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Abstract: In order to decrease the velocity sculling error under vibration environments, a new sculling
error compensation algorithm for strapdown inertial navigation system (SINS) using angular rate
and specific force measurements as inputs is proposed in this paper. First, the sculling error formula
in incremental velocity update is analytically derived in terms of the angular rate and specific force.
Next, two-time scale perturbation models of the angular rate and specific force are constructed.
The new sculling correction term is derived and a gravitational search optimization method is used
to determine the parameters in the two-time scale perturbation models. Finally, the performance
of the proposed algorithm is evaluated in a stochastic real sculling environment, which is different
from the conventional algorithms simulated in a pure sculling circumstance. A series of test results
demonstrate that the new sculling compensation algorithm can achieve balanced real/pseudo sculling
correction performance during velocity update with the advantage of less computation load compared
with conventional algorithms.

Keywords: sculling error; singular perturbation; two-time scale perturbation model; velocity update;
pseudo sculling; inertial measurement

1. Introduction

There are two key calculations in a typical strapdown inertial navigation system (SINS), namely,
the attitude update and velocity update algorithms. The total acceleration in SINS is expressed in terms
of the specific force, gravity and centrifugal acceleration. The velocity update algorithm of SINS is
a process of integrating total acceleration in the navigation frame. During the velocity update process,
the velocity differential equation can be obtained by transforming the specific force from the body
frame to the navigation frame based on the attitude update result, and including other accelerations.

For the attitude update, many algorithms with high accuracy have been developed [1–3]. For the
velocity update, many research works focus on multi-sensor information fusion based on various
filtering techniques to achieve high accuracy velocity for alignment and navigation of SINS. In order
to improve velocity estimation for alignment, an adaptive unscented Kalman filter with the aid of
a star sensor is proposed in [4]. A 12-state Kalman filter is used to estimate the velocity error for
the stationary self-alignment in [5]. In [6], a method using the Kalman filter based on integrating
gravitational apparent motion to form apparent velocity is designed to reduce the random noise of
the observation vectors for self-alignment. A tightly coupled SINS/GPS with the extended Kalman
filter is utilized in [7] to improve the attitude and velocity update accuracy with the observability
analysis of the whole system. Although the above methods achieve better performances, they all need
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other observable information with higher precision as measurement vectors. Recently, a dual Kalman
filter has been developed in [8,9] to estimate the unknown input and states by using sparse noisy
acceleration measurements. The outcome indicates that this method can achieve optimal performance
in the presence of colored measurement and modelling errors, and it is effective for the state estimation
of the metallic structures under low frequency vibrations due to unknown input forces. However,
the aircraft considered in this paper works in a more complex environment than the metallic structure
in that it undergoes not only low frequency vibrations but also wideband vibrations.

In a dynamic oscillating environment, the conventional velocity update usually generates the delta
velocity quantity and causes the navigation system to degrade if there is no sculling compensation.
Another method to enhance the velocity accuracy is to improve the numerical calculation of the velocity
differential equation. In the past few decades, considerable researches have been focused on developing
highly accurate and highly efficient velocity update algorithms. Savage [10,11] proposed a two-speed
velocity update algorithm and a velocity translation vector. Sculling error compensation was computed
with high speed by integrating the exact velocity translation vector differential equation, while the
velocity was updated in a moderate-speed process. To further improve the accuracy of the two-speed
velocity update algorithm, Wu et al. [12] developed a simpler dual quaternion (DQ) algorithm to
determine the rotation and apparent velocity as a whole. Chelnokov [13] proved that the DQ solutions
were stable in Lyapunov’s sense and the two-speed DQ algorithm achieved the third and fourth order
of accuracy. In [14,15], geometry algebra and Lie group methods were used to construct the two-speed
velocity update algorithms with comparable accuracy to the DQ algorithm. In addition, a simplified
parallel velocity error compensation algorithm was proposed in [16,17] based on the two-speed velocity
update concept and executed on a single-chip field programmable gate array (FPGA).

For the above velocity update algorithms, the sculling motion was assumed to oscillate with
constant amplitude and frequency, and the signals from the accelerometers and gyroscopes were
measured with white noise. However, in real dynamic environments, there exist random sculling
motion and nonwhite stochastic noise in inertial sensor measurements. Previous works cannot mitigate
the effect of these errors, thus limiting the velocity update accuracy in real applications. In order to
overcome this limitation, Wang et al. [18] presented a nonlinear robust multiple integrator algorithm to
estimate velocity from the measurements of accelerometers based on finite-time stability and singular
perturbation technique. Furthermore, with the assumption that the derivative of acceleration satisfies
a particular perturbation model, the presented algorithm proved that the velocity estimation was not
only robust to the nonwhite noise but also finite-time stable. However, the particular perturbation
model makes this method difficult to extend to the velocity update used in the SINS algorithm design.
In [19], a new coning correction algorithm, based on the two-time scale perturbation model of the
angular rate, was proposed for the attitude update algorithm with non-ideal angular rate information.
It is proved valid for improving accuracy with reduced computations of the attitude update in SINS
undergoing stochastic coning environments.

