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Abstract: This paper proposes a novel joint probabilistic data association (JPDA) filter for joint target
tracking and track maintenance under unknown detection probability and clutter rate. The proposed
algorithm consists of two main parts: (1) the standard JPDA filter with a Poisson point process
birth model for multi-object state estimation; and (2) a multi-Bernoulli filter for detection probability
and clutter rate estimation. The performance of the proposed JPDA filter is evaluated through
empirical tests. The results of the empirical tests show that the proposed JPDA filter has comparable
performance with ideal JPDA that is assumed to have perfect knowledge of detection probability
and clutter rate. Therefore, the algorithm developed is practical and could be implemented in a wide
range of applications.

Keywords: multiple target tracking; joint probabilistic data association; multi-Bernoulli filter;
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1. Introduction

There has been increasing attention on utilisation of small autonomous systems in military and
civil applications. The issue is that the operations of these small autonomous systems are constrained
by limited payload, as well as limited operation time and endurance. This has led to proliferation of
lightweight, low-cost and energy efficient on-board sensors.

Reliable and autonomous target tracking is a fundamental aspect of situation awareness for
autonomous systems [1–3]. Applying low-cost and lightweight on-board sensors in target tracking
imposes additional challenges to the tracking problem since they are likely to contain some degree of
uncertainties. Low-cost sensors are generally subject to a high clutter rate and low detection probability.
When combined with the inherent uncertainties and complexity of the problem, the poor performance
issue with these sensors could be significantly exacerbated in target tracking, especially in multi-target
tracking (MTT) [1].

It is known that data association in MTT is a challenging issue. With a high clutter rate, data
association in MTT becomes even more challenging. One of the most popular data association
approaches is the multiple hypothesis tracking (MHT) proposed in [4,5]. Given high computational
power, MHT is known as a powerful MTT algorithm to address the problem of measurement
uncertainty. Data, in MHT, are processed recursively with a delayed logic scheme and MHT
intentionally expands parent track hypotheses with received measurements to form child track
hypotheses in decision-making trees. These child track hypotheses are subsequently assessed and the
ones with low scores are pruned by thresholding to keep feasibility. Although MHT is known as a
theoretically optimal Bayesian estimator, the exact solution of MHT is computationally intractable and
thereby requires approximated implementations [6,7].

JPDA is another widely used one-scan data association method. The basic assumption of JPDA is
that each measurement can originate from several candidate targets in the valid gate. Therefore, JPDA
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never make any hard decisions on the measurement-to-target association and is a soft decision filter.
The key part of JPDA is to enumerate all feasible joint events to calculate the marginal probability for
the track update. Compared with the multi-scan MHT, JPDA can achieve reasonable results at lower
computational burden [8–13]. Since JPDA forms tracks out of the marginal measurement-to-track
association distributions, it is known as a track-oriented approach.

Despite its advantages, the JPDA filter, similar to most multi-target tracking algorithms, requires
the knowledge of detection probability and clutter rate in implementation. These two parameters are
of great importance for the JPDA filter as they determine the final estimation performance. Significant
mismatches of these two key parameters could result in erroneous tracking outputs. Although the
detection probability, dependent on the sensors and the scenarios, can be tested via offline experiments,
it might not be cost-effective and they are typically unavailable for low-cost sensors. Furthermore,
under dynamic environmental conditions or detection approaches, the clutter rate generated by the
same sensor might change in a great deal: for example, in image-based target tracking, measurements
are extracted from various detection algorithms [14], ranging from simple background subtraction [15]
to complicated deep learning approach [16]. Obviously, the clutter rate and detection probability are
different for different detection methods. Therefore, the usual assumption on the full knowledge of
these two key parameters for MTT in advance might not be realistic and how to accommodate the
unknown detection probability and clutter rate is of critical importance in practice. Although this
issue is tackled in previous random finite set (RFS) filters [17,18], they cannot preserve the labels of the
targets and thus might have limited applications.

Motivated by the above observations, this paper aims to propose an enhanced version of
JPDA that can accommodate the unknown detection probability and clutter rate. The proposed
algorithm is derived by integrating a JPDA filter with Poisson point process (PPP) birth model and a
multi-Bernoulli filter. Note that the study in this paper is based on our previous work [19]: this paper
refines the algorithm developed in [19] and extends the performance evaluation through extensive
empirical tests. Unlike previous works, where the clutter rate estimation is decoupled from the
multi-object tracking [14,20–22], the proposed approach utilises a closed feedback loop structure based
on the property of the posterior of the JPDA estimations. More specifically, the multi-target JPDA
filter leverages the information of estimated detection probability and clutter rate provided by the
multi-Bernoulli filter. In the meantime, the multi-Bernoulli filter uses the estimation outputs of the
main JPDA tracker since the posterior of JPDA estimations can be modelled by a multi-Bernoulli RFS.

