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Abstract: Accurately determining pedestrian location in indoor environments using consumer
smartphones is a significant step in the development of ubiquitous localization services. Many
different map-matching methods have been combined with pedestrian dead reckoning (PDR) to
achieve low-cost and bias-free pedestrian tracking. However, this works only in areas with dense map
constraints and the error accumulates in open areas. In order to achieve reliable localization without
map constraints, an improved image-based localization aided pedestrian trajectory estimation method
is proposed in this paper. The image-based localization recovers the pose of the camera from the
2D-3D correspondences between the 2D image positions and the 3D points of the scene model,
previously reconstructed by a structure-from-motion (SfM) pipeline. This enables us to determine
the initial location and eliminate the accumulative error of PDR when an image is successfully
registered. However, the image is not always registered since the traditional 2D-to-3D matching
rejects more and more correct matches when the scene becomes large. We thus adopt a robust
image registration strategy that recovers initially unregistered images by integrating 3D-to-2D search.
In the process, the visibility and co-visibility information is adopted to improve the efficiency when
searching for the correspondences from both sides. The performance of the proposed method was
evaluated through several experiments and the results demonstrate that it can offer highly acceptable
pedestrian localization results in long-term tracking, with an error of only 0.56 m, without the need
for dedicated infrastructures.
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1. Introduction

Determining the pedestrian location in indoor environments using consumer smart phones has
been a fundamental requirement in many applications such as path finding, emergency planning and
augmented reality. Since GPS signals cannot achieve satisfactory results in indoor environments, many
alternatives have been proposed. The prominent methods for the most current indoor localization
technologies are based on dedicated infrastructures, such as Wi-Fi access points [1,2], Bluetooth [3,4],
ultrasonic networks [5], ultra-wideband (UWB) [6] and magnetic fields [7]. However, these methods
are expensive and label-extensive for large-scale deployment and suffer from discontinuous tracking
during pedestrian movement [8]. Google Tango has devised a depth camera equipped smartphone
that can localize itself as well as simultaneously reconstructing the indoor model [9]. However, this is
more of a model reconstruction technology than a localization strategy, for the reason that keeping
the camera on during walking does not conform to the common human waking mode and localizing
the smartphone and simultaneously reconstructing the scene becomes computationally expensive
and memory-infeasible for larger scenes. Fortunately, vision-based localization can provide visual
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gyroscope and visual odometer in GPS-challenging indoor spaces [10] and serve as a low-cost and
high-accuracy solution in ubiquitous indoor localization.

Vision-based localization has two main approaches, which are the simultaneous localization and
mapping (SLAM) approaches such as Google Tango and image-based localization. Compared with
SLAM [11], reconstructing the scene model in advance and opening the camera for localization only
when lost is a more appropriate approach in indoor pedestrian localization [12]. The image-based
localization result can be directly treated as the pedestrian location because people tend to carry their
smartphone close to their body. Given the 2D image features and the 3D scene features, the camera
pose can be estimated from the 2D-3D correspondences by applying an n-point pose solver inside
a random sample consensus (RANSAC) loop [13]. Recent affordable or free structure-from-motion
(SfM) software, such as Bundler [14], VisualSfM [15] and Photoscan [16], have allowed us to reconstruct
indoor scenes and thus make it possible to undertake image-based localization in indoor environments.
When combined with pedestrian dead reckoning (PDR) that estimates the distance and heading
measurements of every step from the accelerometer and gyroscope embedded in the smartphone [17],
discrete image-based localization can be interpolated to recover a continuous pedestrian trajectory.
On the other hand, the relative positioning and the error accumulation of PDR can be remedied by
the high-accuracy image localization result, by providing the initial position and regular correction
when drifting. Therefore, with the 3D scene model provided, combining image-based localization and
PDR can complement each other and achieve self-dependent and high-accuracy localization using
only smart phones, without any extra equipment.

Image-based localization was initially formulated as an image retrieval problem focused on
matching a query image to an image database with geolocations [18]. When combined with the
bag-of-visual-words model [19], an image retrieval system is applicable to scalable scenes from the
street-level [20], to the city-level [21] and to the worldwide-level [22]. Since the image database
may contain thousands of millions of images, to efficiently retrieve and localize the query images,
Li et al. [23] used an iconic scene graph to create a compact summary of the global images.
Chen et al. [24], on the other hand, improved the system’s robustness to perspective views and
hence the recall rate, by fusing the orthogonal and perspective street images to build synthetic views.
Other improvements have focused on avoiding mismatches by dealing with repetitive scenes [25] and
confusing scenes [26]. Compared to our method, the image retrieval strategy can only yield coarse
location estimation. Furthermore, the raw images in the database are stored independently, with
ignoring the underlying geometry [27].

In contrast to the pure image retrieval approach, SfM-based localization can obtain accurate
pose estimation with exact orientation and position by correlating 2D features in a query image with
3D scene features in the model. Moreover, the SfM model presents a precise summary of the scene,
with each 3D point triangulated from a trace of matched features and the noisy ones eliminated and not
used for the matching. Consequently, it can accelerate the correspondence search by containing orders
of magnitude fewer points than there are features in the images [28]. The most popular correspondence
search algorithm is 2D-to-3D matching that directly uses the 2D descriptors as the query features to
search for the corresponding 3D scene features based on the approximate nearest neighbor. This is
followed by the use of Lowe’s ratio test [29] to eliminate the ambiguous matches. However, the Lowe’s
ratio test tends to reject more and more correct matches as too ambiguous for larger scenes since the
descriptor space defined by the 3D points becomes denser [13]. Therefore, the 3D-to-2D approach,
which inversely matches the 3D points in the model against the 2D features in the image, is adopted
to register images. The ratio test of the 3D-to-2D algorithm is not sensitive to large scenes as the
descriptor space remains relatively constant and is not negatively affected by the density of the 3D
model. The efficiency is affected however, when the scenes become larger.

