the cavities, resulting in the redshift of the reflectance
peak. Therefore, the influenza virus could be detected by simply monitoring the change in reflectance
spectra without complicated labeling procedures. Our study demonstrated that SiO2-IO nanostructures
are suitable for generalized biosensor applications as various sensing strategies can be potentially
employed through the surface functionalization of the three-dimensional nanostructures.

2. Materials and Methods

2.1. Materials and Reagents

To fabricate the IO nanostructures and perform surface functionalization, ethanol (EtOH) and
methanol (MeOH) were purchased from EMD Millipore Co. (Billerica, MA, USA). Hydrochloric acid
(HCl) was purchased from DUKSAN Co. (Ansan, Korea). Phosphate-buffered saline (PBS, pH 7.4,
1×) was purchased from Invitrogen Co. (New York, NY, USA), and hydrofluoric acid (HF, 49%) was
purchased from J.T. Baker (Center Valley, CA, USA). Latex bead polystyrene, tetraethyl orthosilicate
(TEOS), 3-aminopropyl trimethoxysilane (APTMS), and anhydrous toluene were purchased from
Sigma-Aldrich (St. Louis, MO, USA). NHS-PEG4-Maleimide cross-linkers were purchased from
Thermo Scientific (Waltham, MA, USA). Horseradish Peroxidase (HRP) conjugated anti-rabbit
secondary antibody (Goat Anti-Rabbit IgG H&L (HRP)) was purchased from Abcam Co. (Cambridge,
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UK). Cystein-tagged protein G (Cys-ProG) was obtained from Bioprogen Co. (Daejeon, Korea). Bovine
serum albumin was purchased from Santa Cruz Biotechnology (Dallas, USA). For detection of the
virus, the hemagglutinin (αHA-1) antibody, the pandemic influenza A (H1N1) virus (A/CA/07/2009),
the influenza A (H3N2) virus (A/canine/Korea/MV01/2012), and the influenza B virus (IFVB,
B/Yamagata/Florida/04/06) were provided by BioNano Health Guard Research Center (H-GUARD).
To functionalize the gold nanoparticles (AuNPs), gold (III) chloride trihydrate (HAuCl4) and sodium
citrate were purchased from Sigma (St. Louis, MO, USA), and gold binding peptide-protein G
(GBP-proG) was purchased from Bioprogen Co. (Daejeon, Korea).

2.2. Preparation of the SiO2-IO Nanostructures

The SiO2-IO nanostructures were prepared by following the previous literature [31]. The silicon
wafer substrate was cleaned by washing with EtOH, followed by immersion in piranha solution,
a mixture of sulfuric acid (H2SO4), and hydrogen peroxide (H2O2) in a 3:1 ratio for 30 min and then
in 5% hydrogen fluoride for 15 min. After washing the wafer, it was vertically immersed into the
colloidal suspension. The suspension was composed of a 300-nm colloidal polystyrene (PS) aqueous
solution and a hydrolyzed TEOS solution. The TEOS solution consisted of TEOS, 0.1 M HCl, and EtOH
in a weight ratio of 1:1:1.5. The colloidal suspension was evaporated slowly at 65 ◦C for 3 days. Then,
the stacked colloidal PS on the substrate was removed by calcination in a furnace at 500 ◦C for 2 h.

2.3. Characterization of the SiO2-IO Nanostructures

The morphology of SiO2-IO nanostructures was analyzed by scanning electron microscopy
(SEM, Quanta 250 FEG, FEI, Hillsboro, OR, USA) with an acceleration voltage of 10 kV after applying
an Au coating. The surface wettability of opal and the IO nanostructure was measured by a contact
angle analyzer (Phoenix 300 Plus, SEO Co., Ltd., Suwon, Korea). The reflectance was measured by a
spectrometer (FLAME-S, Ocean Optics, Largo, FL, USA). The spectrometer was fixed on an optical
table, and the reflection was calibrated by a total reflection mirror, which reflects 100% of the light
from 400 to 750 nm.

