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Abstract: A time-domain analog spatial compressed sensing encoder for neural recording applications
is proposed. Owing to the advantage of MEMS technologies, the number of channels on a silicon
neural probe array has doubled in 7.4 years, and therefore, a greater number of recording channels
and higher density of front-end circuitry is required. Since neural signals such as action potential (AP)
have wider signal bandwidth than that of an image sensor, a data compression technique is essentially
required for arrayed neural recording systems. In this paper, compressed sensing (CS) is employed
for data reduction, and a novel time-domain analog CS encoder is proposed. A simpler and lower
power circuit than conventional analog or digital CS encoders can be realized by using the proposed
CS encoder. A prototype of the proposed encoder was fabricated in a 180 nm 1P6M CMOS process,
and it achieved an active area of 0.0342 mm2/ch. and an energy efficiency of 25.0 pJ/ch.·conv.

Keywords: compressed sensing; time domain analog; spatial

1. Introduction

Investigating the network of the brain is the fundamental mission of neuroscience, and neural
probes play an important role in this task [1]. By applying MEMS technology for the fabrication of
neural probes [2], neural probe arrays, which have multiple electrodes on a single probe [3,4], can be
fabricated. Furthermore, with miniaturized neural probes, integrated neural recording microsystems
with CMOS LSI have been realized [5–23]. The number of channels on a neural probe array becomes
doubled in 7.4 years, which is similar to Moore’s law [24]. Therefore, a greater number of recording
channels and higher density of front-end circuitry is required for exponentially increasing the number
of recording channels.

Since AP has a bandwidth of 100 Hz to 10 kHz [25], a high-speed data transmission is needed.
For example, a 10 bit, 20 ksps/ch., and 100 channel neural recording system requires 10 bits× 20 ksps×
100 ch. = 20 Mbps bandwidth data transmission. If the system requires 1000 simultaneously recording
channels, the data bandwidth becomes 200 Mbps, which is unrealistic for implantable applications.
Hence, a data compression technique is inescapably required for multiple-channel neural recording
systems [25].

Compressed sensing (CS) [26,27] is a data reduction technique that can be realized by using a
simple operation. In a measurement system based on Nyquist–Shannon sampling theorem, superfluous
sampling is required in spite of the sparse information in the signal. CS is a mathematical framework
that can ensure accurate reconstruction from fewer measured data, which is observed using simple
matrix-vector multiplication. Since CS encoder does not require any additional circuits such as feature
extractor to compress the data by other compression methods (e.g., spike detector), which causes an
increase in chip area, CS-based measurement systems can be expected to reduce the chip area and
power consumption [28].
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Although CS encoders have been proposed previously [28–35], the hardware cost of a
matrix-vector multiplier for CS encoder is not small enough for multi-channel neural recording
devices, and thus, the reduction of hardware cost is an essential issue. The hardware cost depends on
the CS encoder architecture, which can be classified into temporal CS [28,31,32] and spatial CS [33–35].
The temporal CS, especially by a digital implementation, has an advantage in terms of energy efficiency
in high-resolution measurement [28]. However, for multichannel measurement using the temporal
CS approach, the digital product-sum operation circuit has to be parallelized for each measurement
channel, increasing chip area per measurement channel. In the spatial CS [33–35], on the other hand,
the product-sum operation circuit can be shared with a plurality of channels. Thus, it is suitable for
realizing multiple-channel measurement systems. In addition, since an operating frequency of a data
converter can be reduced owing to analog CS encoding in front of the data converter, lowering the
dynamic power consumption. As analog spatial CS approach for multi-channel neural recording
has been proposed in Ref. [34]. It succeeded the reconstruction of 16 channel APs with 20 ksps.
However, an analog product-sum circuit with large power is required for area-efficient implementation.
A ∆Σ-ADC-based CS encoder has also been proposed [35]. It can eliminate the need for an additional
circuit for CS encoder by realizing product-sum operation by using ∆Σ modulator in ADC. However,
∆Σ ADC essentially requires over sampling to obtain the desired accuracy, resulting in high system
clock frequency for the neural recording.