At the core of correct SfM-based localization is the robust estimation of accurate 2D-3D matches.
Due to large viewpoint changes and repetitive textures, using the above-mentioned correspondence
search algorithm alone may fail to register an image affected by a high outlier ratio. In order to
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improve the recall rate, Svarm et al. [30] and Zeisl et al. [27] exploited gravity direction and the
height of the camera from inertial measurement unit (IMU) measurements as prior information to
create a probabilistic model for the camera pose estimation, which is able to handle an inlier ratio of
1% or less. However, this method requires accurate estimation of the height and gravity direction.
Li et al. [31], on the other hand, combined 2D-to-3D matching and 3D-to-2D matching to increase
the robustness to high outlier ratios. Mismatches are removed and the lost matches are detected
by searching from both side. Sattler et al. [13] adopted the same strategy and extended it to larger
scenes by incorporating a bag-of-visual-words model to encode the features. The visibility information
embedded in the SfM model was also explored to improve the correspondence search efficiency by
getting rid of unrelated images. These methods however, only yield a discrete localization result and
apply mainly to outdoor scenes.

Image-based localization in indoor space applications for mobile devices faces challenges.
The mobile device is memory and computationally limited, posing a challenge for its practical use
in larger scenes, especially in the SLAM mode. Furthermore, changing environments, such as the
appearance aliasing caused by illumination or structural change, demand a method that can robustly
recognize the right place. Research has explored potential solutions to these problems; FAB-MAP [32],
fast appearance-based mapping, is a typical approach for obtaining a location from a single image,
based on bag-of-words image retrieval. This solution is widely used in online loop closure detection in
mobile robotics, as the algorithm is scalable and adapts in a linear fashion to changes in the number of
points and the size of map. In contrast, rather than using a single image, SeqSLAM [33] selected the
best candidate location within an image sequence, improving the robustness to extreme environmental
change such as moving from daytime to nighttime, from season to season, or from fair weather
to rain. Similar to the SeqSLAM method, which uses the image sequence, ABLE-M [34] deploys
a binary description of images that reduces memory and computational costs, remaining stable despite
environmental changes that affect image appearance. Nowicki et al. [35] evaluated the application of
single image and image sequence localization in indoor environments on mobile devices, validating
the feasibility and real-time performance of both of these algorithms. Furthermore, Nowicki et al.
also found that algorithms using single images are not susceptible to local self-similarity issues inside
buildings, as texture changes in images are not as large as those images taken in outdoor space. Thus,
we infer that an image sequence is more suitable in situations with a known trajectory but does not
perform well at junctions or in open-spaces. Consequently, based on the existing research, we adopted
the single image strategy, as it conforms the typical patterns of human movements through space and
scalable to larger scenes in indoor localization. Although the single image strategy only obtains a user
location for discrete set of positions and is not applicable to highly occluded spaces; nevertheless,
this method can be combined with other indoor localization technologies, such as PDR to achieve
continuous localization. Moreover, PRD results can constrain image-based localization to the proper
locations, avoiding false recognition of places with an appearance similar to the target location.

Based on the above observations, we propose a simple but efficient indoor localization approach
that combines image-based localization and PDR for long-term indoor pedestrian trajectory estimation.
Considering the memory and computational limitation of the currently available smart phones,
we reconstruct the 3D scene model of the indoor environment with the SfM pipeline in advance. In the
localization stage, we take an image with the smartphone and match it against the database through
a fused 2D-to-3D and 3D-to-2D matching scheme. The image-based localization acts as the starting
position for PDR and provides regular correction once the accumulative error is beyond the predefined
threshold. We make three main contributions. Firstly, we perform the 3D-to-2D matching only when
the 2D-to-3D matching cannot successfully register an image, to achieve a higher image recall rate
while restraining the computation time. Secondly, we adopt the visibility and co-visibility information
readily encoded in the SfM pipeline in searching for correspondences in both sides, by eliminating
irrelevant images and facilitating robust matching. As for the third major contribution, we demonstrate
that combining image-based localization and PDR can serve as a promising, low-cost, self-dependent
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and continuous indoor pedestrian localization strategy, especially in the situations where no map
constraints can be exploited. From the experimental results, the proposed method offers an accurate
and continuous trajectory estimation, with an error of only 0.56 m, based totally on the smartphone.

2. Materials and Methods

In this section, we describe our combined image-based localization and PDR framework,
which allows for fast and accurate indoor pedestrian localization. The workflow of the proposed
localization algorithm is illustrated in Figure 1. We propose a simple but efficient 2D-to-3D and
3D-to-2D combination algorithm to estimate robustly the correspondences, with the 3D-to-2D matching
triggered only when not enough valid matches are detected. In order to improve the search efficiency
from both sides, the visibility and co-visibility information is adopted to remove the points that are
less likely to generate potential matches. An early termination approach is also performed to stop the
search once Nt matches are found. When combined with the PDR trajectory, we can obtain a bias-free
estimation of the pedestrian locations.
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2.1. Database Construction

Considering the memory and computational constraints of smartphones, in contrast to the SLAM
algorithm, we adopt the strategy of reconstructing the 3D model of the indoor scene in advance and
perform image-based localization only when lost. The constructed database consists of 3D points
with descriptors, using image matching and the VisualSfM (VSFM) algorithm [15]. Since each point
of the SfM model is triangulated from the feature traces of multiple images, it is often associated
with a cluster of related feature descriptors. Storing all the feature descriptors of each 3D point is
straightforward and offers the most accurate description of the local appearance of a point. However,
it also induces a high memory requirement and restrains the computational efficiency as some points
may have hundreds of associated descriptors [28]. A more concise alternative is to store a single
descriptor for each point. We use the mean of the corresponding image feature descriptors to represent
each point and a typical way of storing descriptors in a memory-limited environment. While this may
not necessarily be representative for clusters of scale-invariant feature transform (SIFT) features that are
large, Li et al. [31] proved that this approach can achieve a comparable accuracy to the all-descriptors
representation. Other concise descriptor representations such as the median of a related descriptor was
also explored but these failed to achieve a performance comparable to the mean SIFT descriptors [28].