2.4. Surface Functionalization of SiO2-IO for Antibody Immobilization

Surface functionalization was performed through coating with APTMS, conjugation with a
cross-linker, and immobilization of antibodies. The first SiO2-IO nanostructures were functionalized
with APTMS by amine group exposure [32]. SiO2-IO nanostructures with exposed hydroxyl groups
were immersed in 0.2% ATPMS solution in anhydrous toluene under a nitrogen atmosphere for 12 h.
The IO nanostructures were then washed sequentially with toluene, a mixture of toluene and methanol,
and methanol. After drying at 80 ◦C for 30 min to remove the methanol, the second IO nanostructure
was conjugated by NHS-PEG4-maleimide (19 mM in PBS) for 30 min at room temperature to create
cross-links between the protein and the nanostructures. Then, 0.1 mg/mL of Cys-ProG was conjugated
to the surface by a maleimide linker for 60 min. Finally, the influenza A (H1N1) virus capture antibody
(αHA-1, 1 µg/mL, 200 µL) was applied to the Cys-ProG-conjugated IO surface for 2 h. The sample
was washed with PBS buffer between steps.

2.5. Detection of the Influenza Virus by the SiO2-IO Nanostructures

To detect the influenza A (H1N1) virus using SiO2-IO nanostructures, 10 µL of the virus solution
was added to the αHA-1 antibody-immobilized Ab-SiO2-IO for 2 h. After washing with PBS buffer to
remove unreacted viruses, the variation in the reflectance of the SiO2-IO nanostructures was measured.
No blocking process was applied to the surface before virus detection. Viruses did not directly bind to
the Cys-ProG-immobilized SiO2-IO nanostructures [21]. Additionally, we confirmed the specificity of
the functionalized inverse opal structures. We treated the structure with the H1N1 subtype, the H3N2
subtype, and IFVB, and measured the reflectance change.
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To confirm detection of the virus, we prepared αHA-1-functionalized AuNPs. We synthesized
AuNPs by the citrate reduction method with slight modifications [33]. Then, 900 µL of the AuNPs
(18 nm) were mixed with 100 µL of the GBP-ProG complex (1 mg/mL) overnight at room temperature.
The solution was centrifuged twice at 12,000× rpm for 10 min for the washing process. The pellet was
dispersed in 0.1× PBS buffer (containing 0.01% Tween20 buffer). In addition, 100 µL of the antibody
(0.1 mg/mL) was conjugated with 900 µL of the functionalized AuNPs for 2 h at room temperature.
After washing, the antibody-immobilized AuNPs were treated to confirm the virus detection of the IO
nanostructures for 2 h. After rinsing with PBS, the SiO2-IO nanostructures were analyzed by scanning
electron microscopy (SEM, Quanta 250 FEG, FEI, Hillsboro, OR, USA).

3. Results and Discussion

3.1. Morphologies of the SiO2-IO Nanostructures

IO nanostructures were generally prepared using an infiltration method in which the matrix
materials, such as liquid- [25,34] or gas-phase [35–37] precursors, are infiltrated into the interstitial
voids of colloidal arrays. After solidification of the matrix, the colloidal particles were removed by
heat treatment or chemical etching. However, this method has disadvantages such as the formation
of cracks, vacancies, and other defects. To overcome these drawbacks, we used the co-assembly
deposition method in which colloidal PS beads and matrix precursors were simultaneously employed
to form a film. Figure 1a shows the scheme for the preparation of the SiO2-IO nanostructures. First,
a colloidal dispersion of PS beads containing TEOS was vertically deposited on the silicon (Si) substrate.
When evaporated at 65 ◦C, the PS beads were periodically arranged to form a closely-packed array by
capillary force on the Si substrate, whereas TEOS filled the interstices among the PS beads by forming
solid SiO2 through a sol-gel process. In general, cracking in opal or IO nanostructures is caused by
local capillary forces during drying [38]. However, the TEOS-based sol-gel process can reduce the
number of defects by forming a network between the spheres [31,39]. Then, the colloidal PS beads
were removed by calcination at 500 ◦C. The PS beads were replaced by air in the structure, forming the
IO nanostructures.
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Figure 1. (a) Schematic illustration showing fabrication procedure of inverse opal (IO) nanostructure.
SEM images of (b) the top surface of opal; (c) the top surface of the IO nanostructure; and (d) the
cross-section of the IO nanostructure.