In this paper, a novel low-power and area-efficient time-domain analog CS encoder is proposed.
The proposed CS encoder is simpler and has a more area-efficient architecture compared to a digital
CS encoder, as it uses a time-domain analog product-sum operation circuit. In addition, since the
time domain analog circuit is asynchronous operation, a high clock frequency is not required for the
proposed encoder. Furthermore, the product-sum operation circuit of the proposed encoder operates
with a small static current, and therefore, it can realize lower power and a more area efficient CS
encoder than conventional CS encoders.

The rest of the paper is organized as follows. In Section 2, a theoretical background of CS
is introduced. In Section 3, the concept of the proposed CS encoder is presented. Details of the
proposed CS encoder system and its design methodology are described in Section 4. In Section 5,
the measurement results of the fabricated proposed CS encoder prototype are discussed. Finally,
the paper is concluded in Section 6.

2. Theoretical Background of CS

In this section, a theoretical background of signal compression and reconstruction based on CS is
introduced. CS is a mathematical framework that ensures accurate data reconstruction from fewer
measured data than that is required for the conventional Nyquist–Shannon-based signal acquisition,
and has been established by Donoho [26], Candes [27], and Tao [27]. Figure 1a shows the neural signal
measurement (encode) process based on CS. In CS theory, an input signal vector v ∈ RN×1 can be
represented as

v = Bs,

where B ∈ RN×N is a basis for representing v, and s ∈ RN×1 is coefficient vector [36]. When the
number of non-zero elements of s is K � N, vector v is K-sparse on the basis B. If v has sparsity
on the arbitrary basis B, v can be represented by using vector c ∈ RM×1 (M ≤ N), which has fewer
dimensions, as

c = Av,

where A ∈ RM×N is a sensing matrix for an incoherent sampling [37] . It is known that Bernoulli
matrix in which all the entries are either +1 or−1 can be used as the sensing matrix [28]. A compression
ratio (CR) can be defined as CR = N/M, and c becomes uncompressed data when N = M.
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Figure 1. (a) Signal measurement (encode) and (b) reconstruction (decode) process based on CS.

The reconstruction (decode) process is shown in Figure 1b. As effective signal reconstruction
methods, lp-norm minimization [38] and block sparse Bayesian learning (bSBL) [39] are widely
known. lp-norm minimization derives a sparse vector by minimizing lp-norm ‖a‖p = ∑N

n=1 |an|p
(0 ≤ p < 1). bSBL can improve reconstruction performance by applying Bayesian learning. In this
study, the classical l1 norm minimization [26,27] is used to reduce the amount of calculation. The input
vector v can be reconstructed by solving the convex optimization problem about l1-norm as

argmin
ŝ∈RN×1

‖ŝ‖1 subject to c = AB ŝ,

where l1 norm of vector a ∈ RN×1 is defined as ‖a‖1 = ∑N
n=1 |an| [28]. Since the basis B is not

required for the signal encode process, the CS encoder does not require any feature extraction for
signal compression. Therefore, the CS-based measurement system can reduce the system complexity.

3. Time Domain Analog Signal Processing for CS Encoder

Figure 2a shows the concept of the proposed time-domain analog spatial CS encoder. The CS
encoder executes the following product-sum operation per a clock cycle between an input vector v
and a row of matrix A as