2.2. Image Registration

In order to obtain immediate feedback after taking a photo of the indoor scene, the ultimate goal
of our system is to produce an accurate and efficient pose estimation of a query image, given a relevant
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database of recovered 3D points. At the core of this is the accurate and efficient 2D-3D correspondence
search, whose common pipeline can be described as: for each query feature f with descriptor
d f , we search the two nearest neighbor points p1 and p2 with descriptor dp1 and dp2 , by calculating the
Euclidean distance between the descriptors and applying the kd-tree searching algorithm. In order to
eliminate the ambiguity caused by repetitive textures, the matched correspondences are accepted as
valid only when the Lowe’s ratio test is passed:

‖d f − dp1‖2 < τ·‖d f − dp2‖2 (1)

where τ is a parameter that is experimentally ranged between [0.6, 0.8] [12]. The generated set of
2D-3D matches are finally input to the RANSAC [36]-based 6-point algorithm, which estimates the
pose of the camera [37] by iteratively calculating the transform matrix and choosing the best one with
the most inliers. In our method, we consider a query image as successfully localized if the best pose
found by RANSAC has at least 12 inliers. The algorithm can be summarized as Algorithm 1.

Algorithm 1. 2D-to-3D matching

Input: Query image feature set F = { f1, f2, . . . , fn}, with descriptor D f =
{

d f 1, d f 2, . . . , d f n

}
,

and 3D point database P = {p1, p2, . . . , pm}, with descriptor Dp =
{

dp1, dp2, . . . , dpm
}

.
for i = 1 . . . n (n is the number of features in an image)

Search two nearest neighbor points pj and ph in P for each query feature fi, by calculating the nearest
distance of the associated descriptor dpj, dph and descriptor d f i using the FLANN algorithm.

Perform Lowe’s test, if ‖d f i − dpj‖2 < τ·‖d f i − dph‖2, then
{

fi, pj

}
is regarded as a valid match.

end

Calculate the camera pose by performing 6-point algorithm based on the 2D-3D matches
{

fi, pj

}
.

Output: a 6-degree camera pose.

However, following the typical workflow as described in this section, the query image may not
be registered successfully all the time, especially in the case of large outlier matches being detected.
The high outlier rate is caused by either the mismatches of the SIFT descriptors or the high true
negative rate of Lowe’s ratio test in the 2D-to-3D matching, especially when the scene gets larger.
This is because the descriptor space defined by the 3D points becomes denser for a larger scene, making
the Lowe’s ratio test reject more and more correct matches as too ambiguous. As a compromise to
the high outlier ratio, RANSAC requires more iteration to ensure the accuracy of the estimated pose,
which negatively affects the efficiency of the algorithm. Therefore, other algorithms must be explored
for robust estimation of 2D-3D matches.

3D-to-2D matching, which inversely matches 3D points against 2D features, is proposed to recover
the lost matches rejected by the 2D-to-3D matching in Lowe’s ratio test, as described in Algorithm 2.
The density of the descriptor space defined by the query image does not depend on the model and
thus not affected by the scale of the scene. However, it tends to accept false matches because there
is no global constraint on the 3D points. When considering the 3D points independently, the Lowe’s
ratio test is likely to accept matches for all the 3D points in the set if one of the points passes the test,
leading to a significantly higher false positive matching rate. On the other hand, if we suppose that
P represents all the 3D points in the model and F represents all the features in the query image, then the
time complexity for 2D-to-3D matching is O(|F|log|P|) and the 3D-to-2D matching is O(|P|log|F|) .
It is easily observable that even in a compact scene, the number of points is much larger than that
of detected query features in the image. In other words, 3D-to-2D matching is not as efficient as
2D-to-3D matching when a large scene with extensive 3D points is considered. As reported in [13],
when compared to other algorithms, 3D-to-2D matching does not perform well in considering the
number of localized images. Therefore, in order to exploit the merits of both methods, a combination
must be exploited and a more compact 3D scene must be constructed to accelerate the matching process.
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Algorithm 2. 3D-to-2D matching

Input: Query image feature set F = { f1, f2, . . . , fn}, with descriptor D f =
{

d f 1, d f 2, . . . , d f n

}
,

and database points P = {p1, p2, . . . , pm}, with descriptor Dp =
{

dp1, dp2, . . . , dpm
}

for i = 1 . . . m (m is the number of 3D points in the database)
Search two nearest neighbor features f j and fh from feature set F for the query point pi,
by calculating the distance between associated descriptor d f j, d f h with descriptor dpi, using
the FLANN algorithm;

Perform Lowe’s test, if ‖dpi − d f j‖2 < τ · ‖dpi − d f h‖2, then
{

pi, f j

}
is regarded as a valid match.

end

Calculate the camera pose by performing a 6-point algorithm based on the 3D-2D matches
{

pi, f j

}
.

Output: a 6-degree camera pose.

2.3. Visibility and Co-Visibility Information

Searching for correspondence from both sides inevitably increases the time needed to detect
matches. In order to counteract the time consumption of the extra search process and improve the
robustness of the search algorithm, we exploit the visibility and co-visibility information that encodes
the underlying geometry in the SfM model, as well as an early termination strategy, to facilitate the
correspondence search.