The morphology of the fabricated opal and SiO2-IO nanostructures was characterized by SEM.
Figure 1b shows the honeycomb arrangement of colloidal PS beads, which corresponds to (111)
planes of a face-centered-cubic (FCC) structure. The silica precursor was solidified by a sol-gel
process during the vertical deposition accompanied by evaporation at a constant temperature. During
the subsequent calcination step, the PS beads were completely removed, while the SiO2 matrix
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remained undistorted, as seen in Figure 1c. The cavity diameter of the SiO2-IO nanostructures
was approximately 263.6 ± 12.9 nm, which is smaller than the size of colloidal PS beads, indicating
that structural shrinkage of the SiO2 matrix occurred during the calcination. The thickness of the
SiO2-IO nanostructures on the substrate was 2.46 µm with approximately 12 layers of spherical
cavities (Figure 1d). These SEM images indicated that SiO2 based IO nanostructures were successfully
fabricated by the co-assembly method.

3.2. Optical and Surface Properties of the SiO2-IO Nanostructures

The optical properties of IOs vary depending on the refractive index and filling factor of the
medium. The stop band wavelength, or the reflectance peak position, of the IO nanostructure could be
estimated by Bragg’s law for (111) stacked planes of the FCC lattice [40].

λ = 2dne f f =

√
8
3

D ne f f (1)

ne f f =
√

φpn2
p +

(
1− φp

)
n2

m (2)

where d is the (111) plane spacing, D is the particle diameter, and ne f f is the effective refractive index.
φp is the volume fraction of the FCC colloidal particles (φp = 0.74). np and nm are the refractive indices
of the template and the matrix. The opal nanostructures with D = 287.21 nm are expected to have a
stop band at 727.97 nm from the Equation (1) with refractive indices of polystyrene (1.59) and SiO2

(1.45). The IO nanostructures with D = 263.6 nm are expected to have the stop band at 488.27 nm with
refractive indices of air (1.00) and SiO2 (1.45); the cavity diameter was decreased by calcination as
we had discussed [41]. In the reflectance spectra experimentally measured, the opal nanostructures
showed a reflectance peak at 710 nm and the IO nanostructure showed a peak at 447 nm, as shown in
Figure 2a, which are comparable with the stop band positions anticipated from the Bragg’s law. It is
also clearly shown that the opal structure is faint gray as the peak is located in near-infrared and the
IO structure is shown in sky blue (see the optical images in Figure 2a). Because the reflectance peak
position can be varied depending on the refractive index of the surrounding environment, the SiO2-IO
nanostructures can serve as sensing materials. To confirm the influence of refractive index on the
reflectance spectrum, SiO2-IO nanostructures were infiltrated with a set of glycerin-water mixtures.
Glycerin is a simple polyol compound and viscous liquid, and the refractive index of the mixture
depends on the glycerin-to-water ratio. The refractive index increases as the weight percent of glycerin
increases [42]; the refractive indices were 1.33, 1.36, 1.38, and 1.41 for 0, 20, 40, and 60 weight percent
of glycerin, respectively. Figure S1 shows a correlation between the refractive index of the infiltration
liquids and the reflectance peak position. The reflectance peak was redshifted along with the refractive
index of the mixture for of the IO with constant volume and cavity size.
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Figure 2. (a) Reflectance spectra of the opal and IO nanostructures. Insets are the corresponding optical
microscope images; (b) Optical images showing contact angles of a water drop on the opal (top panel)
and IO (bottom panel) nanostructures.
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We also measured the contact angle to determine the wettability of the solid surface of the opal and
SiO2-IO nanostructures. The contact angle is influenced by the surface property of the nanostructures.
The contact angle on the opal structure was 82.9◦ due to hydrophobic colloidal PS beads on the
surface of the structure, while that on the SiO2-IO nanostructures was 26.33◦ due to the partially
hydrophilic silica matrix (Figure 2b). After APTMS treatment, the contact angle was slightly increased
to 37.38◦ (data not shown) because the hydroxyl groups were eliminated by oxane bonding and the
less-polar organic silanes were deposited on the surface [43]. The amine groups on APTMS were used
to conjugate biomolecules on the surfaces of cavities.