ci =
N

∑
j=1

aijvj,

where ci is an element of result vector c, aij is an element of the matrix A, vj is an element of v,
and 1 ≤ i ≤ M is the number of elements in the vector c. In spatial CS architecture, frame rate
should be larger than twice of signal bandwidth, because CS is applied only for spatial domain
and each frame is encoded. Therefore, if a input signal bandwidth including AP is 10 kHz [25],
a frame rate corresponding to sampling frequency, fs, should be greater than 20 kHz to guarantee
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the Nyquist–Shannon sampling theorem. The product-sum operation is executed by using cascaded
voltage-to-delay-time converters (VTCs), which convert the control voltage into a time-domain signal.
A product, aij × vj, is set to each control terminal of the VTCs, and a conversion cycle starts at the
rising edge of CLK. The timing diagram of the encoder is shown in Figure 2b. When CLK rises, the first
VTC starts a voltage-to-delay-time conversion. After a delay of td1, which corresponds to the product
aij × vj, the first VTC raises its output D1. Then D1 rises, and the second VTC starts the conversion in
the same manner. Thus, the delay time generated by the VTCs are accumulated, and the total delay
time, td,ci, corresponding to ci appears between CLK and DOUT. Finally, td,ci is converted into a digital
code ci by the time-to-digital converter (TDC).
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Figure 2. (a) Concept of the proposed time-domain analog spatial CS encoder and (b) timing chart for
expressing its operation.

Conventional analog CS encoders, including the voltage domain [33] and digital implementation
shown in Figure 3, tend to be power hungry because of the following reason: In the analog
implementation, the number of samples is reduced in front of the ADC by using a product-sum circuit
composed of a voltage-domain mixer and a switched-capacitor adder. Similar to the time-domain
implementation, the analog CS encoder can execute the product-sum operation per a clock cycle.
However, the switched-capacitor adder requires an operational amplifier, which satisfies the fast
settling condition, resulting in increased power consumption. The digital implementation shown
in Figure 3b requires full-sampled data before compression. It is similar to the other digital signal
compressors which require large-scale memory to store the data before compression. When the
product-sum circuit is realized by using a single accumulator to reduce hardware cost, a system clock
frequency of M× N × fs is required for the 1-frame encode. For example, if fs = 20 kHz, M = N = 20
(uncompressed), and the required system clock frequency is 8 MHz. Since the dynamic power
consumption of the clock synchronization circuit is proportional to the system clock frequency, a higher
system clock frequency is undesirable. On the other hand, the proposed CS encoder is an analog
circuit, which can be mainly composed of logic elements, and therefore, the proposed encoder can
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essentially reduce its power consumption. Moreover, since the operation of the proposed encoder is
based only on delay propagation, the total number of transition cycles in the proposed encoder can be
lowered than that in the conventional digital implementation. Therefore, the power consumption of
the proposed CS encoder can be significantly reduced.
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Figure 3. Conventional CS encoder implementation of (a) voltage-domain analog circuits, and (b)
digital circuits.

4. Design of the Proposed CS Encoder

4.1. Overview of the Entire Operation

Figure 4 shows the block diagram of the proposed CS encoder. It comprises 5 measurement units
with 20 electrodes, and consequently, the system can simultaneously measure 100 channels of a neural
signal. In this design, each input signal of the channel is represented as a pseudo-differential signal,
which is converted by VTCj+ and VTCj− (1 ≤ j ≤ 20), and the control voltages of VTCj+ and VTCj−
are set as input voltage vj and reference voltage VCM for vj, respectively. The control voltages are
kept constant by the sample and hold (S/H) circuits during 1-frame conversion. The S/H circuits
sample their inputs (VCM or vj) when the sampling clock φ is high. Multiplication with ±1 is executed
by using choppers as a time-domain multiplier. The resulting encoder output is represented by the
time difference between the rising edges of DOUT+ and DOUT−, and is converted into a digital code by
the TDC.

The timing diagram of the CS encoder is shown in Figure 5. This encoder executes a product-sum
operation between a row of the sensing matrix and the input vector per a single clock cycle. VTCj+ and
VTCj− of each channel are assigned to a positive or negative delay line, respectively, by the chopper.
Delay accumulation of the positive and negative delay lines are asynchronously executed, and the
product-sum output appears in the relationship between the delay time td and the control voltage
VCTL of the VTC, which can be represented by a linear function as

td(VCTL) = α×VCTL + β,

where α and β are constants. When the delay times of the VTCj+ and VTCj− are defined as

tdj+ ≡ td(vj) = αvj + β and tdj− ≡ td(VCM) = αVCM + β,
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respectively, the time difference between the rising edges of DOUT+ and DOUT− is directly proportional
to the product-sum output as

td,ci
(v) =

N

∑
j=1

aij(tdj+ − tdj−) = α{
N

∑
j=1

aij(vj −VCM)}.
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Figure 4. Block diagram of the proposed 100-channel time domain analog spatial CS encoder system.