Visibility information is rooted in one of the major properties of SfM, in that each 3D point is
recovered from several image features, which define the visibility significance of the point. The points
with higher visibility have a larger possibility of being matched than the points with lower visibility,
for the reason that a highly visible point is intuitively more likely to be visible in the query image [31].
In the 2D-to-3D search, the image features search through the whole database and find a corresponding
3D point in a limited space, making large search work wasted. This implies that the correspondence
search could be accelerated if we could generalize the 3D model with the points that are more likely
to yield a match. We therefore apply a visibility filter to the SfM model and preserve a set of points
that are visible in more than N images (N = 5 in our experiment) as a simplified model (as shown
in Figure 2a,b). The correspondence search is then performed between the query image and the
simplified model until Nt matches are found. Nt controls the balance between run-time efficiency and
localization effectiveness.

Sensors 2018, 18, 258  6 of 19 

 

the merits of both methods, a combination must be exploited and a more compact 3D scene must be 
constructed to accelerate the matching process. 

Algorithm 2 3D-to-2D matching 
Input: Query image feature set 1 2{ , ,..., }nF f f f , with descriptor 1 2{ , , ..., }f f f fnD d d d , 
and database points 1 2{ , , ..., }mP p p p , with descriptor 1 2{ , , ..., }p p p pmD d d d  
for i = 1 … m (m is the number of 3D points in the database)

Search two nearest neighbor features jf and hf from feature set F for the query point ip , 
by calculating the distance between associated descriptor ,fj fhd d  with descriptor pid , using the 
FLANN algorithm; 
Perform Lowe’s test, if 

2 2pi fj pi fhd d d d    , then  ,i jp f  is regarded as a valid match. 

end 
Calculate the camera pose by performing a 6-point algorithm based on the 3D-2D matches 
 ,i jp f . 

Output: a 6-degree camera pose. 

2.3. Visibility and Co-Visibility Information 

Searching for correspondence from both sides inevitably increases the time needed to detect 
matches. In order to counteract the time consumption of the extra search process and improve the 
robustness of the search algorithm, we exploit the visibility and co-visibility information that encodes 
the underlying geometry in the SfM model, as well as an early termination strategy, to facilitate the 
correspondence search. 

Visibility information is rooted in one of the major properties of SfM, in that each 3D point is 
recovered from several image features, which define the visibility significance of the point. The points 
with higher visibility have a larger possibility of being matched than the points with lower visibility, 
for the reason that a highly visible point is intuitively more likely to be visible in the query image [31]. 
In the 2D-to-3D search, the image features search through the whole database and find a 
corresponding 3D point in a limited space, making large search work wasted. This implies that the 
correspondence search could be accelerated if we could generalize the 3D model with the points that 
are more likely to yield a match. We therefore apply a visibility filter to the SfM model and preserve 
a set of points that are visible in more than N  images ( N  = 5 in our experiment) as a simplified 
model (as shown in Figure 2a,b). The correspondence search is then performed between the query 
image and the simplified model until tN  matches are found. tN  controls the balance between run-
time efficiency and localization effectiveness. 

(a) (b) (c) (d) 

Figure 2. Visibility and co-visibility information. (a) Visibility graph. The original graph encodes 
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represent the 3D space, the black line represents the ray linking camera center and the points. The 
number indicates the number of cameras that observe the point. (b) The graph after applying the 
visibility filter with  1N . (c) Co-visibility does not necessarily imply spatial continuity, i.e. the green 
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Figure 2. Visibility and co-visibility information. (a) Visibility graph. The original graph encodes
camera and its corresponding visible points from the process of SfM pipeline. The blue points represent
the 3D space, the black line represents the ray linking camera center and the points. The number
indicates the number of cameras that observe the point. (b) The graph after applying the visibility filter
with N = 1. (c) Co-visibility does not necessarily imply spatial continuity, i.e. the green point and
red point are spatially close to each other but are not co-visible. (d) This figure shows the graph after
applying the co-visibility filter for the green points. The orange points depict all the co-visible points
(red points) of the green points; blue points are not co-visible.
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The search algorithm can be formulated as follows. Firstly, we determine the subset
P′ = {P′ ∈ P|Pi > 0} that contains all the potential points that survive in the visibility filter. We then
search for the 2D features against the 3D point subsets, such that the number of expected
matches is at least Nt. If the algorithm finds Nt matches successfully, then the set of matches
M = {( f , p)| f ∈ F, p ∈ P′} links the 2D features in the query image directly to the 3D points in
the model. These matches are fed directly into the pose estimation routine. We use the 6-point direct
linear transformation (DLT) approach to solve the projection matrix of the query camera, followed by
local bundle adjustment to refine the pose.

However, there may exist situations where not enough valid matches can be found, due to the
uneven distribution caused by preserving only the highly visible points. We therefore perform the
3D-to-2D matching to recover the lost matches. This begins with the 3D point set p obtained by
performing the 2D-to-3D matching. We then apply k-nearest neighbor search to generate the set pn,
resulting in a set of potential valid 3D-to-2D correspondences. However, the spatial proximity does not
necessarily imply the matching correspondence. For example, in Figure 2c, the spatially close red and
green points can never be observable in the same query image. Therefore, we exploit the co-visibility
filter to remove such confusing neighbor points.

As illustrated in Figure 2, co-visibility can be defined using a bipartite visibility graph. Each point
refers to a 3D point in the model and each node refers to a camera. The edge e = {pG, cG} connects the
3D points and camera. The camera sets that observe the same points are thus defined as:

CG(p) = {cG ∈ CG|{pG, cG} ∈ E} (2)

where pG represents the 3D points and cG represents the cameras. Consequently, the co-visible
point sets G(M) contain the largest component that is observed by camera sets CG(p) (as shown in
Figure 2d). The points that are spatially continuous but do not imply co-visibility may be confusing
and contaminate the generation of correct correspondences. Therefore, through the co-visibility filter,
we remove the points that are not contained in the bipartite graph, which means that the whole
search set is a subgraph consisting of only the matching points and their cameras. Instead of applying
RANSAC-based pose estimation on all the matches, our co-visibility filter thus first identifies all the
connected components and then filters out all the matches not contained in G(M). By eliminating
the wrong matches, the RANSAC-based pose estimation is accelerated and has a larger possibility of
obtaining correct answers. The proposed algorithm is presented as Algorithm 3.

