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Abstract: The Lenstra-Lenstra-Lovász (LLL) lattice reduction algorithm and many of its variants have
been widely used by cryptography, multiple-input-multiple-output (MIMO) communication systems
and carrier phase positioning in global navigation satellite system (GNSS) to solve the integer least
squares (ILS) problem. In this paper, we propose an n-dimensional LLL reduction algorithm (n-LLL),
expanding the Lovász condition in LLL algorithm to n-dimensional space in order to obtain a further
reduced basis. We also introduce pivoted Householder reflection into the algorithm to optimize the
reduction time. For an m-order positive definite matrix, analysis shows that the n-LLL reduction
algorithm will converge within finite steps and always produce better results than the original LLL
reduction algorithm with n > 2. The simulations clearly prove that n-LLL is better than the original
LLL in reducing the condition number of an ill-conditioned input matrix with 39% improvement on
average for typical cases, which can significantly reduce the searching space for solving ILS problem.
The simulation results also show that the pivoted reflection has significantly declined the number of
swaps in the algorithm by 57%, making n-LLL a more practical reduction algorithm.

Keywords: LLL reduction; pivoted reflection; integer least squares (ILS); global navigation satellite
system (GNSS)

1. Introduction

With the rapid development of the Beidou System (BDS), the Galileo system, the Global
Positioning System (GPS) and the GLONASS system, the Global Navigation Satellite System (GNSS)
is serving more and more people with higher positioning accuracy [1,2]. Alongside the standard
point positioning, carrier-phase based precise positioning techniques with cm-level to mm-level
accuracy, such like real-time kinematic (RTK) and precise point positioning (PPP), have started
to show their potential in public services other than in specific areas such as ground surveying.
The commercial continuous operational reference station (CORS) network providers have enabled the
precise positioning applications in unmanned aerial vehicle (UAV), unmanned autonomous vehicle
and so on [3–5].

The main computational effort in carrier-phase precise positioning is to resolve the carrier
phase integer ambiguity which is contaminated by all kind of noises during the signal propagation.
Several efficient ambiguity resolution methods were proposed during the last several decades
such as: Least-Square Ambiguity Searching Technique (LSAST) [6], Triple Frequency Ambiguity
Resolution (TCAR) [7], Least-squares AMBiguity Decorrelation Adjustment (LAMBDA) [8,9]. The great
breakthrough of LAMBDA algorithm is bringing the “decorrelation” process into integer ambiguity
resolution, dividing the whole process into: estimation, decorrelation (also known as Z-transformation),
search and back transformation.

As the measurements of pseudo-range and carrier phase are strongly correlated in time and space,
the coefficient matrix to resolve the ambiguities is so ill-conditioned that the search space is huge
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and abnormal, making the search process extremely time-consuming and inefficient. For real-time
applications, the decorrelation process is curial to reduce search effort. As for LAMBDA, integer Gauss
transformation with permutation is used as the decorrelation process and is proven to be very effective.
A series of algorithms have been applied to the decorrelation process since then. Xu used Cholesky
decomposition to calculate the Z-transformation matrix [10]; Chang modified the Gauss transformation
in LAMBDA with symmetric pivoting strategy [11]; Xu proposed the parallel Cholesky-based reduction
method using minimum pivoting strategy [12] and Hassibi was the first to introduce LLL algorithm
into integer ambiguity resolution [13].

The LLL reduction algorithm was first proposed by Arjen Lenstra, Hendrik Lenstra and László
Lovász in 1982 [14] and had been proven useful polynomial-time algorithm to solve the closest
vector problem (CVP) since then. With the development of lattice theory and its application, LLL
algorithm becomes a powerful tool to solve the ILS problem, which expands its usage to numerous
applications such like next generation MIMO communication detection algorithm [15–17], integer
ambiguity resolution [13,18] and many other integer solution finding problem.

The original LLL reduction algorithm uses Gram-Schmidt orthogonalization to generate
orthogonal basis, which involves O(nlog(B))-bit integer. A float point LLL (FPLLL) algorithm is
proposed to avoid the waste of resources [19]. Schnorr used the half-k method [20] to ensure the
calculation accuracy with FPLLL, which only involves O(n + log(B))-bit integer and converges in
O(n4log(B)). Koy proposed a segment LLL algorithm, weakening the constraints of reduction to ensure
the efficiency of the algorithm when dealing with matrix of rank 350 or above. Schnoor proposed
the deep insertion LLL (DeepLLL) and the Block Korkine-Zolotareff (BKZ) algorithm [21], which
improved the performance significantly. Fontein made the DeepLLL algorithm a polynomial-time
algorithm with the help of potential factor, naming it potential LLL (PotLLL) [22].

In this paper, we propose the n-LLL reduction, expanding the Lovász condition of original LLL
algorithm to n-dimensional space. And we give out an adjustable parameter “n” to balance the
performance and computational efforts. Pivoted Householder reflection and Givens transformation
are also introduced into the n-LLL algorithm to further optimize the reduction time.