On the other hand, equivalency between the strapdown coning and the sculling correction
algorithm has been proved in [20]. Additionally, the singular perturbation model can be used to
analyze the vehicle dynamics equipped with an aerodynamic vectoring feature and has been applied
in designing aerospace guidance and control systems [21,22]. In this paper, we extend the previous
work to design the new velocity update algorithm based on singular perturbation.

In order to decrease the dynamic integration error of velocity update under vibration and
other complicated environments, a new sculling compensation algorithm for the velocity integration
based on a two-time scale perturbation model of inertial information is presented in this paper.
An analytical expression for the sculling error from the specific force integration process is derived in
Section 2. This expression can provide a solution to the dynamic sculling velocity error compensation.
Then, we analyze the frequency spectrum of the specific force under a real vibration environment to
provide a basis for the two-time scale perturbation model. Based on the analytical expression and
two-time scale perturbation model of the specific force, a new sculling error compensation algorithm is
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derived in Section 3 combined with our previous work on attitude update [19]. A gravitational search
optimization method is used to determine the perturbation parameters in the sculling error correction
term. The performance of the new sculling compensation algorithm is evaluated and compared with
the conventional sculling compensation algorithm under stochastic sculling motions in Section 4.
The simulation results indicate that the proposed sculling compensation algorithm improves the
velocity update accuracy and decreases computation load as well.

2. Sculling Error Formula in Velocity Update

The following relevant coordinate frames about navigation were used:

• The body coordinate frame (b-frame) is the strapdown inertial sensor frame. It is a right-handed
frame with the origin at the center of vehicle gravity. Its X-axis, Y-axis and Z-axis are aligned with
the roll, pitch and yaw directions of the vehicle, respectively.

• The navigation coordinate frame (n-frame) is a local geographic frame with its X-axis, Y-axis,
and Z-axis aligned with the directions of north, east, and the local vertical (down), respectively.

• The earth coordinate frame (e-frame) has an Earth-fixed angular geometry relative to the earth
with the origin at the center of earth. The X-axis passes through the Greenwich meridian and the
Y-axis is perpendicular to X-axis in the equatorial plane. Z-axis points toward the north pole.

• The inertial coordinate frame (i-frame) is a non-rotating frame with its origin at the center of earth.
Its X-axis is in the equatorial plane pointing towards the vernal equinox and the Z-axis points
toward the north pole. The Y-axis completes the right-handed frame.

According to the mechanization process of SINS, the velocity update equation in n-frame is
known as:

.
vn

= Cn
b fb − (2ωn

ie + ωn
en)× vn + gn (1)

where Cn
b is a direction cosine matrix that transforms a vector from b-frame to n-frame. fb is the specific

force vector measured by the strapdown accelerometer in b-frame. ωn
ie denotes the earth angular

rate relative to i-frame expressed in n-frame, and ωn
en is the angular rate of n-frame with respect to

e-frame expressed in n-frame. vn is the vehicle velocity in n-frame and
.
vn is the velocity change over

the velocity update interval. gn is the gravity vector expressed in n-frame.
It can be seen that the velocity update Equation (1) contains three terms: the transformed specific

force term, the Coriolis acceleration, and the apparent gravity, respectively. The second and third
terms vary slowly and smoothly during one navigation period and can be calculated using the linear
interpolation method over a small time period [23]. However, under the condition of large angular
motions, the attitude changes rapidly in the update interval, which can cause large errors in the
specific force integration and reduce the velocity update accuracy. Therefore, the velocity update
algorithm must account for the error caused by frame rotation to meet the requirement of precise
navigation [24,25]. Let fn be the specific force vector with respect to n-frame and utilize the strapdown
accelerometer output fb, then

fn = Cn
b fb (2)

Integrate the specific force in n-frame over each sculling update interval from tk to tk+1 as follows

un =
∫ tk+1

tk

Cn
b fbdt (3)

where tk and tk+1 represent the beginning time and ending time of one sculling update interval. un

denotes velocity increment in n-frame from tk to tk+1.
Define Cn(k+1)

n(k) as the direction cosine matrix from n-frame at tk to n-frame at tk+1. The direction

cosine matrix from b-frame at tk to n-frame at tk is denoted by Cn(k)
b(k) . Denote Cb(k)

b(t) as the direction
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cosine matrix from b-frame at t to b-frame at tk. Then, the direction cosine matrix from b-frame at t to
n-frame at tk+1 becomes

Cn
b = Cn(k+1)

n(k) Cn(k)
b(k)Cb(k)

b(t) (4)

Letting C = Cn(k+1)
n(k) Cn(k)

b(k) and substituting Equation (4) into Equation (3) yields

un = C
∫ tk+1

tk

Cb(k)
b(t) fbdt (5)

where Cb(k)
b(t) = I + [φ×] + 0.5[φ×]2 + · · · , φ denotes the rotation vector defining the body attitude

from tk to t [4,17]. φ× is the skew symmetric matrix of the rotation vector φ. Therefore, Equation (5)
can be derived as

un = C
∫ tk+1

tk

(
I + [φ×] + 0.5[φ×]2 + · · ·

)
fbdt (6)