The performance of the proposed approach is evaluated through extensive numerical simulations.
The simulation results demonstrate that the proposed algorithm has comparable performance with the
ideal JPDA, which is assumed to have perfect knowledge of detection probability and clutter rate.

The rest of the paper is organised as follows. Section 2 presents the system models utilised.
Then, Section 3 briefly introduces the JPDA filter and provide the analysis on the effect of detection
probability as well as the clutter rate on the tracking performance. Next, the details of the proposed
JPDA filter is given in Section 4. Finally, some experiments and conclusions are offered.

2. System Models and Assumptions

This section addresses the system models that are used in the following sections. Throughout the
paper, we use the symbol i to refer to a target index and j to refer to a measurement index.

The set of target states and measurements received at scan k are, respectively, defined as

Xk =
{

x1
k , ..., xNk

k

}
∈ X , Zk =

{
z0

k , z1
k , ..., zMk

k

}
∈ Z (1)

where Nk denotes the number of targets at scan k, xi
k the ith target at scan k, Mk the number of

measurements received at scan k, zj
k (j 6= 0) the jth measurement received at scan k, z0

k the dummy
measurement for convenient representation of miss detection. We assume that the temporal evolution
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of each target is independent of others and follows a Markov transition model f (xk |xk−1 ), then,
the prediction of target state of scan k is governed by

pk|k−1

(
xi

k

)
=
∫

f
(

xi
k

∣∣∣xi
k−1

)
pk−1|k−1

(
xi

k−1

)
dxi

k−1 (2)

As required for JPDA, we accept the assumption that each target can generate at most one
measurement and each measurement can originate from at most one target. Each target-generated
measurement is independent of each other and is detected with probability PD with measurement
likelihood p(z |x ).

The additional assumptions made in the paper are as follows:

• The clutter distribution is assumed to be unknown a priori. When there is no prior knowledge
regarding the clutter measurements, the MTT problem generally assumes that the number of
clutters or false alarms is locally Poisson distributed [23]. Therefore, this paper utilises a Poisson
distribution as the clutter distribution. Clutters or false alarms are modelled by a local PPP
with intensity λFA(z) = NFA/Vs with NFA being the average number of clutters of one scan and
Vs being the sensor volume. Clearly, if domain or environmental knowledge could be used to
develop a more realistic clutter distribution in specific tracking tasks, the estimation performance
could be improved.

• The detection probability is assumed to be independent of the target state in filter design.
The detailed discussion will be presented in Section 4.1.

In standard JPDA filtering approach, a track is defined as a sequence of measurements that
originate from the same target. The original JPDA filter assumes the number of targets is known a
priori at each scan and utilise a wrapper heuristic M/N logic for track initiation and deletion. In this
paper, we resort to a PPP model, similar to [24], for target birth instead of the heuristic M/N logic.
In other words, we assume that target birth is modelled as a PPP with intensity λB(x) and track is
confirmed based on a random binary variable, target existence status, ei

k ∈ {0, 1} with ei
k = 1 being

the existence of the ith target and ei
k = 0 being non-existence. Then, measurements that either from

new targets or false alarms can be modelled by a PPP with intensity λE = λB (x) p (z |x ) PD + λFA (z).
Note that, by incorporating the PPP model into JPDA filter, the posterior multi-object PDF can then
be represented by the multi-Bernoulli distribution. This fact enables the application of recently
proposed multi-Bernoulli RFS to JPDA for joint detection probability and clutter rate estimation.
Let ri

k = p
(
ei

k = 1
)

denote the existence probability of the ith target at scan k. Then, the time evolution
of ri

k can be formulated by the Markov Chain One model [9] and the Markov transition probability
matrix is determined by the survival probability PS [9].

3. Joint Probabilistic Data Association Filter and Analysis

In this section, we first briefly review the basics of JPDA filter for the completeness and then give
an intuitive analysis of the effect of the detection probability and clutter rate.