The performance and complexity of the n-LLL algorithm are then analyzed, showing that the
new algorithm performs better than the original LLL algorithm with n > 2 and will always converge
in polynomial time. The simulation results show that the n-LLL algorithm has better reduction
quality than the original LLL with about 39% improvement on average. The new algorithm causes no
significant increase in computational efforts because of the pivoted reflection, which is able to reduce
as much as 57% swaps in the algorithm.

2. The LLL Reduction

A lattice is defined as:

L =

{
m

∑
i=1

aibi|ai ∈ Z
}

(1)

where bi denote m independent liner vectors defined on Rn and are called a basis of lattice L. So,
a lattice can be seen as a discrete point set inside the real value space Rn.

Then the typical weighted ILS problem like:

min
a∈Zn
‖â− a‖2

Q−1
â

(2)

can be described as: finding a vector a ∈ L that is closest to â ∈ Rn (Qâ is the covariance matrix of vector
â), which is also known as a CVP. As a CVP is an NP-hard problem, one efficient approach to acquire
an approximate solution is lattice basis reduction. To simplify the demonstration, the discussions
below involve only square matrix.
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For a basis B = (b1, b2, b3 · · ·bm) of lattice L, obviously Bo = B·T is also a basis of L, where T is a
unimodular matrix. Then the weighted ILS problem (2) can be rewritten as:

min
z∈Zn
‖ẑ− z‖2

Q−1
ẑ

(3)

where:
ẑ = T−1·â
z = T−1·a

Q−1
ẑ = TT ·Q−1

â ·T
(4)

Assuming that we are able to find a proper unimodular matrix T that makes all the column
vectors of Bo mutually orthogonal, the optimized solution of z can be obtained by rounding each
entry in ẑ and the solution for a can be calculated accordingly, which is also known as the Babai’s
method [23]. However, such kind of matrix T cannot be found in general cases. As a result, the best
way we can do is to find an approximate solution for matrix T that makes Bo as orthogonal as possible
and the column vectors as short as possible, which is the so called “reduction” process.

Figure 1 shows the difference between a “bad” and a “good” reduced lattice basis and how
they affect the search process. The basis vectors in Figure 1a are relatively long and have smaller
angle, which will bring larger error when estimating the CVP solution for real value vector w. On the
contrary, the basis vectors in Figure 1b are mutually orthogonal, enabling the Babai’s method to find
the solution instantly.
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Figure 1. Illustration of “Bad” and “Good” lattice basis. 
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2.1. The LLL Reduction Algorithm

The two primary goals of reduction process are:

• To make the column vectors in Bo as mutually orthogonal as possible. As mentioned above, if the
vectors are mutually orthogonal, then a simple rounding process will solve the ILS problem. Thus,
the orthogonality of the vectors actually defines shape of search space, which will have significant
influence on search efficiency;

• To minimize the length of vectors bi. Note that
m
∏
i=1
‖bi‖ gives an upper bound of the volume of

searching space, which means minimizing the vector length will shrinking the search space.

With the two goals, several reduction algorithm were proposed in the last decades and among
those was the most famous LLL reduction algorithm proposed by Lenstra et al. [14].

The LLL reduction algorithm is consisted of two parts: size reduction and vector swap. The size
reduction uses Gram-Schmidt orthogonalization. Let B = (b1, b2, b3 · · ·bm) be a basis of lattice L and
a Gram-Schmidt basis B∗ can be described as:

b∗i = bi −
i−1

∑
j=1

µi,jb∗j (5)

where:

µi,j =

〈
bi, b∗j

〉
〈

b∗j , b∗j
〉 (6)

Definition 1. Given a basis B ∈ Rm×m of lattice L and its Gram-Schmidt orthogonal matrix B∗, B is LLL
reduced if it satisfies the following two conditions:∣∣∣∣µi,j

∣∣∣∣≤ 1
2

for 1 ≤ j < i ≤ m (7)
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δ‖b∗i−1‖
2 ≤ ‖b∗i + µi,i−1b∗i−1‖

2 for 1 < i ≤ m (8)

where parameter δ satisfies 1
4 < δ < 1.

The LLL reduction algorithm starts with setting b∗1 = b1 and then bi is replaced by bi −[
µi,j
]

roundbj if
∣∣µi,j

∣∣ ≤ 1
2 for 1 ≤ j < i ≤ m to satisfy the size condition (7). If Lovász condition (8)

is violated for 1 < i ≤ m, then the column vectors bi−1 and bi are swapped and the size reduction
process will go back to bi−1 again. After as much as O

(
n2 log B

)
iterations [14], when the Lovász

condition is satisfied between bm−1 and bm, the LLL reduction is done.
As we can see from the process of LLL reduction algorithm shown in Algorithm 1, the size

reduction process adjusts the angle of bi by rounded Gram-Schmidt orthogonalization and the length
of bi is reduced at the same time.