For most SINS mechanization, the second cross-product term and other higher order terms can be
assumed small enough to be negligible. Thus, un can be approximated by

un = C
(∫ tk+1

tk

fbdt +
∫ tk+1

tk

φ× fbdt
)

(7)

Over a small time interval, the rotation vector φ can be approximated by

φ ≈ α(t) =
∫ t

tk

ω(τ)dτ (8)

where ω(τ) is the angular rate vector in b frame. Consider the following equation,

α(t)× d
dt

v(t) =
1
2

d
dt

(α(t)× v(t)) +
1
2

[
α(t)× d

dt
v(t) + v(t)× d

dt
α(t)

]
(9)

where v(t) =
∫ t

tk
fb(τ)dτ. Substituting Equations (8) and (9) into Equation (7) yields

un = C
(∫ tk+1

tk
fbdt +

∫ tk+1
tk

φ× fbdt
)

= C
(∫ tk+1

tk
fbdt +

∫ tk+1
tk

α(t)× fbdt
)

= C(v(tk+1)+
∫ tk+1

tk

{
1
2

d
dt (α(t)× v(t)) + 1

2

[
α(t)× d

dt v(t) + v(t)× d
dt α(t)

]}
dt
)

= C
(

v(tk+1) +
1
2 [α(t)× v(t)]|tk+1

tk
+ 1

2

∫ tk+1
tk

[
α(t)× fb + v(t)×ω

]
dt
) (10)

The second term 1
2 [α(t)× v(t)]|tk+1

tk
in Equation (10) is defined as the rotation error compensation

term, which represents a change in velocity due to rotational motion in the update cycle. This term
leads to the low-frequency component during integration and can be compensated easily. The third
integral term in Equation (10) is the sculling error compensation term, which is

∆scull =
1
2

∫ tk+1

tk

[
α(t)× fb + v(t)×ω

]
dt (11)

This term represents the integration contribution of the high-frequency component and results in
rectified error during velocity update especially in the sculling motions. Thus, the key of velocity error
compensation is to accurately estimate and compensate the sculling term.

Based on the analytical expression of the sculling error term, it is known that when high-frequency
angular and linear vibrations occur in two or more axes simultaneously, the sculling error in velocity
will be generated in the inertial sensor [10,12,17]. To improve the velocity accuracy, a series of high-rate
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algorithms for sculling integral compensation using angle and velocity increments as algorithm inputs
have been developed [25,26]. However, they are not suitable for modern inertial sensors whose outputs
are the angular rate and specific force. Some researchers designed sculling error correction algorithms
based on the angular rate or linearly ramping polynomial specific force models, whose coefficients
are estimated through Taylor or Picard series polynomial expansion [23,24,27]. However, it is ignored
that the angular rate and specific force are changing randomly and non-linearly especially in high
dynamics or complicated vibration environments. In addition, the conventional three-interval or
four-interval sculling correction algorithms are usually simulated under pure sculling environments
without considering vibration effect, and the results are not optimal in real vibration environments.

3. Sculling Error Compensation Algorithm Based on Two-Time Scale Perturbation Model

3.1. Performance Analysis of Specific Force under Vibrations

For aircraft, engine noise and air disturbance are usually the main vibration sources [28].
The engine noise mainly depends on aircraft type. When the engine starts to work, the engine vibration
is transmitted to the vehicle and affects the normal operation of onboard instruments. Air disturbance
is influenced by meteorological conditions with strong random characteristics. When the aircraft
flies from one irregular vortex to another in turbulent areas, the unstable air flow causes vibration.
Especially, the vibration strength will be intensified if the vibration natural frequency of aircraft is
equal to the vortex vibration frequency. In addition, the rotor vibration is also the main vibration
source for rotor aircraft. Most vibrations can be sensed directly by the inertial components mounted
on the aircraft, which lead to coning and sculling errors in attitude and velocity updates, respectively.
In order to compensate the sculling error, the specific force with wide-band nonwhite noise under
aircraft dynamic environments is analyzed at first. Figure 1 shows the real raw data of the X-axis
accelerometer fixed on the vehicle with 1.6 KHz sampling frequency. Some outliers can be observed in
the specific force measurement except noises. Thus, it is necessary to analyze the frequency spectrum
of the specific force and further preprocess the specific force to improve its signal-to-noise ratio under
complicated circumstances.
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Figure 1. The raw specific force data of X-axis with 1.6 KHz sampling frequency.

Generally, a low-pass filter is often used in the preprocessing to filter high frequency noises,
and enhances the signal-to-noise ratio. However, the remnant noises with high frequency still exist
even after preprocessing. The result of utilizing the power spectral density (PSD) method to analyze
the frequency response of filtered X-axis specific force in a random vibration experiment is shown
in Figure 2a. The remnant noise with wide frequency bandwidth up to a thousand Hz is shown
in Figure 2b.