3.1. Joint Probabilistic Data Association Filter

JPDA algorithm aims to calculate the marginalized association probability based on all possible
joint events for data association. A joint event is an allocation of all measurements to all tracks. In JPDA,
a feasible joint event is defined as one possible mapping of the measurements to the tracks such that:
(1) each measurement (except for the dummy one) is assigned to at most one target; and (2) each
target is uniquely assigned to a measurement. Let Θk =

{
θi

k
}

, i ∈
{

1, 2, . . . , Nk|k−1

}
, denote the joint

association event. For each pre-existed target i ∈
{

1, 2, . . . , Nk|k−1

}
, θi

k ∈ {0, 1, . . . , Mk} denotes the

association event, where θi
k = j means the jth measurement is originated from the ith target and

θi
k = 0 represents the dummy association in which the ith target is miss detected. JPDA assumes that
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each single association event is independent and the posterior of each target is characterised by a
mixture as [5]

p
(

xi
k

∣∣∣ei
k = 1, Zk

)
= ∑

θi
k

p
(

xi
k

∣∣∣θi
k, ei

k = 1, Zk

)
p
(

θi
k

∣∣∣ei
k = 1, Zk

)
(3)

Generally, propagation of the mixture distribution is computationally intractable due to the
explosion of mixture terms. JPDA approximates this mixture term by a single Gaussian distribution
through first moment matching method. More specifically, the state correction xi

k|k for each pre-existed

target i ∈
{

1, 2, . . . , Nk|k−1

}
and its corresponding covariance Pi

k|k of JPDA is obtained as

xi
k|k =

Mk

∑
j=0

βi
jx

i,j
k|k

Pi
k|k =

Mk

∑
j=0

βi
j

{
Pi,j

k|k +
(

xi,j
k|k − xi

k|k

) (
xi,j

k|k − xi
k|k

)T
} (4)

where xi,j
k|k denotes the target estimates from associating the jth measurement to target i, Pi,j

k|k

the corresponding covariance. Note that
(

xi,j
k|k , Pi,j

k|k

)
can be obtained from p

(
xi

k

∣∣θi
k, ei

k = 1, Zk
)
.

βi
j

∆
= p

(
θi

k = j
∣∣ei

k = 1, Zk
)

is the existence conditioned marginal association probability that the
jth measurement is associated with the ith target.

The hypothesis-conditioned update p
(
xi

k

∣∣θi
k, ei

k = 1, Zk
)

can be calculated by standard Kalman
filter algorithm. Therefore, the remaining part is how to obtain the marginal association probability
p
(
θi

k

∣∣ei
k = 1, Zk

)
in a tractable way as this is the most computationally part.

The posterior distribution of the joint association event p (Θk |Zk ) consists of two parts: miss
detection fm and detection fd [9]. Therefore, one can imply that

p (Θk |Zk ) ∝ fm × fd (5)

where
fm ∝ ∏

i∈[Nk|k−1 ],θi
k=0

[
1− ri

k|k−1 + ri
k|k−1 (1− PD)

]
= ∏

i∈[Nk|k−1 ],θi
k=0

[
1− ri

k|k−1 PD

]
(6)

fd ∝ ∏
i∈[Nk|k−1 ],θi

k=j

 p
(

zj
k

∣∣xi
k

)
ri

k|k−1 PD

λFA

(
zj

k

)
+ λB

(
zj

k

)
p
(

zj
k

∣∣xi
k

)
PD

 (7)

Note the term 1− ri
k|k−1 in fm is for the non-existence of the ith target and ri

k|k−1 (1− PD) is for
the existence but non-detection of the ith target.

Although full enumeration is intractable in real applications due to the high demand
of computational power, the marginal probability p

(
θi

k |Zk
)

can be approximated by m−best
approximations, stochastic sampling or any other suitable approaches [10–12,25]. In this paper,
we utilize the Gibbs sampling approach to approximate the marginal probability. This method enables
fast calculation of the marginal probability with ignorable performance sacrifice. Detailed description
of this algorithm can be found in our previous work [25]. For the completeness of the paper, a brief
introduction to the Gibbs-JPDA implementation algorithm is provided in the Appendix.

After finding p
(
θi

k |Zk
)
, the joint probability p

(
θi

k, ei
k = 1 |Zk

)
can be calculated using Bayesian

rule as
p
(

θi
k, ei

k = 1 |Zk

)
= p

(
ei

k = 1
∣∣∣θi

k, Zk

)
p
(

θi
k |Zk

)
(8)
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Based on Equations (5)–(7), the hypothesis-conditioned existence probability has the form as

p
(

ei
k = 1

∣∣∣θi
k, Zk

)
∝



ri
k|k−1 (1− PD)

1− ri
k|k−1 + ri

k|k−1 (1− PD)
, θi

k = 0

1, θi
k = j

λB

(
xi

k
)

p
(

zj
k

∣∣xi
k

)
PD

λFA

(
zj

k

)
+ λB

(
xi

k
)

p
(

zj
k

∣∣xi
k

)
PD

, θ
Nk|k−1 +j
k = Nk|k−1 + j

(9)