Algorithm 1: The LLL reduction algorithm

Set b∗1 = b1

Set i = 2
For i ≤ m

For j = 1 to i − 1

Set bi = bi −
[
µi,j

]
round

bj (Size reduction)

End
If δ‖b∗i−1‖

2 > ‖b∗i + µi−1,ib∗i ‖
2 then (Lovász condition)

Swap (bi−1, bi) (Swap process)
Set i = max(i − 1, 2)

Else
Set i = i + 1

End
End

Clearly, the performance of size reduction process is strongly dependent on the order of the
column vectors. Putting shorter vectors ahead will help improving the performance because shorter
vectors kind of “push” the vectors after them to a more orthogonal angle in order to satisfy the size
condition. Ideally, if we have:

‖b1‖ ≤ ‖b2‖ ≤ ‖b3‖ · · · ≤ ‖bm‖ (9)

and then the lattice can be most reduced. But unfortunately, there is still no algorithm can achieve (9)
in polynomial time. As a result, Lovász set the condition to (8), where δ is usually set to 0.75 [14],
in order to make the algorithm finish within polynomial time.

2.2. The LLL Reduction with Pivoted Reflection

As can be seen from Algorithm 1, the loop indicator i decreases only when the swaps take place,
which means the number of iterations is highly dependent on the number of swaps. Hence, if the
column vectors bi are in ascending order or at least as ascending ordered as possible before the LLL
reduction is executed, the number of swaps as well as the reduction time will surely decline.

Motivated by Chang’s MLAMBDA [11] which utilizes the symmetric pivoting strategy to improve
the efficiency of the reduction process and Wübben’s MMSE Sorted QR decomposition [24] which
extends the V-BLAST algorithm, we introduce the pivoted reflection strategy into LLL algorithm to
pre-sort the column vectors.

As the Gram-Schmidt orthogonalization process in the original LLL algorithm is not an isometric
process, the pivoting of the vectors has limited influence on the reduction time. Therefore, we
chose the Householder transformation which is an elementary reflection transformation proposed by
Turnbull and Aitken in 1932. The typical usage of the Householder reflection is QR decomposition.
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Given a none-zero vector b ∈ Rn, one can construct vector u = b + ρe with e =

1, 0 · · · 0︸ ︷︷ ︸
n−1zeros

T

and

ρ = sign(b1)·‖b‖. Then the transformation matrix can be constructed as:

H = I− 2
u·uT

‖u‖2 (10)

Assuming i − 1 vectors of B have been transformed and Bi is the submatrix:

Bi =

 bi,i · · · b1,m
...

. . .
...

bm,1 · · · bm,m

 (11)

then the ith transformation matrix can be calculated as:

Hi =

[
Ii−1 0

0 HBi

]
(12)

where HBi is the transformation matrix for submatrix Bi according to (10). Then we get:

R = Hm−1Hm−2 · · ·H1B and Q = H1H2 · · ·Hm−1 (13)

with B = Q·R, where Q is an orthogonal matrix and R is an upper triangle matrix.
In order to make the column vectors as ascending ordered as possible, before each Householder

transformation the shortest vector in submatrix Bi =
[
bi

1, bi
2, bi

3 · · ·bi
m−i+1

]
is moved ahead and the

corresponding column vector in B is swapped with bi accordingly. The whole LLL reduction with
pivoted reflection is given in Algorithm 2.

Algorithm 2: The LLL reduction with pivoted reflection

Set R = B and Q = Im×m

For i = 1 to m − 1 (Pivoted Householder Reflection)
Find the shortest vector bi

s in Bi
Swap(bi, bi+s−1) of B
Calculate Hi for B
Set R = Hi·R and Q = Q·Hi

End
Set k = 2
While k ≤ m

For j = k-1 down to 1

Set rk = rk −
[

rj,k
rj,j

]
round
·rj (Size reduction)

End
If δ·r2

k−1,k−1 > r2
k,k + r2

k−1,k then (Lovász condition)
Swap (rk−1,rk) (Swap process)
Calculate Hk−1 for R
Set R = Hk−1·R and Q = Q·Hk−1

Set k = max(k − 1, 2)
Else

Set k = k + 1
End
End
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Furthermore, the algorithm can be more efficient by applying Givens transformation to the
rotations in the swap process instead of Householder reflection, because only bi,i−1 needs to be
transformed to zero when swapping bi−1 and bi. It should also be emphasized that the pivoted
reflection strategy does not always sort the vectors in perfect ascending order, because the reflection
on bi also transforms the vectors after it, which may create shorter vector. But as can be seen in the
simulations in Section 4, the pivoted reflection is proved to be very effective in minimizing the number
of vector swaps in LLL algorithm in many cases of interest.

3. N-Dimensional Expansion of LLL Reduction

As discussed at the end of Section 2.1, the reduction quality and the improvement of search space
are both highly dependent on the order of the basis vectors. We propose the n-LLL reduction algorithm,
which inherits the basic outline of the LLL reduction algorithm and strengths the constraint of the
order of basis vectors.

3.1. The N-Dimensional LLL Reduction Algorithm

Look back at the two conditions of LLL reduction again:∣∣∣∣µi,j

∣∣∣∣≤ 1
2

, δ‖b∗i−1‖
2 ≤ ‖b∗i + µi,i−1b∗i−1‖

2

and the reduction process can be described in another way as: applying a series of Gaussian reductions
in the 2-dimensional lattice spanned by a Lovász condition optimized vector pair bi−1 and bi.