It can be seen from Figure 2a that the frequency spectrum of the specific force can be partitioned
into two regions under the real experimental conditions: a vehicle motion region characterized by
higher dynamic energy and lower frequency bandwidth, and the wide-band noise region characterized
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by lower dynamic energy and higher frequency. The specific force over the sculling update interval
has the characteristic with slow and fast time scale, which satisfies the requirement of the two-time
scale model.Sensors 2018, 18, 282 6 of 16 
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Figure 2. Frequency response of filtered specific force: (a) Frequency spectrum of filtered specific force
in Figure 1; (b) Sensor noise region with high frequency.

On the other hand, the Taylor series polynomial model of the specific force is usually adopted
in conventional sculling algorithms to obtain the optimal coefficients of the sculling error correction
term. For instance, the fourth-order fitting specific force model is often utilized in the four-interval
algorithm compensating the sculling error. In fact, it is difficult for this deterministic model to describe
the specific force with the slow and fast time scale characteristic under real vibration environments.
Supposing the frequencies of velocity update and sculling update are 100 Hz and 400 Hz respectively,
the inertial sensor’s sample frequency should be 1.6 KHz in the conventional four-interval sculling
algorithm. This indicates that four sample measurements should be included in one sculling update
interval. The estimates derived from the fourth-order fitting specific force model and the preprocessed
specific force measurement over one sculling update interval are shown in Figure 3.
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Figure 3. Specific force measurement and the fourth-order fitting model over one sculling
update interval.

The estimates based on the fourth-order fitting specific force model cannot completely represent
the real specific force characteristic over the sculling update interval. It can be seen that the errors
between the estimates and real measurements can reach 0.0002 g at the second sample point and
0.0001 g at the third sample point. These errors will be accumulated after integration and cause large
velocity error over time. Combing Figures 2 and 3, a new model of specific force is constructed to better
represent the frequency spectrum of specific force with less estimation error in Section 3.2, and the
sculling error correction term based on the new model is derived in Section 3.3.



Sensors 2018, 18, 282 7 of 16

3.2. Two-Time Scale Perturbation Model of Specific Force

The frequency spectrum of specific force demonstrates the slow and fast characteristic time scales
over the sculling update interval. In [29,30], it was found that a two-time scale model can be used
to describe this experimental frequency spectrum shape. Moreover, the Markov process with weak
interactions has been widely used to conveniently describe the noise in inertial sensor outputs and it
can also be modeled as singularly perturbed systems [30]. Therefore, due to the simultaneous presence
of slow and fast phenomena over the sculling update interval, the specific force can be characterized
by a singularly perturbed process and modeled as a two-time scale perturbation model

ε
..
f(τ) +

.
f(τ) + β = 0 (12)

With the boundary conditions f(0) = f1 and f(T) = f2, where ε is a small positive perturbation
parameter; τ is the time relative to the beginning of a sculling update interval; β is a variable vector;
f1 and f2 are the specific force vectors sensed by the accelerometer at the beginning and ending of
a sculling update interval, respectively; T is the sculling update interval.

Although it is easy to determine the exact solution of Equation (12), a simplified composite
solution to a two-time scale system is chosen because it can achieve nearly the same performance as the
exact solution but demand less computation load [19]. From Equation (12), the singularly perturbed
model of the specific force includes two subsystems: the inner subsystem and the outer subsystem.
When solving the singularly perturbed model of the specific force with the boundary layer method,
the simplified composite solution to Equation (12) can be obtained by solving the differential equation
for each subsystem and combining their solutions.

The inner subsystem (boundary layer) is derived by stretching the time scale from τ to η = τ/ε,

then
.
f(τ) =

1
ε

.
f(η) and

..
f(τ) =

1
ε2

..
f(η). Substituting them into Equation (12) and letting ε = 0 yield

..
f
(i)
(η) +

.
f
(i)
(η) = 0 η ∈ [0, ∞) (13)

where the superscript ‘i’ stands for “inner”. In solving the perturbation equation, the transformed
initial condition of the inner boundary layer should include the initial value of the outer subsystem,
i.e., f(i)(0) = f1 − f(o)(0) , where f(i)(0) is the initial value of the inner subsystem, and f(o)(0) is the
initial value of the outer subsystem. The superscript ‘o’ stands for “outer”. The slower vector f(o)(τ) is
considered as a constant equal to its initial value in the boundary layer and the faster vector f(i)(η)
satisfies lim

η→∞
f(i)(η) = 0.

By solving the second-order differential Equation (13), the solution to the inner boundary layer is

f(i)(η) = (f1 − f(o)(0))e−η (14)

Suppose that the parameter ε is very small. The outer subsystem of Equation (12) can be
described by

.
f
(o)

(τ) + β = 0 (15)

with its terminal condition f(o)(T) = f2. Integrating Equation (15) yields the outer subsystem solution

f(o)(τ) = −βτ + βT + f2 (16)

with
f(o)(0) = βT + f2 (17)

The approximate composite solution of Equation (12) is constructed as the sum of the inner
solution and the outer solution based on Equations (14), (16) and (17), that is
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f(τ) = f(i)(
τ

ε
) + f(o)(τ) = (f1 − βT − f2)e

−( τ
ε ) − βτ + βT + f2 (18)

The two-time scale model of angular rate can be constructed by the same method based on
a singularly perturbed system. The approximate composite solution of the angular rate perturbation
model over the sculling update interval can be derived as:

ω(τ) = (ω1 − γT −ω2)e−(
τ
ε ) − γτ + γT + ω2 (19)

where γ is a vector in the angular rate singularly perturbed system; ω1 and ω2 are the angular rate
vectors sensed by the gyroscopes on the vehicle at the beginning and ending time of the sculling
update interval, respectively. Equations (18) and (19) are defined as the two-time scale perturbation
models of inertial measurements.