The upper limit of each VTC’s delay is determined by the stage number of the VTCs N and the
frame rate fs. Since the period of the frame is Ts = 1/ fs, M-times product-sum operation must be
executed in Ts. Therefore, the upper limit of the time for the product-sum operation is

Tconv.,max =
1

fs ×M
. (1)

Since Tconv.,max is the total delay time of the VTCs, the upper limit of each VTC’s delay can be expressed
by using Equation (1) as

td,max =
Tconv.,max

N
=

1
M× N × fs

.
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When the design parameter values are set as fs = 20 ksps and M = N = 20 (uncompressed),
the upper limits are determined as Tconv.,max = 2.5 µs and td,max = 125 ns.

The required number of bits for TDC Nbit must be determined so as not to degrade the
reconstructed data. To determine Nbit, a system level simulation by using MATLAB was performed
as shown in Figure 6, which plots the reconstructed SNR vs. the Nbit on each compression ratio CR
(= N/M). The reconstructed SNR is defined as

SNR = −10 log
∑N

i=1(vi − v̂i)
2

∑N
i=1 v2

i
, (2)

where vi is the original data, and v̂i is the reconstructed data [28]. Note that noise-less TDC and VTC
are assumed in the simulation. A reconstructed SNR saturation on the higher Nbit is caused by CR, and
thus, dropping the reconstructed SNR on a lower Nbit denotes the insufficiency of Nbit. According to
the result, Nbit was decided as 10 bit in this design. The time resolution of the TDC TLSB can also be
derived from Equation (1) and Nbit as

TLSB =
Tconv.,max

2Nbit
=

1
fs ×M× 2Nbit

. (3)

In this design, TLSB was decided as 1.63 ns. Note that its input-referred noise is 4.86 µ VRMS, and is
sufficiently lower than amplitude of AP (50 to 500 µ VPP [25]). In time-domain analog circuits, jitter
corresponds to the noise in voltage-domain analog circuits, and it is defined as a timing deviation from
the true operation timing. The total value of jitter is mainly determined by thermal noise represented
by voltage or current source [40,41]. Since thermal noise follows Gaussian distribution, jitter value also
follows Gaussian distribution. Therefore, jitter value can be discussed in statistics.
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Figure 7 shows the jitter model of the proposed CS encoder. The overall jitter σ2
total comprises

of the output-referred jitter of VTC array σ2
VTC,total and the TDC input-referred jitter σ2

TDC, where
σ2

VTC,total is the total accumulated jitter of each VTC in the VTC array, and σ2
TDC is determined by the

variations in the operation timings of the flip-flops and a ring oscillator in the TDC. Note that σ2
TDC

corresponds to a sampling noise of ADC. Assuming that all the jitter deviations follow the Gaussian
distribution, the overall jitter can be derived by the sum of squares as

σ2
total = σ2

VTC,total + σ2
TDC.

In this design, the condition for satisfying the required accuracy of the CS encoder is defined as

3σtotal = 3
√

σ2
VTC,total + σ2

TDC ≤ TLSB (4)

at least. As mentioned below, σ2
TDC is sufficiently smaller than σ2

VTC,total in this design. Thus, σ2
TDC is

considered to be constant. The following subsections describe the architecture and design consideration
of TDC and VTC.

σVTC,total

VTC array

v

TDC

TLSB

Nbit

2
σTDC

2

Encoder

output

σ total
2

Figure 7. Jitter model of the proposed CS encoder.