Algorithm 3. The proposed 2D-to-3D/3D-to-2D matching

Input: Query image feature set F = { f1, f2, . . . , fn}, with descriptor D f =
{

d f 1, d f 2, . . . , d f n

}
,

and database points P = {p1, p2, . . . , pm}, with descriptor Dp =
{

dp1, dp2, . . . , dpn
}

Preserve the points that are visible in more than five images:
Pv = VisibilityFilter(P), Pv = {p1, p2, . . . , px}(x ≤ n).

for i = 1 . . . x
Perform 2D-to-3D algorithm with early termination: [F′v, P′v] = 2Dto3Dmatch(F, Pv).

end
If inlier > threshold
end
else

Eliminate non-covisible points: Pcv = CoVisibilityFilter(P′v), Pcv =
{

p1, p2, . . . , py
}
(y ≤ x).

for j = 1 . . . y
Perform 3D-to-2D algorithm: [P′cv, F′cv] = 3Dto2Dmatch(Pcv, Fcv).

end
end

Calculate the camera pose: C = RansacCameraPoseEstimation(F′v, P′v).
Output: a 6-degree camera pose.
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2.4. PDR Combination

The image-based localization can obtain accurate pose estimation in discrete places. However,
in most cases, we need continuous tracking of the pedestrian in applications such as indoor navigation
and augmented reality. The PDR algorithm, which estimates the distance and heading measurements of
every step, given an initial location from the accelerometer and gyroscope embedded in the smartphone,
has become a promising low-cost and continuous localization technology in indoor environments.
Four core components are considered in PDR: step detection, step length estimation, heading estimation
and initial position determination.

The step detection algorithm relies on the fact that the accelerometer reveals a repetitive pattern
when the user walks. We use a two-threshold based peak detection algorithm to identify the peaks.
The first threshold is the minimum acceleration magnitude that determines a peak and the second
threshold is the minimum time duration between two steps. Peaks that satisfy both the magnitude
and frequency threshold are identified as true steps. The orientation is estimated from the gyroscope
by exploiting the quaternion calculation. Our system assumes that the smartphone is held in hand,
with it pointing in a forward direction. The angular rate reading from the gyroscope is then integrally
calculated to determine the orientation quaternion at each step. The orientation quaternion (or the
Euler rotation vector roll-pitch-yaw (ϕ, θ, ψ) between two successive epochs and a scalar component)
from the gyroscope is then utilized to approximate the orientation update. The step length is calculated
from the Weinberg model [17]:

length = K· 4
√

amax − amin (3)

where amax and amin are the maximum and minimum values of the yaw acceleration samples,
respectively. K is a constant determined by training. Our approach takes K = 0.46 as the initial
value. Since step length exhibits variation, even with the same individual in the same walk, we add
a random error δ (uniformly distributed in the range of ±10%) to the stride length.

However, due to the low-cost nature of the micro-electromechanical system (MEMS) sensors,
the long-term tracking of PDR may locate the user several meters away from the true location.
Moreover, the initial location must be provided by other absolute positioning technologies,
which means that the PDR method alone is unable to achieve acceptable results. To solve this problem,
we combine image-based localization with PDR to correct the biased trajectory and provide reliable
long-term indoor localization.

The image-based localization provides the initial location and regular correction for the PDR
when lost. After obtaining the image-based localization result and the PDR trajectory, we now combine
them. The key problem is identifying the action of taking a photograph and discriminating it from the
PDR step counting procedure. Therefore, we analyzed the pattern of the accelerometer and gyroscope
when taking a photo with the smartphone. The user was asked to walk a distance as usual, with the
smartphone held in hand. After a while, the user was asked to stop to take a photo of the environment
and then continue to walk. The readings of the accelerometer and gyroscope are shown in Figure 3.

The action of taking a photograph reflects on the accelerometer as a slight wave between two steps
and on the gyroscope as a sharp increase and then back to normal (as shown in Figure 3). The pattern
reflected by the accelerometer may be confused with the action of standing still. In addition, the two
starting and ending peaks detected by the accelerometer are not real steps and may contaminate the
step count because the sensor reading of the user raising the phone and then moving it back to its
original position is similar to that of regular walking. This can be discriminated from a standing
still action by detecting the sharp orientation change on the gyroscope reading. Any of the single
readings in the xyz coordinates of the orientation may result in a different pattern due to the jitter of
the smartphone. Therefore, we use the mean-square-root of the three axes for detection, which show
a large, sharp change in orientation. The combinational detection of the accelerometer and gyroscope
can discriminate the action of taking a photograph from both staying still and walking.
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Figure 3. Photo detection. (a) The accelerometer reading when taking a photo; (b) Heading estimation
from the gyroscope when taking a photo.