In the traditional sculling compensation algorithms, two conflicting requirements usually exist.
On one hand, the navigation system attempts to obtain accurate results by integrating high speed
sensor data in very small step sizes, but on the other hand, this flood of data may cause great burden
to the processor [31]. A good tradeoff is the key factor for sculling error compensation. It is known
that the specific force model based on the polynomial in the N-interval traditional algorithm requires
N new sample values over one sculling update interval, whereas the specific force based on the new
two-time scale model only uses two sample values at the beginning and ending of the sculling update
interval for integration. Thus, the frequency of sensor sampling based on the two-time scale model is
the same as the frequency of sculling update.

3.3. Sculling Compensation Algorithm Based on Two-Time Scale Perturbation Models of Inertial Measurements

The two-time scale perturbation models of the specific force and angular rate are used to derive
the sculling error correction term in this section. According to Equations (18) and (19), the inertial
signals can be expressed in another form as follows:

ω(t) = ae−(
t
ε ) − bt + d and f(t) = Ae−(

t
ε ) − Bt + D (20)

where the parameters in Equation (20) are

a = ω1 − γT −ω2, b = γ, d = γT + ω2

A = f1 − βT − f2, B = β, D = βT + f2
(21)

The incremental angle vector α and incremental velocity vector v from time 0 to t are

α = −εa
(

e−
t
ε − 1

)
− 1

2
bt2 + dt, v = −εA

(
e−

t
ε − 1

)
− 1

2
Bt2 + Dt (22)

Substituting Equations (21) and (22) into Equation (11), the sculling error correction term over the
sculling update interval based on the proposed models is derived as

∆̂scull = 1
2

∫ tk+1
tk

(v×ω + α× f)dt
= 1

2 (A× b− B× a)( 1
2 εT2 + 2ε3) + 1

2 (D× a−A× d)(2ε2 − εT) + 1
12 (B× d−D× b)

(23)

Substituting Equation (21) into Equation (23) yields

A× b− B× a = (f1 − f2)× γ + (ω1 −ω2)× β

D× a−A× d = f2 ×ω1 − f1 ×ω2 + γT × f1 + βT ×ω1

B× d−D× b = β×ω2 − f2 × γ

(24)
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A numerical algorithm for computing the sculling integral term is developed based on Equations
(23) and (24). In the conventional four-interval algorithm based on the fourth-order fitting, the sculling
compensation term is [32]

∆̂scull = Kv1[∆θ1 × ∆v2 + ∆θ3 × ∆v4 + ∆v1 × ∆θ2 + ∆v3 × ∆θ4]

+Kv2[∆θ1 × ∆v3 + ∆θ2 × ∆v4 + ∆v1 × ∆θ3 + ∆v2 × ∆θ4]

+Kv3[∆θ1 × ∆v4 + ∆v1 × ∆θ4] + Kv4[∆θ2 × ∆v3 + ∆v2 × ∆θ3]

(25)

where Kv1 =
736
945

, Kv2 =
334
945

, Kv3 =
526
945

, and Kv4 =
654
945

are the coefficients derived from the
fourth-order fitting model of inertial information. In order to calculate the sculling compensation term
in the conventional four-interval algorithm, four new inertial measurements about angular and linear
motions should be supplied in one sculling interval ∆θ1, ∆θ2, ∆θ3, ∆θ4 are angular increments and
∆v1, ∆v2, ∆v3, ∆v4 are velocity increments at the four different sampling times during one sculling
interval. It is convenient to obtain the sculling compensation term according to Equation (25) utilizing
the inertial sensors whose outputs are the angular increment and velocity increment. However, the
measurements of most inertial sensors nowadays are the angular rate and specific force. The angles and
velocities at the sampling times can be calculated by integrating the measurements of the angular rate
and specific force, and then the angular and velocity increments can be obtained by further processing
of the calculated angles and velocities, which will introduce more calculation errors.

By comparing Equations (23) and (25), it can be seen that the conventional sculling algorithm
utilizes angular and velocity increments to compute the sculling correction term, while the proposed
sculling algorithm directly uses the angular rate and specific force as inputs and estimates the sculling
correction term based on their two-time scale perturbation models. Therefore, the proposed approach
is more appropriate for the modern accelerometer with the specific force output and gyroscope with
the angular rate output. Additionally, the proposed approach can complete the sculling compensation
with less sample measurements compared with the conventional four-interval algorithm that requires
more sensor sampling data. In particular, in one sculling update interval, the proposal algorithm
needs two sample measurements from each sensor (ω1 and ω2 from gyroscope, and f1 and f2 from the
accelerometer), whereas the conventional four-interval algorithm needs four sample measurements
(∆θ1, ∆θ2, ∆θ3, ∆θ4 for angular measurements and ∆v1, ∆v2, ∆v3, ∆v4 for velocity measurements).
In addition, tuning the parameter ε and vectors β and γ can effectively improve the accuracy of the
proposed sculling correction algorithm. The parameter selection rules will be given in the next section.