4.2. TDC

TDC can convert the time difference between two input clock edges into a digital code with
high time resolution by using a delay time of logic elements. Figure 8 shows the block diagram of
a delay-line-based and a ring-oscillator-based TDC. The delay-line-based TDC, which is shown in
Figure 8a, is composed of a delay line, a D-FF array, and a decoder. The TDC converts the time
difference between the rising edges of the START and STOP signals. When the START signal rises, the
rising edge propagates through the delay line. When the STOP signal rises, the D-FF array captures
the delay propagation state, and the captured state is converted into a digital code by the decoder.
Although this TDC has the simplest architecture, 2Nbit stage delay lines are required to realize Nbit bit
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resolution. If the desired resolution is 10 bit, a 1024-stage delay line is required. On the other hand,
a ring-oscillator-based TDC, which is shown in Figure 8b, is composed of a ring oscillator, a binary
counter, a D-FF array, and a decoder. In the ring-oscillator type TDC, the D-FF array captures the
phase of the ring oscillator for fine conversion, and the counter measures the ring oscillator output
for coarse conversion. Therefore, the ring-oscillator-based TDC requires fewer delay line stages than
the delay-line-based TDC. In this design, the ring-oscillator-based TDC is employed to reduce the
number of delay line stages. The following paragraphs describe the TDC jitter and the number of ring
oscillator stages N.
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Figure 8. Block diagram of (a) delay-line-based TDC, and (b) ring-oscillator-based TDC.

In ring-oscillator-based TDC, the delay time of the ring oscillator’s delay cell td,Ring becomes the
time resolution of the TDC TLSB. The frequency of the ring oscillator fo can be expressed as

fo =
1

NRing × td,Ring
,

where NRing is the number of ring oscillator stages. The TDC jitter σ2
TDC can be expressed as

σ2
TDC = σ2

Ring + σ2
D-FF,

where σ2
Ring is the ring oscillator jitter and σ2

D-FF is the timing variation when the D-FF array captures

the ring oscillator phase. Since σ2
D-FF is a sufficiently smaller constant value than σ2

Ring, σ2
TDC ≈ σ2

Ring.

Also, σ2
Ring can be expressed as [41]

σ2
Ring = κ2∆t, (5)

where κ is a proportionality constant that is determined by the circuit parameters, and ∆t is the
measurement time. According to [41], κ is determined by the size of the transistor for the ring oscillator
(W and L), the number of ring oscillator stages NRing, and the current noise power spectral density
in which are input to ring oscillator nodes ī2n/∆ f . Since the time resolution of TDC TLSB is already
determined by Equation 3, the transistor size for the ring oscillator cannot be modified to satisfy TLSB.
In addition, ī2n/∆ f is also not changeable in this design; only NRing can be modified. However, the
TDC jitter value hardly changes regardless of changing NRing [41]. Therefore, σ2

TDC ≈ σ2
Ring is regarded

as a constant.
In this design, since TDC consumes most of the power in the entire CS encoder, its design should

be optimized to achieve lower power consumption. The power consumption of TDC PTDC can be
expressed as

PTDC = PRing + PD-FF + PCnt,
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where PRing, PD-FF and PCnt are the power consumptions of the ring oscillator, the phase capturing D-FF,
and the counter for coarse conversion, respectively. Figure 9 plots the simulated power consumption
vs. NRing during measurement. PD-FF is sufficiently smaller than the others. PRing is almost constant
and occupies the majority of PTDC. When NRing is small, PCnt becomes larger than PRing. According
to the above results, increasing NRing reduces the power consumption of the TDC, and it approaches
the value of PRing. Finally, the number of ring oscillator stages is determined as N = 64 in this design.
To estimate the value of σ2

Ring, 100-times transient-noise simulation is performed. According to the
result, the TDC jitter with NRing = 64 becomes sufficiently small as 3 σRing = 221.6 ps.
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Figure 9. Simulation result of power consumption vs. NRing during measurement.