Finally, the posterior probability of target existence ri
k and the existence-conditioned marginal

probability p
(
θi

k

∣∣ei
k = 1, Zk

)
used in the estimation update can be calculated as

ri
k|k = p

(
ei

k = 1 |Zk

)
= ∑

θi
k

p
(

θi
k, ei

k = 1 |Zk

)
(10)

p
(

θi
k

∣∣∣ei
k = 1, Zk

)
=

p
(
θi

k, ei
k = 1 |Zk

)
p
(
ei

k = 1 |Zk
) =

p
(
ei

k = 1
∣∣θi

k, Zk
)

p
(
θi

k |Zk
)

ri
k|k

(11)

Using ri
k|k and p

(
θi

k

∣∣ei
k = 1, Zk

)
, we can now perform track update for the JPDA filter using

Equations (3) and (4).
Note that, except for the updates of Nk|k−1 pre-existed tracks, JPDA also creates Mk new tracks

for each measurement based on the birth model. After the track update, we use a similar approach,
as shown in score-based approach [5], for track confirmation and deletion. A track is confirmed once
its existence probability ri

k exceeds a pre-defined threshold and otherwise is still tentative and needs
further test to be confirmed or deleted. Meanwhile, a track is immediately deleted if its existence
probability ri

k is below a pre-defined threshold.

Remark 1. Note that the utilisation of PPP birth model for target existence estimation is similar to the idea of
joint integrated probabilistic data association (JIPDA) [9,26]. However, the difference lies in that the JIPDA
filter assumes a stationary or constant intensity of extraneous sources, which include unknown targets and false
alarms while the proposed JPDA with PPP birth model dynamically estimate this intensity. More specifically,
in JIPDA derivation, Equation (7) reduces to [9]

fd ∝ ∏
i∈[Nk|k−1 ],θi

k=j

p
(

zj
k

∣∣xi
k

)
ri

k|k−1 PD

λFA

(
zj

k

) (12)

Therefore, the standard JIPDA ignores the influence of the unknown targets in marginalisation.
Clearly, leveraging the PPP birth model is beneficial and more realistic in initialisation and calculating
the marginal association probability.

3.2. Effect of the Detection Probability and Clutter Rate

This subsection analyses the effect of detection probability and clutter rate on the performance of
JPDA filter provided that they are given in advance.

The effect of the detection probability PD on the estimation are two folds. On the one hand, it
follows from Equations (6) and (7) that the the detection probability PD influences the relative ratio
or weighting between the target miss detection fm and target detection fd. Therefore, artificially
lower detection probability will give more penalty on the target-absence fm, leading to the delayed
track maintenance. However, lower detection probability might be useful in holding targets through
temporary fades. On the other hand, the fact that λE = λB (x) p (z |x ) PD + λFA (z) also reveals that
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the detection probability also affects the track initialization process. Lower detection probability will
force longer tentative tracks before a confirmation or deletion decision is made based on the score logic.
This, in turn, will increase the workload of the tracking filter as more tracks remain tentative, which is
especially severe in a high-clutter scenario.

From Equation (7), one can note that the clutter rate λFA also plays an important role in the JPDA
algorithm. Higher clutter rate will give more penalty on the external source term, i.e., false alarms or
new targets, λFA

(
zj

k

)
+ λB

(
zj

k

)
p
(

zj
k

∣∣xi
k

)
PD than the target-detection term p

(
χi

k |Zk
)

p
(

zj
k

∣∣xi
k

)
PD.

Therefore, artificially higher clutter rate provides an estimation result that more tracks will be
considered as false alarms by the tracking system. Similarly, lower clutter rate usually generates
overestimation of the real targets.

Consequently, significant mismatch of either detection probability PD or clutter rate λFA will
result in highly biased estimation. However, both PD and λFA are difficult or not cost-effective to
obtain in practice, especially for for low-cost sensors. Therefore, it is imperative to design an improved
JPDA algorithm that can accommodate this issue.

4. Joint Probabilistic Data Association Filter with Unknown Detection Probability and
Clutter Rate

In this section, we will propose a novel JPDA filter to adjust the unknown detection probability
and clutter rate by leveraging the multi-Bernoulli filter.