3.4. Selection of Perturbation Model Parameters Based on Gravitational Search Optimization Method

The parameter ε > 0 is a sufficiently small constant that represents the separation of time scales
between the fast dynamics and the slow dynamics of inertial sensor outputs [19]. The vector parameters
β and γ describe the vehicle specific force and angular rate motion in the sculling update interval.

Among many optimization algorithms, the gravitational search algorithm based on Newton’s
law of universal gravitation can perform the global search in the solution space [33]. In this algorithm,
each particle is regarded as a mass object in the solution space and it moves in the gravitational field
of all other particles. The particles with small or large fitness will approach the optimal solution at
a slow or fast speed, respectively. In order to determine the parameters ε, β, and γ, the gravitational
search optimization algorithm is used due to its excellent search speed and ability to tune and obtain
the optimal solution.

The parameters ε, β and γ in the two-time scale perturbation models of inertial measurements are
considered as mass particles and optimized by the gravitational search algorithm. Define the fitness
function as follows

Ff it =
1
N

N

∑
i=1

[(
Xi − Xi

′)2
+
(
Yi −Yi

′)2
]

(26)
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where N is the number of mass particles. Xi and Yi are inertial measurements of the specific force or
angular rate corresponding to the ith particle. Xi

′ and Yi
′ are their estimates based on the two-time

scale perturbation models. The flowchart of the parameter optimization algorithm is shown in Figure 4.
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Figure 4. Gravitational search optimization algorithm.

First, initialize the velocity and position of mass particles in the three dimensions randomly.
Calculate the fitness values of all mass particles by Equation (26). According to Equation (27),
the inertial mass of each mass particle is updated using the fitness value when the particle is moving:

mi(t) =
f iti(t)− worst(t)
best(t)− worst(t)

, Mi(t) = mi(t)/
N

∑
j=1

mj(t) (27)

where Mi(t) denotes the inertial mass of each particle at the tth iteration. f iti(t) is the fitness value of
the ith particle at the tth iteration. best(t) and worst(t) are the minimum and maximum fitness values
of all particles at the tth iteration, respectively.

Next, calculate the mutual force acting on the mass particle with the inertial mass based on
Newton’s law of universal gravitation. The force of the jth particle on the ith particle is

Fij = G(t)
Mj(t)Mi(t)

Rij(t)
(

xj(t)− xi(t)
)

, G(t) = G0e(−λ/ξ) (28)

where G(t) denotes the gravitational coefficient changing with current iteration number λ. G0 is
the initial value of the gravitational coefficient and ξ is the maximum iteration number. Mi(t) and
Mj(t) represent the inertial mass of the ith particle and the jth particle respectively at the tth iteration.
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xi(t) and xj(t) are the positions of Mi(t) and Mj(t) in the space at the tth iteration, and they also
represent the values of the perturbation parameters at the tth iteration. Rij(t) is the Euclidean distance
between Mi(t) and Mj(t). Therefore, the total force on the ith particle in the three-dimensional space is

Fi(t) =
N

∑
j=1,j 6=i

Fij(t) (29)

Then update the particle velocity vi(t + 1) and position xi(t + 1) based on the total force on the
ith particle according to Equation (30):

vi(t + 1) = vi(t) +
Fi(t)
Mi(t)

,xi(t + 1) = xi(t) + vi(t + 1) (30)

Finally, the new fitness value is updated and used as the condition. The optimal parameter ε, β

and γ are obtained if the current iteration number reaches the preset maximum iteration number, or the
precision of the updated fitness satisfies the preset requirement that makes the mutual force between
mass particles the largest. If the condition is not met, the algorithm moves to the next iteration.

Due to the wide bandwidth of sensor measurement noise, the resulting optimal parameter ε is
0.00001 after the search. A series of γ and β are obtained as well and the fitting formula of γ and β are
set to be

γ = (ω2 −ω1)× 0.001 and β = (f2 − f1)× 0.001 (31)

The formulas are based on the driving experimental data of the fiber IMU with 400 Hz sample
frequency. However, they can change for different vehicles working in different environments.