The PDR stops step counting when detecting the action of taking a photograph and resumes
working after receiving the image-based localization result and treating it as the initial location of the
current position estimation. Because of the trajectory drift caused by accumulative error, there may be
a discrepancy between the newly relocated result and the last location estimated by PDR, indicating
that large errors exist in the PDR-estimated trajectory. In order to reduce this discrepancy, we inversely
recalibrate the PDR result based on the image-based localization. Since the errors of the PDR are
accumulated step-by-step, we backward counteract the error linearly as the number of steps. If the past
trajectory is a straight line, the linear transformation is performed directly. If the past trajectory consists
of several lines with corners, we first perform rotation transformation according to the corner of two
lines connecting the start point and the two endpoints and then segment the trajectory into several
parts with corners. Finally, we apply a linear transformation to each segment as in line transformation.
The process is illustrated in Figure 4. However, even the estimated trajectory may not perfectly reflect
the trajectory of the pedestrian. For example, the user is supposed to have made an orthogonal turn
but the estimated orientation is larger than 90◦, as shown in Figure 4. However, this minor error
has no significant negative impact on the estimated localization. It is within the tolerance error of
indoor pedestrian localization and does not require absolute accuracy. It is an image-based localization,
which avoids large location mistakes and PDR continuously tracks the pedestrian trajectory that jointly
determines the effectiveness of the localization result. In this way, we achieve continuous and accurate
pedestrian trajectory estimation in an indoor environment.
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3. Experiments

In order to verify the proposed image localization aided pedestrian trajectory estimation algorithm
in indoor scenes, several experiments were conducted to localize pedestrians using smartphones in
the State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing
(LIESMARS) building of Wuhan University. In this section, we first evaluate the efficiency and
effectiveness of the proposed image-based localization algorithm. The PDR trajectory is then shown to
analyze how the error accumulated. Finally, we apply the image-based localization result to the PDR
algorithm and investigate how they can be appropriately combined.

3.1. Image-Based Localization

3.1.1. Database Construction

Two indoor scenes of the LIESMARS building were reconstructed by VSFM from the
crowdsourced images taken by three volunteers with an iPhone 7 (Apple, Cupertino, CA, USA),
an iPhone 7 Plus smartphone and a Cannon EOS 6D SLR (Tokyo, Japan), respectively. The Meeting
Room scene has an area of 16 × 7.7 m, with 261 images taken. The Lobby scene has an area
of about 24× 18.5 m, with 343 images taken. The details of both scenes are shown in Figure 5.
The database for both scenes appears in Table 1. There is no standard regulation showing how
many images are needed to obtain a sufficient environment model. However, coverage of over 60%
between adjacent images is suggested when collecting data. Furthermore, images at higher resolution
tend to reconstruct a more qualified model. This is because the SfM models are triangulated from
features detected in the image, a higher image resolution means more densely and accurately detected
features. As for the topologies of the environment, more images between the junctions are required to
maintain visual connection between the structures; as no obvious difference will exist in the structures
(for example the corridors, loops and open areas) once coverage of over 60% between adjacent images
is satisfied. Specifically, the Lobby scene contains three different structures including a corridor, a room
and open space, captured in 13, 41 and 289 images, respectively.
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Table 1. The indoor databases used for the evaluation.

Dataset #DB Images #3D Points #Query Images #Feature

Meeting room 261 74,200 125 74,200
Lobby 343 74,450 112 74,450

For each dataset, only the 3D points that were visible in more than two cameras were kept in the
model. The query images were additionally taken to evaluate the image localization algorithm and
were not used in the database construction. For the points with many descriptors, we calculated the
mean descriptors and used them for the feature matching. This can reduce the memory requirement
and improve the efficiency, without loss of accuracy, when compared with the all-descriptors strategy.
To obtain the real scale of the indoor model, we put four markers with known lengths in the indoor
scenes and made sure that each of them could be seen in at least four images to recover the real scale
of the model. The calibrated models were then transformed into the predefined indoor coordinates
using SfM_georef [38]. Therefore, the reconstructed poses can be treated as the ground truth, with the
distances measured in meters.

3.1.2. Image Pose Estimation

After obtaining the database of the indoor scenes, we then estimated the pose of the query images
using the standard 6-point DLT (p6p) algorithm, which computes the projection matrix from six 2D-3D
matches [37] inside a RANSAC loop. The Lowe’s test Lt = 0.7 was applied for the 2D-to-3D matching
and Lt = 0.6 for the 3D-to-2D matching. A query image is considered successfully localized if the
best pose found by RANSAC had at least 12 inliers. The correspondence searching was accelerated by
employing the kd-tree, visiting 10 leaves to compute the assignments, using a modified implementation
from the Fast Library for Approximate Nearest Neighbors (FLANN) library [39]. The pose estimation
was conducted on a Lenovo ThinkPad X240 laptop (Beijing, China), where the database was stored.
When a query image was taken with the smartphone, it was transferred to the laptop via the Internet
(through Wi-Fi) for pose estimation. The result was then returned to the smartphone for later use.