4.1. Detection Probability and Clutter Rate Estimator

The recently proposed multi-Bernoulli filter [18,27–29] utilises the random finite set (RFS) theory
to recursively propagate the posterior of multi-target state. This filter is known as a parametrised
approximation of the Bayesian multi-target recursion. At each time instant k, the posterior PDF
of the multi-target state is characterised as a multi-Bernoulli RFS. More specifically, each target is
modelled as a single Bernoulli RFS, which is fully described by the existence probability ri

k and the
probability density pk(xi

k). A Bernoulli RFS is empty with probability 1− ri
k and has only one element,

whose distribution is described by p(xi), with probability ri
k. The multi-Bernoulli RFS is a simple union

of Nk single independent Bernoulli RFSs and thus can be completely characterised by the parameter
set
{

ri
k, p
(

xi
k
)}Nk

i=1. The recursive multi-Bernoulli filter is given by two steps as [27,28]:

(1) Prediction step. If the posterior multi-target density at time k − 1 is characterised as a

multi-Bernoulli RFS as πk−1|k−1 =
{

ri
k−1|k−1 , pk−1|k−1

(
xi

k−1

)}Nk−1|k−1

i=1
, then, the prediction

of the multi-target density is also a multi-Bernoulli as

πk|k−1 =
{

ri
B,k, pB,k

(
xi

k

)}NB,k

i=1
∪
{

rk|k−1 ,i, pk|k−1

(
xi

k−1

)}Nk−1|k−1

i=1
(13)

where the first part denotes the multi-Bernoulli RFS of the birth model and the second part
represents the prediction of existing targets with

ri
k|k−1 = ri

k−1|k−1

〈
pk−1|k−1

(
xi

k−1

)
, PS

〉
(14)

pk|k−1

(
xi

k−1

)
=

〈
f
(

xi
k

∣∣∣xi
k−1

)
, pk−1|k−1

(
xi

k−1

)
PS

〉
〈

pk−1|k−1

(
xi

k−1

)
, PS

〉 (15)

where 〈α, β〉 ∆
=
∫

α (x) β (x) dx.
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(2) Update step. If the predicted multi-target density at time k is characterised as a multi-Bernoulli

RFS as πk|k−1 =
{

ri
k|k−1 , pk|k−1

(
xi

k
)}Nk|k−1

i=1
, then, the update of the multi-target density is also a

multi-Bernoulli as

πk =
{

ri
L,k, pL,k

(
xi

k

)}Nk|k−1

i=1
∪
{

rU,k (z) , pU,k (·, z)
}

z∈Zk
(16)

where the legacy (miss detection) component
{

ri
L,k, pL,k

(
xi

k
)}Nk|k−1

i=1
is given by

ri
L,k = ri

k|k−1

1−
〈

pk|k−1

(
xi

k−1

)
, PD

〉
1− ri

k|k−1

〈
pk|k−1

(
xi

k−1

)
, PD

〉 (17)

pL,k

(
xi

k

)
= pk|k−1

(
xi

k

) 1− PD

1−
〈

pk|k−1
(
xi

k
)

, PD

〉 (18)

and the measurement updated component is given by

rU,k (z) =

Nk|k−1

∑
i=1

ri
k|k−1

(
1−ri

k|k−1

)
〈pk|k−1 (xi

k),p(z|xi
k )PD〉(

1−ri
k|k−1 〈pk|k−1 (xi

k),PD〉
)2

λFA (z) +
Nk|k−1

∑
i=1

ri
k|k−1 〈pk|k−1 (xi

k),p(z|xi
k )PD〉

1−ri
k|k−1 〈pk|k−1 (xi

k),PD〉

(19)

pU,k

(
xi

k, z
)
=

Nk|k−1

∑
i=1

ri
k|k−1 PD

1−ri
k|k−1

pk|k−1
(
xi

k
)

p
(
z
∣∣xi

k
)

Nk|k−1

∑
i=1

ri
k|k−1

1−ri
k|k−1

〈
pk|k−1

(
xi

k
)

, PD

〉 (20)

The advantage of the multi-Bernoulli filter is that it utilises the mathematically sound RFS
theory and thus directly avoids the data association process in multi-target tracking, leading to
computational efficiency. However, the target identity or the target label cannot be maintained during
the filtering recursion. This means that the multi-Bernoulli filter cannot be used to support the target
label management. Therefore, if the label information is required for practice, the application of
multi-Bernoulli filter is limited. Fortunately, as our aim is to estimate the clutter rate as well as the
detection probability using the multi-Bernoulli filter, there is no need to manage the clutter identity.