However, the Lovász condition here only focuses on local optimization within two neighbor
vectors which ignores the global optimization. In order to improve the effect of the optimization to
enhance the ordering constraint, we extend the 2-dimensional condition to n-dimension. Like the LLL
reduction defined in Definition 1, the n-dimensional LLL reduction is defined as:

Definition 2. Given a basis B ∈ Rm×m of Lattice L and its Gram-Schmidt orthogonal matrix B∗, B is n-LLL
reduced (2 ≤ n < m) if it satisfy the following two conditions:∣∣∣∣µi,j

∣∣∣∣≤ 1
2

for 1 ≤ j < i ≤ m (14)

δ‖b∗i−1‖
2 ≤ min

‖b∗i + µi,i−1b∗i−1‖
2, · · · , ‖b∗i+n−2 +

min(i+n−3,m)

∑
j=i−1

µi+n−2,jb∗j ‖
2 for 1 < i ≤ m (15)

where parameter δ satisfies: 1
4 < δ < 1.

Condition (15) can also be rewritten as:

δ‖b∗i−1‖
2 ≤ λ1

([
bi

1, bi
2, bi

3 · · ·bi
min(n−1,m−i+1)

])2
(16)

where bi
k is the column vector in submatrix Bi and λ1(B) implies the length of the shortest none-zero

vector in B.
Both condition (15) and (16) ensure that bi−1 is the optimized choice in the following n vectors,

which brings stronger constraint to the reduced basis than the original Lovász condition. The n-LLL
reduction becomes LLL reduction when n = 2.

Note that the extend Lovász condition in the n-LLL reduction is similar to Block Korkine-Zolotarev
(BKZ) [21] reduction that applies Korkine-Zolotarev (KZ) reduction within a k-block. This paper
extends the original Lovász condition instead of introducing KZ reduction basis.
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As the constraint in n-LLL is stronger than in the original one, the increase of reduction time is
predictable. Thus, pivoted reflection mentioned in Section 2.2 plays a vital role in controlling the total
reduction time of the algorithm. So, we fuse QR decomposition and reduction together by deeply
coupling the pivoted reflection and n-LLL reduction process.

One possible algorithm to achieve n-LLL reduction is shown in Algorithm 3:

Algorithm 3: The n-LLL reduction with pivoted reflection

Set R = B and Q = Im×m

(Move the shortest vector to r1)
Find the shortest vector rs in R
Swap(ri,rs) of R
Calculate H1 for R
Set R = H1·R and Q = Q·H1

Set i = 2
While i ≤ m (Pivoted reflection and reduction process)

Find the shortest vector ri
s in Ri

Swap(ri, ri+s−1) of R
Set temp = i
For j = i − 1 down to 1

Set rk = ri −
[

rj,i
rj,j

]
round
·rj (Size reduction)

If δ·r2
j,j > ‖b

j
temp−j+1‖

2
and i − j < n then (Extended Lovász condition)

Swap (rj, rtemp) (Swap process)
Set temp = j

End
End
Calculate Htemp for R
Set R = Htemp·R and Q = Q·Htemp

If i ! = temp then
i = temp

Else
Set i = i + 1

End
End

The algorithm above uses the “Pivoting-Reduction-Reflection” strategy for each vector of B
instead of “Pivoting-Reflection and Reduction” strategy of Algorithm 2. The pivoting process in
the fusion strategy gives better result as it takes the influence of the rotations in vector swap into
consideration. Note that vector ri may have less than m− i zero entries because the vector pivoted to
ri has not been reflected yet. However, as the Householder reflection is an isometry, it will not be a
problem in the swap process. The vector is then reflected after swapped to a proper place. The whole
algorithm is actually executing the pivoted QR decomposition and n-LLL reduction in parallel, making
it more efficient.

3.2. Analysis

3.2.1. The Performance

The n-LLL reduction algorithm strengthens the Lovász condition, which will certainly improve
the quality of reduced basis. In this section, the performance improvement between the n-LLL and
LLL reduction is detailed analyzed.

In order to compare the performance of reduction algorithm, we need to introduce measures to
evaluate the reduction quality. As the size reduction processes of the two algorithms are the same, we
only need to compare the orthogonality of the reduced basis according to the two goals mentioned
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in Section 2. One of the mostly used way to measure the orthogonality defects is imported from the
Hadamard inequality:

Theorem 1. (Hadamard Inequality): Given a lattice L and one of its basis B ∈ Rm×m, we have:

detL = det(B) =
m

∏
i=1
‖b∗i ‖ ≤

m

∏
i=1
‖bi‖ (17)

and it becomes an equation if and only if all the vectors are mutually orthogonal. Then, the orthogonality defect
factor can be defined as:

OD(L(B)) =

m
∏
i=1
‖bi‖

detL
(18)

with 1 ≤ O(L(B)) [25].