We report and compare the localization results obtained on the two datasets using three algorithms:
2D-to-3D matching, 3D-to-2D matching and the proposed method. The effectiveness and efficiency of
the above algorithms with different values of parameter Nt (the maximum matched correspondences)
is shown in Figure 6. The effectiveness is measured with the number of localized images, while the
efficiency is measured with the mean time required to localize an image. As can be seen in
Figure 6, Nt = 50 offers the most registered images, as well as the least localization time for all
the algorithms. Nt controls the termination of the correspondence search after finding Nt matches,
avoiding unnecessary matching of all the query features. With the increase of Nt, the number of
registered images is not increased but reduced. The reason for this may be that indoor scenes with
fewer 3D points have a sparser descriptor space, resulting in a higher false positive matching rate.
The time complexity for the combined 2D-to-3D and 3D-to-2D matching is O(|F|log|P|+|P|log|F|) .
Actually, the visibility filter and co-visibility filter largely reduce the points involved in computation,
especially when the scene gets larger. If the density of the points is evenly distributed across the
space, the visibility filter uniformly eliminates the points participating in computation. On the other
hand, the co-visibility filter retains points only near the targeting points, eliminating large proportions
of unrelated points, which makes the search-time increase logarithmically with the size the model.
As more feature correspondences are used for the matching, the higher mismatches make the inlier
ratio lower than the threshold ratio R = 0.2, which therefore is considered as a registration failure and
reduces the number of registered images.
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The proposed method exhibits better localization effectiveness than the other methods because
it applies 3D-to-2D matching if the pose cannot be estimated from 2D-to-3D matches alone. In this
way, the lost matches can be recovered and thus increase the number of registered images. However,
the proposed method cannot achieve the same efficiency with 3D-to-2D matching when the maximum
matches are few in number. This is due to the correspondence search from two sides requiring extra
computation. However, as the maximum match number increases, the proposed method can achieve
a comparable efficiency to the other methods by executing a visibility filter to construct a simplified
model for the 2D-to-3D matching and a co-visibility filter to remove 3D points unlikely to yield
matches from the candidate list for 3D-to-2D search. In this way, the localization time is reduced
after eliminating potentially wrong 2D-3D correspondences before applying the RANSAC-based
camera pose estimation. With the proposed image-based localization algorithm, we obtained a mean
localization error of 0.50 m in the lobby dataset and 0.36 m in the meeting room dataset. The mean
localization error was calculated as the distance between the estimated camera center and the ground
truth position for the camera. The ground truth is the position where the person stands and takes the
photo and is not exactly the position where the smartphone lies.

3.2. PDR Trajectory

In this section, we evaluate the effectiveness of localizing pedestrians using PDR alone.
The volunteers were asked to walk along a predefined route holding the smartphone in hand and
the accelerometer and gyroscope readings were simultaneously exploited for PDR estimation. Given
the initial position, the relative movement can be estimated from the step detection, step length
estimation and heading estimation. All three modules may induce error but the error of the heading
estimation has a dominant impact on the eventual result. We evaluated the most difficult situation
by asking the volunteers to walk with many orientation changes. The experimental route was
a rectangular route, without additional constraints from maps to help estimate the results. A Xiaomi 2
(Beijing, China) smartphone with Android (Google, Mountain View, CA, USA) operating system was
used in the experiment.

Table 2 reports the step detection result of the PDR algorithm, which achieves a mean accuracy of
98.71%. The estimated trajectory and the accumulative errors are illustrated in Figure 7. It can be seen
that PDR can accurately locate the users in short-term tracking but it fails to locate them accurately in
extended routes. Specifically, 330 steps of walking a complex route (containing multiple turns) allows
us to locate the user with a mean error of 2.66 m and a maximum error of 9.44 m. The results therefore
demonstrate that PDR alone cannot provide reliable indoor localization.
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Table 2. The step detection result of the PDR algorithm.

One Circuit Two Circuits Four Circuits Six Circuits

True steps 55 112 218 334
Detected steps 57 112 221 333Sensors 2018, 18, 258  13 of 19 
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3.3. Image Localization Based Trajectory Estimation

The experimental results obtained with the PDR algorithm indicate that PDR can lead to a large
accumulated error in long-term tracking. However, the short-term routes often exhibit a satisfactory
result. We therefore partition the long trajectories into several short ones and aim to achieve accurate
localization in each sub-trajectory. The image localization result can serve as the partitioning point and
provide the initial localization and orientation. Two kinds of partitioning strategies can be exploited.
The first is to use constant time to resume a PDR and the second is to use constant step. Since situations
exist where the user stands or sits still so that no error is accumulated, we prefer to relocate the user by
the step frequency.

The accumulative error shows a non-monotonic increasing trend as the user walks a circular
route. We set the step threshold to be 130, 55 and 28, respectively and we resumed the PDR estimation
once the step threshold was reached. Table 3 and Figure 8 detail the estimated trajectories and the
accumulative error. As shown, the more frequent the use of image-based localization to correct the
trajectory, the higher the accuracy of the estimated result. The dominant source of error is deviation in
the heading estimation, causing trajectory bias away from the truth. However, with frequent correction
from the image-based localization result, the pedestrian estimation can achieve a mean accuracy of
0.56 m, with a maximum error of 1.78 m.

Figure 9 presents the estimated trajectories through the combination of image-based localization
and PDR in the SfM-reconstructed indoor point cloud model. The level-scale trajectory was estimated
to demonstrate the efficiency and accuracy of the proposed approach (shown in Figure 9c). The user
was asked to walk through the open area, turn left into the small room and turn right to the corridor.
In the process, the user performed two image-based localization actions. The first time when the user
walked in the open space and second when the user walked into the corridor. It takes about 7.65 s to
localize an image when terminating correspondence search when 100 matches were found, a slight
increase when compared with localizing in a single room. Furthermore, the localization accuracy
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was largely improved when applying the image-based localization. In the case of a multi-floor scene,
the user location can be used as a prior to constrain the correspondence search to a certain floor,
keeping the time complexity within the acceptable range. The furniture was removed to show the
trajectories clearly. This realistic model with a specific indoor structure shows clearly that the proposed
image-based localization aided pedestrian tracking algorithm can effectively reduce the accumulative
error in PDR and the estimated trajectory converges with the truth. The pedestrian can be continuously
tracked in the indoor space and we can avoid the phenomenon of crossing a wall or mistakenly being
localized in another room.

Table 3. Trajectory with different step thresholds.

No Correction 130 Corrections 55 Corrections 28 Corrections

Mean error (m) 2.66 1.49 0.83 0.56
Max error (m) 9.44 3.40 2.24 1.78
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4. Discussion 

4.1. The Effectiveness of Image Registration 

From the above experiments, we can conclude that the effectiveness of the image-based 
localization significantly influences the validation of the final localization. The image-based 
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Figure 9. The localization results shown in the indoor environment: (a) The localization result for the
meeting room dataset; (b) The localization result for the lobby dataset; (c) The localization result for
the level-scale dataset in the lobby dataset.