To apply the multi-Bernoulli filter to estimate the clutter rate, we consider each false alarm as
a target with its own transition model, birth model and death model [18]. This consideration is
motivated by the fact that the target and the clutter have totally different dynamics and thus can
be treated separately in estimation. The true targets and clutters in recursive filtering are therefore
labelled by a discrete space I = {0, 1}, where 1 is the label of real targets and 0 is for clutters. To further
accommodate the detection probability estimation, we augment the state space as X̄ = P ×X × I ,
where P = [0, 1] denotes the space of detection probability and × represents the Cartesian product.
Since the new state space is a discrete one, the integration on this space is given by∫

X̄

f (x̄) dx̄ =
∫
P×X

f0 (PD, x) dPDdx +
∫
P×X

f1 (PD, x) dPDdx (21)

In reality, the detection probability is related to the target state. This fact makes the system state
propagation/prediction of the augmented system intractable. To address this problem, we further
assume that the detection probability is independent of the target state, i.e.,
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f0 (PD, x) = f0 (PD) f0 (x)

f1 (PD, x) = f1 (PD) f1 (x)
(22)

Note that the target detection probability used in JPDA is typically piecewise constant and thus
the independence assumption is reasonable in filter design. Furthermore, the validation presented in
the following section reveals that the proposed algorithm works well in the presence of time-varying
detection probability.

In general, the clutter dynamics is highly dependent on the sensors. If we have some prior
information regarding the sensors, we can utilise such information to build the clutter dynamics model.
Otherwise, general models can be leveraged, e.g., Gaussian distribution and random walk. Similarly,
if there is no prior information, a typical choice of the detection probability model is the well-known
beta distribution PD ∼ Beta (α, β) [30]. The beta distribution Beta (α, β) is a family of continuous
distributions defined on the interval [0, 1] and has enough diversity to accommodate the changes of
detection probability. By choosing different shaping parameters α and β, the beta distribution can
accommodate different detection probability models.

By substituting the augmented state space into the original multi-Bernoulli filter, we can readily
estimate the number of clutters at one scan N̂FA by the summation of all confirmed targets with label 0
and the clutter rate estimation λ̂FA is then given by λ̂FA = N̂FA/Vs. As PD is part of the system states,
it can directly obtained by the state estimation of multi-Bernoulli filter. Note that one can also apply the
augmented system into JPDA to adapt to the unknown detection probability and clutter rate. However,
the inherent data association process of JPDA will make practical implementation intractable.

4.2. Estimation Algorithm

The proposed JPDA is shown in Figure 1. At each time instant k, we utilise the original JPDA
with PPP birth model as the main tracker to provide the multi-target state estimation. The required
detection probability and clutter rate is obtained from an one-step multi-Bernoulli filter. As discussed
earlier, by incorporating the PPP model into JPDA, the posterior of JPDA estimation can be modelled
as the multi-Bernoulli RFS and thus the estimated output of the JPDA is feedback to the multi-Bernoulli
filter for its initialisation at every time instant. The advantage of the proposed parallel filtering scheme
is that one can fully exploit the strengths of both approaches: using the JPDA for track management
and obtaining fast estimation of detection probability as well as clutter rate by the multi-Bernoulli filter.

Multi-Bernoulli Filter

(Detection 

Probability and 

Clutter Rate 

Estimation)

Current

Measurements

Estimation Outputs

Prior Estimations

JPDA Filter with PPP 

Birth Model

(Multi-Target State 

and Identity 

Estimation)

,
D FA
P �

i

k
x

Figure 1. JPDA with unknown detection probability and clutter rate.

Remark 2. The computational complexity of the proposed estimation algorithm comes from two main parts:
JPDA and multi-Bernoulli filter. Although the original marginalisation in JPDA is a #P-complete problem,
leading to the fact that the computational time increases exponentially with respect to the number of targets,
the approximation by Gibbs-sampling is a polynomial-time algorithm, as detailed in [25]. Additionally, since the
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RFS-based multi-Bernoulli filter directly avoids the typical data association procedure in multi-target tracking,
it also runs in a polynomial time.

5. Numerical Simulations

In this section, the effectiveness of the proposed JPDA filtering algorithm is investigated through
numerical simulations in a cluttered environment. Our experiments explore a scenario, involving 10
manoeuvring targets with different birth time. The ground truth of the considered scenario is depicted
in Figure 2.

-2000 -1500 -1000 -500 0 500 1000 1500 2000
0

500

1000

1500

2000
Ground Truths

Figure 2. Ground truth of the considered scenario.

5.1. Simulation Setup

The state vector contains planar position and velocity. We use the well-known constant velocity
(CV) model for target prediction. The CV model is defined as

xk = FCV xk−1 + Gwk−1 (23)

with

FCV
∆
= I2×2 ⊗

[
1 T
0 1

]
, G ∆

=


T2/2 0

T 0
0 T2/2
0 T

 (24)

where I2×2 denotes the 2× 2 identity matrix, T the sampling period, and wk ∼ N
(
·; 0, σ2

v
)

the Gaussian
process noise.