According to (15), we have:

δ‖b∗i−1‖
2 ≤ ‖b∗i ‖

2 + µ2
i,i−1‖b∗i−1‖

2 (19)

δ‖b∗i−1‖
2 ≤ ‖b∗i+1‖

2 + µ2
i+1,i‖b∗i ‖

2 + µ2
i+1,i−1‖b∗i−1‖

2 (20)

······

δ‖b∗i−1‖
2 ≤ ‖b∗i+n−2‖

2 +
min(i+n−3,m)

∑
j=i−1

µ2
i+n−2,j‖b∗j ‖

2 (21)

and the size reduction process makes sure that
∣∣µi,j

∣∣ ≤ 1
2 . As a result, (19) can be rewritten as:

‖b∗i ‖
2 ≥

(
δ− 1

4

)
‖b∗i−1‖

2 (22)

which means:

‖b∗i+1‖
2 ≥

(
δ− 1

4

)
‖b∗i ‖

2 (23)

By combining (23) and (20), we can get:

‖b∗i+1‖
2 ≥

(
δ− 1

4

)2
‖b∗i−1‖

2

δ
(24)

Repeatedly:  ‖b
∗
j ‖

2 ≤ ki−j‖b∗i ‖
2

k = δ·δ
1

1−n

(δ− 1
4 )

,
i− j
n− 1

∈ Z (25)

Furthermore, by substituting (25) into the Gram-Schmidt orthogonalization (5), we get:

‖bi‖2 = ‖b∗i ‖
2 +

i−1
∑

j=1
µ2

i,j‖b∗j ‖
2 ≤ ‖b∗i ‖

2 + 1
4

i−1
∑

j=1
‖b∗j ‖

2

≤ 3
4‖b∗i ‖

2 +
‖b∗i ‖

2

4

b i−1
n−1 c
∑

j=0
k(n−1)j

n
n−1
∑

l=1
kl−1

l

≤ 3
4‖b∗i ‖

2 +
‖b∗i ‖

2

4

i
n−1−1

∑
j=0

k(n−1)j
n

kn−1
δk2−1

= 3
4‖b∗i ‖

2 +
‖b∗i ‖

2

4
ki

n−1
kn−1

n −1
kn−1
δk2−1

(26)
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where bac denotes the integer no larger than a. By considering 1 < δk2 < kn ≤ k2 ≤ kn−1
n , (26) can be

further rewritten to:

‖bi‖2 ≤ ki
n

δk2 − 1
‖b∗i ‖

2 (27)

Then the orthogonality defect factor is calculated:

OD(L) =

m
∏
i=1
‖bi‖

detL
≤

√√√√√√√
m
∏
i=1

ki
n

δk2−1‖b∗i ‖
2

m
∏
i=1
‖b∗i ‖

2
=

k
m(m+1)

4
n

(δk2 − 1)
m
2

(28)

It can be seen clearly from (28) and (25) that the upper bound of the orthogonality defect factor
declines as the parameter n increasing, which proves that the reduction quality of n-LLL reduction
algorithm with n > 2 is better than the original LLL reduction (which is equivalent to 2-LLL).

It should be emphasized that the orthogonality does not directly affect the search time according
to [26,27]. However, as the two algorithms compared through the orthogonality defect factor share the
same size reduction constraint, the difference of the factor actually measures the performance of vector
ordering, or in another way measures the efficiency of size reduction. So, the conclusion of (28) still
holds in numerical simulations in Section 4.

3.2.2. The Complexity

As can be seen in Algorithm 3, the loop indicator i goes back to temp after each vector swap, where
temp indicates the final position that bi is placed. Therefore, with temp < i, it is hard to determine that
whether the algorithm will converge. Here we give the proof that the n-LLL reduction algorithm will
converge in polynomial time.

Let:

Li =

{
i

∑
k=1

akbk|ak ∈ Z
}

(29)

be a sub-lattice of lattice L and we define:

di =
i

∏
k=1
‖bk‖2 (30)

Di =
m

∏
i=1

di (31)

where we have det(Li)
2 = di.

In the n-LLL algorithm, the value of Di changes only when the vector swap is executed. To be
more accurate, only the elements from dα to dβ−1 in Di will change when swapping bα and bβ. And
the swap happens only when the extended Lovász condition is violated, which means:

‖b∗β‖
2 < δ‖b∗α‖

2 −
β−1

∑
j=α

‖µβ,jb∗j ‖
2 ≤ δ‖b∗α‖

2 (32)

Therefore, the old dold
ε will change to dnew

ε (α ≤ ε < β):

dnew
ε = ‖b∗1‖

2·‖b∗2‖
2 · · · ‖b∗β‖

2 · · · ‖b∗ε ‖
2

= ‖b∗1‖
2·‖b∗2‖

2 · · · ‖b∗α‖
2 · · · ‖b∗ε ‖

2·
‖b∗β‖

2

‖b∗α‖2

≤ dold
ε ·δ

(33)
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and the maximum change of Di by one swap is δn−1.
According to the Hermite principle, for a lattice L ⊂ Zm we can have:

min
0 6=v∈Li

‖v‖ ≤
√

i·det(Li)
2 (34)

which also means:

Dm =
m

∏
i=1

di =
m

∏
i=1

det(Li)
2 ≥

m

∏
i=1

i−i = (m!)−m ≥ m−m2
(35)

As a result, the value of Dm has a certain lower bound, which means only finite number of swaps
are executed during the whole algorithm. Assuming that Dm = Dstart at the beginning of the algorithm
and Dm = Dend at the end, we have:

m−m2 ≤ Dend ≤
(

δn−1
)N

Dstart (36)

where N denotes the total number of vector swaps. Considering that δ < 1, (36) can be rewritten as:

N =
O
(
m2 log m + log Dend

)
n− 1

(37)

and we also have:

Dend =
m

∏
i=1
‖b∗i ‖

2(m+1−i) ≤
m

∏
i=1
‖bi‖2(m+1−i) ≤ (max‖bi‖)m(m+1) = Bm(m+1) (38)

where B denotes the longest vector in B.
Therefore, the total number swaps in the algorithm is:

N = O
(

n−1·m2 log B
)

(39)

The fact is that the number of swaps declines as parameter n increases. However, the actual
calculation effort is related to the number of loops. As the loop indicator i goes back as much as n
steps after each vector swap instead of 1 step in the original LLL reduction algorithm which makes the
maximum number of loops n·N + m, which means each swap takes O(n· log n) basic steps to satisfy
extended Lovász condition in the n dimensional lattice space. Thus, O

(
log n·m3 log B

)
basic steps are

needed just to check all the vectors. Obviously, given an m rank basis, the calculation effort increases
along with the increase of parameter n and the total reduction time remains polynomial for all n ≥ 2.

4. Experiments and Results

4.1. Measures of Reduction Quality

In Section 3.2, we introduced the orthogonality defect factor to compare the n-LLL and the original
LLL reduction algorithm. And we also mentioned that the orthogonality defect factor only measures
the orthogonal quality of the two algorithms. In this section, we introduce a more practical measures,
which is easier to calculate through the reduced matrix: the condition number [10].

The searching region which contains the nearest solution of ILS problem (3) can be written as:

(ẑ− z)TQ−1
ẑ (ẑ− z) < χ2 (40)

and shape of this hyper-ellipsoid is determined by the ratio of the major and minor axes, which can be
described as:

elongation =

√
λmax

λmin
=
√

κ
(
Qẑ
)

(41)
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where κ(Qẑ) is defined as the condition number of Qẑ, λmax and λmin are the maximum and minimum
eigenvalues of Qẑ.

As a matter of fact, the condition number measures the elongation of the searching hyper-ellipsoid.
Clearly, a lower condition number leads to a more sphere like search region and that will make the
search more efficient and fast.

In order to illustrate the influence of condition number on the search time, Figure 2 shows a
red ellipsoid defined by the original matrix and a reduced ellipsoid. The initial value for the search
is often acquired by using Babai’s method [23]. Supposing that we use the sphere search, then the
minimum searching radius is the major axe of the hyper-ellipsoid. Clearly, by reducing it to the green
ellipsoid showed in Figure 2, the size of the searching sphere is significantly shrunk down. Therefore,
the condition number in some way reflects the search space for sphere searching method, which can
be taken as an effective measure of reduction quality.Sensors 2018, 18, 283  13 of 20 
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4.2. Experiment Design

To evaluate the performance of the reduction algorithm thoroughly, the simulation matrix B
should be designed carefully. Therefore, two major parameter should be focused on in particularly:
the dimension m and the condition number κ. We first generate matrix B with two settings and then the
covariance matrix Qẑ is calculated accordingly. Note that the weight matrix W is set to I without losing
generality, as it has been incorporated into the basis as B = W1/2B′. The two simulation settings are:

Case 1: The m×m coefficient matrix Borignal is firstly generated randomly by using the standard
Gaussian normal distribution and then decomposed into matrixes U·S·V with the singular value
decomposition. To control the condition number of the covariance matrix Qẑ, the singular value matrix
S is replaced by a diagonal matrix S′, where s′1 = 2

−κ
4 , s′m = 2

κ
4 and other entries of S′ are randomly

distributed between s′1 and s′m. The matrix B is then reconstructed as B = U·S′·V and the covariance
matrix is calculated as Qẑ = BT ·B accordingly. Therefore, the condition number κorig of Qẑ is set to 2κ

with κ = 5, 6, 7 · · · 16. For typical RTK application with all GNSS constellations like GPS, GLONASS,
Galileo and BDS, setting the dimension of coefficient between 10 and 30 and the condition numbers
between 28 and 216 will cover most of the situations [12].

The first case covers most of the general purpose matrixes. As we paid more attention to the
GNSS carrier phase resolution application of the lattice reduction algorithm, the unique features of
the real GNSS signal should be taken into consideration. In RTK applications, the integer candidates
are estimated mainly by sequential integer least-squares method. As Teunissen reported in [28,29],
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the spectrum of conditional variances shows great discontinuity during the sequential search. And the
most significant gap always shows up between the third and the forth conditional variances.

This phenomenon can be briefly explained as follows. When solving the single short-baseline
RTK positioning equations with double-difference carrier phase measurement, (m + 3) unknowns are
involved: m double-difference ambiguities and a 3-dimensional baseline vector. Assuming that three
out of the m double difference ambiguities are already resolved, the baseline vector is then solvable with
the corresponding three observation equations. At this moment, the other (m − 3) double-difference
ambiguities can also be solved precisely with (m− 3) remaining observation equations. The conclusion
is thus reached that once 3 ambiguities (with high conditional variances) are known, the remaining
ambiguities can be determined with a very high precision (which means lower conditional variances).
Here we use Case 2 to generate matrixes with this discontinuity features.