3.3. Surface Functionalization of the SiO2-IO Nanostructures

To detect the influenza A (H1N1) virus, SiO2-IO nanostructures were functionalized as illustrated
in Figure 3a. First, the silica surface was functionalized by APTMS to exposure amine groups via
siloxane bonding. Then, the IO nanostructure was conjugated with NHS-PEG4-maleimide, which
is a heterobifunctional cross-linker, to link the amine-functionalized surface to another molecule
containing a thiol group. Cys-ProG was previously used for the highly efficient immobilization of the
immunoglobulin-binding protein (i.e., IgG) on a gold surface [44]. In the same manner, we conjugated
Cys-ProG via the maleimide linker for immobilization of the hemagglutinin (HA) antibody on the IO
surface. The surface modification method can provide more stable conjugation sites than the physical
absorption method. A previous study reported the detection of targets by electrostatic interactions
between the negatively charged, porous TiO2 surface and the positively charged protein (lysine and/or
arginine residues) [27]. In this work, a high concentration of proteins and antibodies (approximately
0.5~2.5 mg/mL) was used in the experiments. To evaluate the surface functionalization of the SiO2-IO
nanostructures, we measured a series of the reflectance spectra during the modification. As shown
in Figure 3b, the reflectance peak was redshifted from 445.41 ± 0.55 nm by approximately 8.05 nm
during the APTMS treatment. In addition, the reflectance was further shifted by 3.96 nm and 1.91 nm
after treatment with the maleimide linker and Cys-ProG-HA antibody, respectively. The redshifts are
results of successful deposition of the molecules on the cavities which slightly increases the refractive
index of the medium.
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Figure 3. (a) Schematic illustration showing the molecular structures formed by the surface
functionalization on the IO nanostructure for binding the H1N1 subtype; (b) Reflectance peak
positions for the pristine, APTMS-treated, NHS-PEG4-Maleimide cross linker-treated, and Cys-ProG-
antibody immobilized IOs. Inset shows reflectance spectra for all four samples. APTMS: 3-aminopropyl
trimethoxysilane.

Antibody immobilization was further confirmed by the HRP activity (Figure S2). Peroxidase
consists of a large family of enzymes and catalyzes the oxidation of the substrate with hydrogen
peroxide (H2O2). Peroxidase is widely used in bioanalytical chemistry, for example, to catalyze
the conversion of chromogenic substrates, such as 3,3′,5,5′-tetramethylbenzidine (TMB), into colored
products [45]. TMB changes to a blue-colored product in the presence of hydrogen peroxide (H2O2) [46].
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The surface functionalization was demonstrated by an HRP-tagged antibody. First, we observed the
activity of the functionalized surface. Cys-ProG binds to the antibody through the heavy chains in the
region of the Fc fragment. The Cys-ProG-immobilized IO surfaces contain more antibodies than the
APTMS-functionalized surfaces. We also compared a SiO2 thin film with the surface-functionalized
inverse opal. Both substrates have hydrophilic hydroxyl groups; however, the IO structure had higher
activity (56.5%) than the SiO2 thin film (19.2%) due to its large surface area.