It is assumed that we use a radar for multiple targets tracking. The target-generated nonlinear
range and bearing measurements are modelled by

z̃k =

[
rk
αk

]
=

 √
(xT,k − xR)

2 + (yT,k − yR)
2

arctan
(

yT,k−yR
xT,k−xR

) + vk (25)

where (xT,k, yT,k) denotes target position, (xR, yR) radar position, and vk ∼ N (·; 0, Rk) the Gaussian
measurement noise with Rk = diag

(
σ2

r , σ2
a
)
.

The clutter is assumed to be uniformly distributed in the surveillance region with its number
being Poisson with NFA average returns at each scan. To validate the proposed algorithm in dynamic
scenarios, NFA is given in a time-varying profile, as shown in Figure 3. Gating is performed with
a threshold such that the gating probability is PG = 0.999. The detection probability PD peaks at
the sensor origin with PD = 0.95 and exponentially decreases to 0.8 at the boundary of the sensing
field-of-view. This setting is reasonable as the received signal strength decreases when the target is far
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away from the sensor. A tentative track is confirmed if the existence probability satisfies ri
k ≥ 0.8 and a

confirmed track is deleted immediately once ri
k ≤ 0.1.
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Figure 3. Clutter profile.

The optimal sub-pattern assignment (OSPA) distance metric [31] is considered here for overall
performance evaluation, namely, cardinality and position estimation errors. Let X and Y be the position
estimation set and true target position set, respectively. The cardinality of these two sets are m and n,
respectively. Then, for c > 0 and 1 ≤ p < ∞, the OSPA distance dc

p (X, Y) is defined as [31],

dc
p (X, Y) ∆

=


[

1
n

(
min
π∈Πn

m

∑
i=1

dc
(

xi, yπ(i)

)p
+ cp (n−m)

)]1/p

, m ≤ n

dc
p (Y, X) , m > n

(26)

where Πn denotes the set of all permutations on {1, 2, . . . , n} for any positive integer n. dc
(

xi, yπ(i)

)
is the cut-off Euclidean distance between two vectors as dc

(
xi, yπ(i)

)
= min

(
d
(

xi, yπ(i)

)
, c
)

with

d
(

xi, yπ(i)

)
being the Euclidean distance. The order parameter p determines the sensitivity of dc

p (X, Y)
in penalizing estimation outliers, while the cut-off parameter c determines the relative weighting of
the penalties allocated to cardinality and localization errors. In all simulations, these two parameters
are set as p = 1, c = 200.

5.2. Simulation Results

For the purpose of comparison, we also perform the ideal JPDA filter with perfect knowledge
of detection probability and clutter rate, the following four non-ideal JPDA filters: (1) ideal PD,
NFA = 1/10Nreal

FA ; (2) ideal PD, NFA = 10Nreal
FA ; (3) PD = 0.6, ideal NFA; and (4) PD = 0.3, ideal NFA.

The results of OSPA distance and cardinality estimation obtained by 200 Monte-Carlo runs are
shown in Figures 4 and 5. The obtained mean OSPA distances from different JPDAs in simulations
are summarised in Table 1. The peaks of mean OSPA distance in Figure 4 are resulted from track
confirmation for target birth. If the clutter rate is set lower than the real value, the JPDA filter
overestimate the multi-target state and thus generating more ’confirmed’ targets, leading to larger
OSPA distance (e.g., non-ideal JPDA filter 1). If the clutter rate is set higher than the real value,
the JPDA filter gives an underestimation the multi-target state (e.g., non-ideal JPDA filter 2). Although
the results, shown in Figure 4, reveal that the JPDA filter is somewhat robust against the detection
probability (e.g., non-ideal JPDA filter 3), lower detection probability gives a delayed confirmation,
as we stated earlier. Moreover, when the detection probability is highly mismatched with its real value
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(e.g., non-ideal JPDA filter 4), the estimation is unreliable. As a comparison, the results clearly verify
that the proposed JPDA filter has comparable performance as the ideal JPDA filter by utilising the
multi-Bernoulli estimator in a feedback loop.
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Figure 4. Monte-Carlo results of mean OSPA distance.
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Figure 5. Monte-Carlo results of mean cardinality estimation.

Table 1. Mean OSPA distance of 200 Monte-Carlo runs.