4. Simulation under Wideband Vibrations and Analysis

Simulations were performed to illustrate the advantages of the proposed sculling algorithm
compared with the conventional four-interval sculling algorithm under the complex vibration
environment. In the simulations, the vehicle was assumed to undergo the sculling motion that is
considered the worst dynamic environment for SINS since the sculling error is maximized under
this motion. In traditional algorithms, the simulation condition of pure sculling motion does not
take into account random noises. However, the advantage of the proposed algorithm is that it can
sufficiently correct both the sculling and pseudo sculling velocity errors usually caused by vibration
noise. The simulation focuses on the sculling error compensation affected by vibrations of different
frequencies. According to the analysis of experimental data given in Figure 2a, harmonic angular and
linear vibrations with the same frequency are constructed as the simulation condition. The vibrations
with noises are acting along the vehicle orthogonal axes:

ω(t) =

 AαΩ cos(Ωt) + AαnΩn cos(Ωnt)
0
0

, f(t) =

 0
Ap sin(Ωt) + Apn sin(Ωnt)

0

 (32)

where Aα and Ap denote the amplitude of the angular and linear vibrations, respectively. Ω is the
angular and linear vibration frequency. Aαn and Apn represent the amplitude of noise existing in the
angular and linear vibrations, respectively. Ωn is the noise frequency.

The angular and velocity increment over one sculling update interval can be determined by
integrating Equation (32),
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α(t) =
∫ tk+1

tk
ωdt =

 Aα(sin Ωtk+1 − sin Ωtk) + Aαn(sin Ωntk+1 − sin Ωntk)

0
0


v(t) =

∫ tk+1
tk

f dt =


0

Ap

Ω
(cos Ωtk − cos Ωtk+1) +

Apn

Ω
(cos Ωntk − cos Ωntk+1)

0


(33)

Substituting Equation (33) into the sculling term leads to the theoretic sculling compensation
term ∆scull . In simulation, the angular and linear vibration amplitudes of the vehicle sculling motion
are assumed Aα = 0.1◦ and Ap = 0.0001 g, respectively. The angular and linear vibration frequency
Ω is 30 Hz. The noise frequency Ωn varies in a wide range from 0 Hz to 1000 Hz. The angular noise
amplitude is Aαn = 0.01◦ and the linear velocity noise amplitude is Apn = 0.00001 g. The parameters
γ and β are determined according to Equation (31). The outputs of strapdown inertial sensors are the
angular rate and specific force with the sample frequency 400 Hz. The total duration of simulation
is 10 s. The results of the velocity error along the Z-axis in the navigation frame are illustrated in
Figures 5 and 6. Note that the sculling update frequency of the improved sculling algorithm is 400 Hz
as well, while that of the conventional four-interval algorithm is 100 Hz when the sensor sample
frequency is 400 Hz.

Figure 5 reveals that there is a pseudo sculling phenomenon caused by the overlap of frequency
bands. It can be seen that the velocity error is actually amplified around 400 Hz and 800 Hz when the
multiples of the sample frequency are mixed with the noise frequency. It is evident that the improved
algorithm performs much better for the velocity update than the conventional four-interval approach
under the sculling motion, because the improved algorithm can reduce the pseudo sculling error.

Figure 6 is presented to more clearly compare the performances of both algorithms at around
the low noise frequency from 0 Hz to 250 Hz and the high noise frequency from 350 Hz to 450 Hz.
It can be seen that the average velocity error of the improved sculling algorithm is 0.015 m/s at the low
frequency band while the average velocity error of the conventional four-interval algorithm reaches
0.04 m/s. The maximum velocity error of the conventional four-interval algorithm in the vicinity of
400 Hz is 0.1795 m/s while that of the improved algorithm reduces to 0.0685 m/s under the same
simulated condition. The improved sculling algorithm is more effective in attenuating the pseudo
sculling error than the conventional algorithm as the frequency increases.

Sensors 2018, 18, 282 12 of 16 

 

The angular and velocity increment over one sculling update interval can be determined by 
integrating Equation (32),  

( ) ( )

( ) ( )

1

1

1 1

1 1

sin sin sin sin
( ) d 0

0

0

( ) d cos cos cos cos

0

α α

α ω+

+

+ +

+ +

Ω − Ω + Ω − Ω 
 = =  
  
 
 
 = = Ω − Ω + Ω − Ω
 Ω Ω
 
  





k

k

k

k

k k n n k n k
t

t

t p pn
k k n k n kt

A t t A t t

t t

A A
t f t t t t tv

 (33) 

Substituting Equation (33) into the sculling term leads to the theoretic sculling compensation 
term scullΔ . In simulation, the angular and linear vibration amplitudes of the vehicle sculling motion 
are assumed 0.1α = A  and 0.00 g 01pA = , respectively. The angular and linear vibration frequency 
Ω  is 30 Hz. The noise frequency Ωn  varies in a wide range from 0 Hz to 1000 Hz. The angular noise 

amplitude is 0.01α = 
nA  and the linear velocity noise amplitude is 0.00001  gpnA = . The parameters 

γ  and β  are determined according to Equation (31). The outputs of strapdown inertial sensors are 
the angular rate and specific force with the sample frequency 400 Hz. The total duration of simulation 
is 10 s. The results of the velocity error along the Z-axis in the navigation frame are illustrated in 
Figures 5 and 6. Note that the sculling update frequency of the improved sculling algorithm is 400 
Hz as well, while that of the conventional four-interval algorithm is 100 Hz when the sensor sample 
frequency is 400 Hz. 