4. Discussion

4.1. The Effectiveness of Image Registration

From the above experiments, we can conclude that the effectiveness of the image-based
localization significantly influences the validation of the final localization. The image-based localization
can contaminate the final localization in two ways. The first is that the images cannot be registered
and the second is that the images are registered but with large errors. In order to guarantee that the
image-based localization can obtain a successful result, we evaluated the factors that may lead to an
invalid result. Four aspects were evaluated:

• Texture: few or intensive;
• Image perspective: orthogonal or large perspective view;
• Distance: far, median, or near;
• Image pixels: Cannon EOS SLR or smartphone.

We assigned each of the factors 20 images for the experiments and calculated the number
of registered images. It turns out that distance and image pixels have no obvious influence on
the registration effectiveness. In addition, images with few textures (as shown in Figure 10) are,
surprisingly, as successful in registration as those images with abundant textures. The worst result
comes from images with a large perspective view (as shown in Figure 10). The failure of the registration
is caused by either too few inlier matches or a too-small inlier ratio. The registration error is caused
mainly by the latter. This can be solved by increasing the inlier ratio threshold that determines the
minimum inlier ratio of registration. However, this may also decrease the number of registered images.
Therefore, an appropriate way may be to construct synthetic views [24], or to simply eliminate those
images with a large perspective from the registration.
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Figure 10. Examples of query images: The images in the first row have sparse textures but were
successfully registered. The images in the second row could not be localized for large perspective,
the left two pictures were not registered, while the right two pictures were registered but with
huge errors.

4.2. The Accuracy of Combined Localization

The above experiments show that frequent correction using image-based localization can achieve
a sub-meter localization error. However, when performing image-based localization with a large step
duration, trajectory bias may still induce localization error. This could be alleviated by introducing
map constraints. Map constraints can help predict the behavior pattern of humans; for example,
when walking in a corridor, the user tends to follow a straight line. This can be used to counteract
the negative influence of the heading estimation. Figure 11 illustrates the map-constrained result of
the proposed method when the user walks in a corridor with four turns. The result shows that the
error caused by the PDR estimation during the sub-trajectories can be corrected by the map topology.
The estimated trajectory conforms with the truth by aligning the orientation to the corridor directions.
The accumulative error is accordingly reduced. However, this method does not work in situations
such as open areas without structural constraints imposed by maps. As a consequence, in our future
work, we will incorporate map constraints into the proposed image localization based pedestrian
trajectory estimation, to accommodate all kinds of indoor structure, as well as reduce the number of
photos required in map-constrained places.

Sensors 2018, 18, 258  16 of 19 

 

 

Figure 10. Examples of query images: The images in the first row have sparse textures but were 

successfully registered. The images in the second row could not be localized for large perspective, the 

left two pictures were not registered, while the right two pictures were registered but with huge errors. 

4.2. The Accuracy of Combined Localization 

The above experiments show that frequent correction using image-based localization can 

achieve a sub-meter localization error. However, when performing image-based localization with a 

large step duration, trajectory bias may still induce localization error. This could be alleviated by 

introducing map constraints. Map constraints can help predict the behavior pattern of humans; for 

example, when walking in a corridor, the user tends to follow a straight line. This can be used to 

counteract the negative influence of the heading estimation. Figure 11 illustrates the map-constrained 

result of the proposed method when the user walks in a corridor with four turns. The result shows 

that the error caused by the PDR estimation during the sub-trajectories can be corrected by the map 

topology. The estimated trajectory conforms with the truth by aligning the orientation to the corridor 

directions. The accumulative error is accordingly reduced. However, this method does not work in 

situations such as open areas without structural constraints imposed by maps. As a consequence, in 

our future work, we will incorporate map constraints into the proposed image localization based 

pedestrian trajectory estimation, to accommodate all kinds of indoor structure, as well as reduce the 

number of photos required in map-constrained places. 

  
(a) (b) 

Figure 11. Map-constrained trajectory estimation: (a) is the map-constrained result of the trajectory 

estimation; (b) is the accumulative error. Figure 11. Map-constrained trajectory estimation: (a) is the map-constrained result of the trajectory
estimation; (b) is the accumulative error.



Sensors 2018, 18, 258 17 of 19

4.3. Privacy Issues

Using the smartphone camera may introduce some privacy problems. To protect user privacy
concerning cameras, several potential solutions are proposed. First, the user must authorize the camera
before using the application and unauthorize it after closing the application. Second, a separate image
folder can be created for saving the images for localization, avoiding illegal access to personal images.
Third, the application might require a correct passport before reading the image data. Finally, frequent
updating and examination is required to guarantee everything is right in case of emergencies.

5. Conclusions

In this paper, we have proposed a low-cost and effective indoor localization framework that
combines image-based localization and PDR for robust pedestrian trajectory estimation. Compared
with the previous methods, our approach has several advantages. By combining 2D-to-3D and
3D-to-2D searches with visibility and co-visibility information readily available in the SfM model,
we obtain a high-accuracy estimation of image pose without loss of time efficiency. By frequently
performing image-based localization as the initial location for PDR, the long trajectories with large
accumulative errors are segmented into short and accurately estimated sub-trajectories. By exploiting
crowdsourced images and the inertial sensors (accelerometer and gyroscope) embedded in smart
phones, we can achieve fast, self-dependent, low-cost indoor localization, with an accuracy of about
0.56 m.

In our future work, we will exploit the map information to provide topological, geometrical and
semantic constraints for more accurate trajectory estimation, further improving the applicability of the
low-cost indoor localization technology. Furthermore, we will explore an improved SfM strategy that
can be extended to constructing a 3D indoor model from unordered crowdsourced images, facilitating
the accessibility to 3D point cloud databases and hence the image-based localization approach.
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