Ideal JPDA JPDA 1 JPDA 2 JPDA 3 JPDA 4 Proposed JPDA

Mean OSPA distance 63.3483 107.3812 174.3893 81.1761 130.6579 64.2852
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6. Conclusions

This paper developed an enhanced version of JPDA by incorporating with the multi-Bernoulli
filter to accommodate the unknown detection probability and clutter rate. By utilising the PPP
birth in JPDA filter, the multi-target estimation output can be characterised as a multi-Bernoulli RFS.
This enables the application of the multi-Bernoulli filter in a feedback loop to estimate the unknown
detection probability and clutter rate. Simulation results confirm that the proposed algorithm exhibits
the advantages of the original JPDA filter and can correct the biased estimations induced by the
unknown detection probability and clutter. Under the condition where detection probability and
clutter rate are difficult to be obtained, the proposed JPDA filter can be a practical solution, providing
performance comparable to the ideal JPDA filter.
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Appendix A. Approximated Marginalisation by Gibbs Sampling

According to Equation (5), the posterior distribution of the joint event can be formulated as

p (Θk |Zk ) ∝

Nk|k−1

∏
i=1

ϕ
(

θi
k

) ∏
(i,i′)∈E

ϕc

(
θi

k, θi′
k

) (A1)

where ϕ
(
θi

k
)

denotes the un-normalised PDA probability of θi given by

ϕi (θi = j) ∝


1− ri

k|k−1 PD, j = 0

p
(

zj
k

∣∣xi
k

)
ri

k|k−1 PD

λFA

(
zj

k

)
+ λB

(
zj

k

)
p
(

zj
k

∣∣xi
k

)
PD

, j 6= 0
(A2)

and

ϕc

(
θi

k, θi′
k

)
=

{
0, θi

k = θi′
k > 0

1, otherwise
(A3)

E =
{(

i, i′
) ∣∣∣∃i ∈

[
Nk|k−1

]
, i′ ∈

[
Nk|k−1

]
, i 6= i′

}
(A4)

which ensure that one measurement (except for the dummy measurement) can only be allocated to
one target.

It is clear that determining the marginal joint association probability requires full enumeration
of all possible joint association events, which is a well-known #P-complete problem. To tackle the
combinatorial nature of this problem, our previous work suggested a sampling based, especially Gibbs
sampling-based, algorithm [25]. The key idea of utilising Gibbs sampling in JPDA is to consider each
joint association event Θk as a random variable that satisfies a distribution π (Θk). To ensure that the
joint events with higher probability are more easily to be sampled, the sampling proposal π (Θk) is
constructed proportional to the joint posterior probability as

π (Θk) ∝

Nk|k−1

∏
i=1

ϕ
(

θi
k

) ∏
(i,i′)∈E

ϕc

(
θi

k, θi′
k

) (A5)
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The issue is that direct sampling from Equation (A5) is very difficult as enumerating all possible
joint events is impossible for real-time applications. Therefore, Gibbs sampling to applied for

generating the samples. The transition kernel from one joint event Θk =
(

θ1
k , . . . , θ

Nk|k−1
k

)
to another

joint event Θ̄k =
(

θ̄1
k , . . . , θ̄

Nk|k−1
k

)
is

π (Θ̄ |Θ ) =

Nk|k−1

∏
m=1

πm

(
θ̄m

k

∣∣∣θ̄1
k , . . . , θ̄m−1

k , θm+1
k , . . . , θ

Nk|k−1
k

)
(A6)

where πm can be obtained as

πm

(
θ̄m

k

∣∣∣θ̄1
k , . . . , θ̄m−1

k , θm+1
k , . . . , θ

Nk|k−1
k

)
=

π
(

θ̄1
k , . . . , θ̄m

k , θm+1
k , . . . , θ

Nk|k−1
k

)
π
(

θ̄1
k , . . . , θ̄m−1

k , θm+1
k , . . . , θ

Nk|k−1
k

)
∝ π

(
θ̄1

k , . . . , θ̄m
k , θm+1

k , . . . , θ
Nk|k−1
k

)
∝ ϕ

(
θ̄m

k
)

(A7)

“Proportion to” in Equation (A7) highlights the dependence of individual conditional distribution
on θ̄m

k , while rest parts are formed as the normalisation constant. Given the joint event Θk,
a joint event Θ̄k can be obtained by recursive sampling according to the following individual
conditional distributions

θ̄1
k ∼ π1

(
θ̄1

k

∣∣∣θ2
k , . . . , θ

Nk|k−1
k

)
...

θ̄m
k ∼ πm

(
θ̄m

k

∣∣∣θ̄1
k , . . . , θ̄m−1

k , θm+1
k , . . . , θ

Nk|k−1
k

)
...

θ̄
Nk|k−1
k ∼ πNk

(
θ̄

Nk|k−1
k

∣∣∣θ̄1
k , . . . , θ̄

Nk|k−1−1
k

)
(A8)

Using Gibbs sampling, we could generate a sufficient number of samples of Θk. From the samples,
it is straightforward to approximate the marginal probability by the event occurrence.
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