Figure 5 reveals that there is a pseudo sculling phenomenon caused by the overlap of frequency 
bands. It can be seen that the velocity error is actually amplified around 400 Hz and 800 Hz when the 
multiples of the sample frequency are mixed with the noise frequency. It is evident that the improved 
algorithm performs much better for the velocity update than the conventional four-interval approach 
under the sculling motion, because the improved algorithm can reduce the pseudo sculling error. 

Figure 6 is presented to more clearly compare the performances of both algorithms at around 
the low noise frequency from 0 Hz to 250 Hz and the high noise frequency from 350 Hz to 450 Hz. It 
can be seen that the average velocity error of the improved sculling algorithm is 0.015 m/s at the low 
frequency band while the average velocity error of the conventional four-interval algorithm reaches 
0.04 m/s. The maximum velocity error of the conventional four-interval algorithm in the vicinity of 
400 Hz is 0.1795 m/s while that of the improved algorithm reduces to 0.0685 m/s under the same 
simulated condition. The improved sculling algorithm is more effective in attenuating the pseudo 
sculling error than the conventional algorithm as the frequency increases. 

 
Figure 5. Velocity error. Figure 5. Velocity error.



Sensors 2018, 18, 282 13 of 16
Sensors 2018, 18, 282 13 of 16 

 

 
(a)

 
(b)

Figure 6. Velocity errors at the low frequency and high frequency: (a) Velocity error at the low 
frequency; (b) Velocity error at the high frequency. 

If the error drift of an algorithm is minimized in the sculling motion, it will perform satisfactorily 
in most other environments. In the process of sculling error compensation, the error drift is used as 
the criterion for accuracy evaluation, and its definition is given in Equation (34) [34],  

ˆ
drift scull scullρ = Δ −Δ  (34) 

The results of error drift simulations under the sculling motion are shown in Figure 7. 

(a) (b)

Figure 7. Error drifts: (a) Error drift of the conventional algorithm; (b) Error drift of the improved 
algorithm. 

Figure 6. Velocity errors at the low frequency and high frequency: (a) Velocity error at the low frequency;
(b) Velocity error at the high frequency.

If the error drift of an algorithm is minimized in the sculling motion, it will perform satisfactorily
in most other environments. In the process of sculling error compensation, the error drift is used as the
criterion for accuracy evaluation, and its definition is given in Equation (34) [34],

ρdri f t = ∆̂scull − ∆scull (34)

The results of error drift simulations under the sculling motion are shown in Figure 7.
Figure 7 illustrates that the error drifts of the conventional and improved algorithms change

with the sculling motion noise frequency. The error drift of the improved algorithm based on the
two-time scale perturbation model of inertial measurement is much smaller than the conventional one.
Especially, when the noise frequency and sensor sample frequency fall into the overlap bands around
400 Hz and 800 Hz, the improved sculling algorithm can effectively attenuate the pseudo sculling error
arising from the inertial sensor errors and vibration.

The average velocity error during the simulation duration is used to evaluate the accuracy
performance of the two algorithms. The computational time is the total time that the algorithms spent
on calculating the sculling error term in one velocity update interval. The performance statistic result
is shown in Table 1.
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Table 1. Performance comparison.

Performance Index Four-Interval
Algorithm Improved Algorithm

Accuracy (m/s) −0.0399 −0.0152
Computational time (s) 0.01432 0.00414

Correction frequency (Hz) 100 400

It is evident that the improved algorithm is more accurate than the four-interval algorithm.
Besides favorable accuracy, the improved algorithm shows its excellent work efficiency compared with
the conventional algorithm at the same sample frequency. It can be seen that the computational time
of the improved algorithm is much less than the conventional one. Furthermore, when the vehicle has
very fast motion, especially a vibration-like oscillating motion, the sculling error can creep into velocity
if the integration is not fast enough. Then it is necessary to design a fast integration algorithm to
compensate the sculling error. If fast integration is desired to avoid the velocity sculling error, inertial
data at a very high sample rate should be applied, yet it will impose a heavy burden on the processor.
From Table 1, it can be seen that the update frequency of the new sculling compensation based on the
two-time scale perturbation model is equal to the inertial sensor sample frequency 400 Hz, and the
accuracy of the improved algorithm is higher. The update frequency of the conventional four-interval
algorithm is 100 Hz because four sample data is needed to calculate the polynomial model coefficients
in one sculling update interval. The statistical results indicate that the improved sculling correction
algorithm based on the two-time scale perturbation model can effectively reduce the sculling error
with less computation load.

5. Conclusions

In this paper, a novel velocity update algorithm for sculling error compensation was proposed for
SINS based on the inertial sensor outputs of the angular rate and specific force. The new algorithm
utilizes the inertial information’s two-time scale singular perturbation models instead of polynomial
models to compute the increments of the velocity and angle to compensate the sculling error in the
velocity update. Experimental results have shown that the new sculling compensation algorithm
based on the singular perturbation can reduce the algorithm design complexity and achieve more
accurate performance with less computation load compared with the traditional algorithm. In addition,
the proposed algorithm can decrease both the sculling and pseudo sculling velocity errors that are
usually caused by stochastic vibrations. Owing to these advantages, the improved algorithm is more
suitable for SINS.
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