Case 2: Let B = U·S′·V, where U and V are obtained through the singular value decomposition
like in Case 1 and S′ is set to S′ = diag

(√
200,
√

200,
√

200,
√

0.1 · · ·
√

0.1
)

, mimicking this
discontinuity in the spectrum of the conditional variances.

Note that Case 2 is unlike the simulation case 4 in [11]. Instead of controlling the shape of
the spectrum of conditional variances (the diagonal matrix in LTDL decomposition) directly, Case
2 here controls the distribution of eigenvalues, which makes the generated matrixes share the same
condition number.

In addition, the parameter δ is set to 0.75 for all the simulations considering of generality.

4.3. Performance of N-Dimensional LLL Reduction

4.3.1. Reduction Quality

The condition number κ mentioned in Section 4.1 describes how the search area looks like. In order
to compare the LLL reduction algorithm and the n-LLL reduction algorithm, we let Qorig = BT

orig·Borig,

QL3 = BT
L3 ·BL3 and QnL3 = BT

nL3 ·BnL3 be the original covariance matrix, the LLL reduced covariance
matrix and the n-LLL reduced covariance matrix and let κorig, κL3 , κnL3 be the condition numbers
accordingly. Therefore, the improvement of the searching area can be described as:

dκo−L3 = log10

(
κorig
κL3

)
dκo−nL3 = log10

(
κorig
κnL3

)
dκL3−nL3 = log10

(
κL3
κnL3

) (42)

We run the two cases mentioned above with three variables: (i) m, the dimension of the original
coefficient matrix from 10 to 30 with an interval of 2; (ii) κorig, the condition number of covariance
matrix from 8 to 16 with an interval of 1; (iii) n, the parameter for n-LLL reduction algorithm from 2 to
m with an interval of 2. And for each setting, we perform 1000 independent random simulations to
evaluate the algorithm.

Firstly, we pick out a set of simulations where κorig = 212(for Case 1 only), m = 20 and n = 4 and
the probability density function of the dκ is plotted in Figure 3. It can be seen clearly in Figure 3a,b
(dκo−L3) and Figure 3c,d (dκo−nL3) that both the LLL reduction algorithm and the n-LLL reduction
algorithm are able to reduce the condition number significantly. Furthermore, Figure 3e,f shows the
difference between the two algorithms dκL3−nL3 , which proves the 4-LLL reduction algorithm has
larger probability to perform better than the original LLL reduction. Statistically, among the 1000
independent runs of this particular simulation setting, 64.7% results of the 4-LLL is better than that of
the LLL with a maximum improvement factor of 5.85. And the average improvement is about 39%.
It should be pointed out that for all the simulation settings mentioned above, the conclusion showed
in Figure 3 holds in general.
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orthogonality of the coefficient matrix) improves as the parameter n increases. To prove this 
conclusion, we take  20m  for example and let the parameter n vary from 4 to 20. The results shown 
in Figure 4 is not as expected and an upper limit shows up for the d  as the n increases. And the 
condition number of the output matrix changes no more after n reaches a certain number. The 
explanation for this phenomenon is that the column vectors in B cannot become “more ordered” to 

Figure 3. The probability density functions of the differences of condition numbers in logarithm to
base 10. (a) dκ between the original matrix and LLL reduced matrix for κorig = 212 of Case 1; (b) dκ
between the original matrix and LLL reduced matrix for Case 2; (c) dκ between the original matrix and
4-LLL reduced matrix for κorig = 212 of Case 1; (d) dκ between the original matrix and 4-LLL reduced
matrix for Case 2; (e) dκ between the LLL reduced matrix and 4-LLL reduced matrix for κorig = 212 of
Case 1; (f) dκ between the LLL reduced matrix and 4-LLL reduced matrix for Case 2.

In Section 3.2, inequality (28) implies that the lower bound of the reduction quality (the
orthogonality of the coefficient matrix) improves as the parameter n increases. To prove this conclusion,
we take m = 20 for example and let the parameter n vary from 4 to 20. The results shown in Figure 4
is not as expected and an upper limit shows up for the dκ as the n increases. And the condition
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number of the output matrix changes no more after n reaches a certain number. The explanation
for this phenomenon is that the column vectors in B cannot become “more ordered” to improve the
orthogonality anymore at this point. However, Figure 4 still shows that n = 2 (the original LLL) is
generally not this upper limit and there is space to improve reduction performance by increasing the
parameter n.
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Figure 4. Normalized difference of condition numbers. The differences of condition number between
n-LLL and the original LLL are normalized and plotted altogether with m range from 18 to 24. (a) The
normalized difference of condition number for κorig = 214 of Case 1; (b) The normalized difference of
condition number of Case 2.