3.4. Detection of the Influenza H1N1 Virus by SiO2-IO Nanostructures

We investigated the detection of the pandemic influenza type A (H1N1) virus (A/CA/07/2009)
by reflectance measurement. The virus is 80~100 nm in diameter and can be classified into
16 hemagglutinin (HA) subtypes and 9 neuraminidase (NA) subtypes [1]. HA is one of the major
surface glycoproteins of the H1N1 subtype and is more prevalent than NA on the viral surface [47].
The viruses were detected by monitoring the immune response between the HA and αHA-1
antibodies. We treated 10 µL of the H1N1 subtype with the antibody-immobilized IO nanostructure by
concentration. Figure 4a shows that reflectance peak shift as much as 0.96 ± 0.42 nm, 2.15 ± 0.35 nm,
and 2.88 ± 0.36 nm that were measured for the concentration range from 103 PFU to 105 PFU
on the functionalized IO nanostructure. To evaluate the specificity of the functionalized SiO2-IO
nanostructures, we compared the H1N1 subtype to the H3N2 subtype and IFVB, each with a
concentration of 104 PFU. SiO2-IO nanostructures were prepared by αHA-1 antibody immobilization.
The control was treated with PBS buffer solution instead of the virus sample. Figure 4b shows
the magnitudes of the redshift of the reflectance peak depending on the type of virus. The H3N2
subtype and IFVB showed a shift that is comparable to the control. Only the H1N1 subtype showed a
meaningful magnitude of peak shift, confirming that the antibody-immobilized SiO2-IO nanostructures
have a high specificity to the H1N1 subtype.
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Figure 4. (a) The magnitude of reflectance peak shift as a function of H1N1 subtype concentration,
where the concentration was varied in the range of 103 to 105 PFU in 10 µL (n = 3). Phosphate-buffered
saline (PBS) buffer solution is used for the control; (b) The magnitude of reflectance peak shift
depending on the type of virus, where the concentration was set to 104 PFU (n = 3) for influenza
A virus subtypes H3N2 and H1N1, as well as the influenza B virus (IFVB).

To prove our concept, we used αHA-1 antibody-immobilized AuNPs to visually confirm the
virus. Because the GBP-ProG complex can be employed on the AuNP surface, functional linkers
can be used for a scanometric antibody probe [48]. The αHA-1 antibody-immobilized AuNPs were
treated with the various virus concentrations captured by the SiO2-IO nanostructures. As seen in
Figure 5, the SEM images show an increased amount of AuNPs either on the surface or in the pores
of the SiO2-IO nanostructures (red arrows in Figure 5d), while there were no AuNPs in the control
(Figure 5a). This indicates that virus detection using SiO2-IO nanostructures was indirectly confirmed
by the αHA-1 antibody-immobilized AuNPs.
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4. Conclusions

In this study, we reported the surface functionalization of SiO2-IO nanostructures with antibodies
and their use as biosensors for the detection of influenza viruses. We fabricated the SiO2-IO
nanostructures by the colloidal self-assembly method through vertical deposition and calcination
processes. For the detection of influenza viruses, we successfully modified the surface of the SiO2-IO
nanostructures with antibodies via chemical and biological conjugation. The antibody-immobilized
SiO2-IO nanostructure captures the target viruses of the H1N1 subtype when immersed in the
dispersion of the viruses, which leads to a redshift of reflectance peak. Therefore, the H1N1 subtype
can be simply detected by monitoring the redshift of reflectance peak position in the absence
of any labeling procedures. We found that the H1N1 subtype was sensitively and selectively
detected in the concentration range from 103 to 105 PFU. This result was further confirmed by
antibody-immobilized AuNPs. The SiO2-IO biosensors have the advantage of large surface area
compared with existing optical biosensors due to the three-dimensional nanostructure and enable
integration with microfluidics and lab-on-a chip technologies to improve the sensor for point-of-care
biosensors. Moreover, various sensing strategies can be employed through the surface functionalization
protocol. Therefore, we believe that the SiO2-IO nanostructure-based biosensors can be further utilized
for the detection of various biohazards.
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