This can be clearly seen in the thermodynamic diagram Figure 5, where the temperature denotes

dκmax
L3−nL3 = log10

(
κL3

min(κnL3)

)
. The highest temperature shows up when the dimension of the coefficient

matrix is around 20 with a relatively high κorig for Case 1, which indicates that the n-LLL reduction
algorithm maximum its performance in that area. And for Case 2, the highest temperature also shows
up around the dimension of 18 to 20. However, the difference between LLL and n-LLL becomes less
significant when dealing with matrixes with higher dimension but lower condition number.
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As can be seen later in Section 4.3.2, setting a higher parameter n always results in a longer
reduction time. Thus, finding an optimized n to balance the performance and the reduction time
is important. We analyzed the simulation results deeply and found that parameter n is relevant to
the square of the dimension. We give out the fit result based on our simulation in Figure 6 and (43).
The goodness of the first order polynomial surface fitting in Figure 6b reaches 0.6851, which means it
can be taken as an empirical reference formula within the simulation setting range.

n f it =
(
0.0670− 0.0027·m + 0.0014· log2 κorig

)
·m2 (43)
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Figure 6. The parameter n with the best reduction quality. The corresponding parameter n of the
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reduction quality; (b) The 1st order fit of normalized parameter n/m2.

4.3.2. Complexity

In order to evaluate the effect of pivoted reflection, we compared the n-LLL reduction without
pivoted reflection (PR), the n-LLL reduction with pivoted reflection and the original LLL reduction
algorithm. The simulation is performed on an E5-2650 CPU which makes the executing time is
relatively short. Thus, matrixes with high dimension and high condition number are chosen in this
simulation to obtain more accurate time measurements. 1000 independent runs are performed for
30-dimensional matrixes with condition number range from 210 to 216. And to evaluate the worst
case of the n-LLL reduction algorithm, parameter n is fixed to 30 accordingly. Table 1 shows the
simulation results, indicating that the pivoted reflection is very effective on improving the efficiency of
the algorithm.

Table 1. The executing time of n-LLL reduction and LLL reduction.

Condition Number n-LLL without PR n-LLL with PR Original LLL

210 536 ms 230 ms 217 ms
211 561 ms 251 ms 224 ms
212 595 ms 286 ms 222 ms
213 628 ms 316 ms 220 ms
214 651 ms 341 ms 222 ms
215 672 ms 369 ms 235 ms
216 714 ms 412 ms 239 ms
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The conclusion is obvious that the pivoted reflection can reduce the reduction time by up to 57%
and it is also clear that the n-LLL reduction algorithm with pivoted reflection causes no significant rise
on the total reduction time compared with the original LLL reduction. And in the worst case scenario
of all our simulations, the n-LLL reduction algorithm consumes no more than 1.72 times of the original
LLL reduction time, which can also be observed in Figure 7a.
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Take another look at the results in Figure 7a in a different angle where the parameter n is present
in logarithm to base 10. The executing time in Figure 7b shows great linearity to the logarithm of
parameter n, which meets the conclusion presented in Section 3.2.2 well.

Figure 8 shows the relationship between the matrix dimension, the inverse of parameter n and
the average number of swaps in the reduction process. As we analyzed in Section 3.2.2, (39) shows
that the number of swaps will actually decline with the increase of parameter n as long as both the
dimension and the condition number of the original matrix is determined. And this conclusion can be
clearly seen in Figure 8 that the number of swaps declines by n times.
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5. Conclusions

This paper has presented a new kind of lattice reduction algorithm motivated by the original LLL
reduction. In order to put more emphasize on the order of the basis vectors, the Lovász condition
is further strengthened, expanding the 2-dimensional local optimization to n-dimensional global
optimization. The pivoted reflection method based on the Householder transformation and QR
decomposition is added to the algorithm in order to reduce the additional computational effort
brought by the extra vector swaps.

By utilizing the Hadamard Inequality and the orthogonality defect factor, the relation between the
n parameter of n-LLL and the reduction quality is illustrated. Analysis shows that with the increase
of the parameter n, the basis vectors will become more orthogonal or at least its orthogonality defect
factor will have a smaller lower bound. The complexity of the n-LLL algorithm is estimated afterwards,
which shows the n-LLL algorithm consumes more elementary steps than the original LLL with n > 2.
However, the analysis also proves that the n-LLL algorithm still remains a polynomial-time algorithm.

In the numerical simulation, two basic cases are covered to mimic the features of GNSS
double-difference carrier-phase measurements. The simulation results show that the reduction
quality of n-LLL algorithm is better than the original LLL reduction algorithm, especially for highly
ill-conditioned matrixes. However, with the increase of the parameter n, a certain upper bound of
the reduction quality of n-LLL is found during the simulation. At this certain point, the effect of
permutation reaches its limit and further permutation will not significantly affect the reduction quality.
In this case, a first-order surface fit is given to estimate this certain parameter n.

In order to evaluate the effect of pivoted reflection, the n-LLL reduction with and without pivoted
reflection as well as the original LLL reduction are compared. The results clearly show the power of
pivoted reflection, especially for matrix with relatively low condition number. And in the worst case
scenario of all our simulation, the pivoted reflection ensures the n-LLL reduction algorithm consumes
no more than 1.72 times of the original LLL reduction executing time.

Both the analysis and the simulation results have shown that the n-LLL algorithm is better than
the original LLL reduction algorithm, especially for highly ill-conditioned matrixes. And the increase
of the total reduction time is fairly acceptable, which makes the n-LLL a new practical algorithm for
lattice basis reduction.
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