4.3. VTC

To realize the proposed CS encoder, a transfer function with a high linearity is required between
the delay time and the control voltage. Therefore, an integrator-based architecture is composed of
a capacitor and current source, as shown in Figure 10, is employed in this design. A conversion
trigger signal A controls the state of VTC. When the node voltage of A is logical low, VTC is set as a
reset state and the capacitor’s terminal voltage becomes VCTL −VCM as shown in Figure 11a, where
VCM = VDD/2 is a reference voltage. The voltage-to-delay-time conversion starts at the rising edge
of A.

Finally, when vc− crosses the threshold voltage of the comparator, VCM, the conversion is
completed and the output of the comparator becomes high (Figure 11c). To ensure high linearity over
a wide range of VCTL, the delay time is controlled only by the initial voltage of the capacitor, and the
integrating current and threshold voltage of the comparator are constant. Note that the comparator is
composed of a simple logic inverter to reduce its operating power.
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Figure 10. Schematic of the VTC.
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The jitter requirement for VTC can be derived by substituting TLSB and σTDC into Equation 4 as
σVTC ≤ 1.61 ns.

Figure 12 shows the equivalent circuit model for the integration state, where It is an integrating
current, in is the noise current of the current source, Ct is the integrating capacitance, and ro is the
output resistance of the current source. The relationship between the delay time td and the control
voltage VCTL can be expressed as

td(VCTL) =
Ct

It
(

1
2

VDD −VCTL) = −
Ct

It
VCTL +

Ct ×VDD
2It

. (6)

In this design, the measurement unit shown in Figure 4 has 20 measurement channels, and each
measurement channel includes two VTCs (VTCj+ and VTCj−). Thus, the total accumulated jitter for
the product-sum operation σ2

VTC,total in Equation 4 can be represented by using a square-sum of all the
VTCs’ jitter σ2

td as

σ2
VTC,total = 2× 20 σ2

td.

Therefore, the ratio between Ct and It is derived by introducing the control voltage range and the
maximum delay time into Equation 6, and Ct can be determined as satisfying σVTC ≤ 1.61 ns.
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Figure 12. Timing diagram of VTC (a) reset state, (b) integration state and (c) conversion completed.

Figure 13 plots the 100-times transient-noise simulation result of 3 σVTC,total as a function of Ct.
In this design, the capacitance of the integrator was determined as Ct = 521 fF and It = 1.0 µA to
satisfy the jitter requirement.
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Figure 13. 100-times transient-noise simulation result of 3σVTC,total vs. Ct.

4.4. Design Constraints in Proposed Architecture

In this subsection, design constraints and trade-off of the proposed architecture are discussed.
The chip area and the total number of channels are design constraints of the proposed CS encoder.
These constraints provide maximum capacitance in the VTCs, and hence it decides realizable minimum
jitter of the VTCs. On the other hand, if desired SNR and sampling rate are given, specifications of
time resolution of the TDC and the VTC jitter are also determined. Since the specification of the VTC
jitter cannot be less than the realizable one, the rest of design constraint is how balancing between
the number of channels per measurement unit Nunit and power consumption. A smaller Nunit relaxes
jitter requirement for VTC and TDC, and thus low-power implementation could be realized, while
higher CR cannot be achieved because realizable maximum CR is same with Nunit. In contrast, a larger
Nunit requires low jitter for VTC and TDC, increasing power consumption. Especially, since a VTC
jitter is limited by its capacitor size, the low jitter requirement for the VTC cannot be realized for much
larger Nunit. Therefore, considering the above discussion, in this design, a moderate Nunit is set as 20,
and resulting maximum power consumption is 6 µW/ch. which can be expected as lower value than
previous studies [33–35].

5. Measurement Results and Discussion

The proposed 100-ch. time domain analog CS encoder was fabricated in a 180 nm 1P6M CMOS
process, as shown in Figure 14. The active area of the prototype encoder is 1.85 mm × 1.82 mm.
The frontend for each measurement channel comprises the electrode, the low-noise amplifier (LNA),
the sample and hold circuit (S/H), and the two VTCs. The active area with TDC is 0.0331 mm2/ch.,
and without TDC is 0.0272 mm2/ch.
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Figure 14. Chip microphotograph of the proposed time-domain analog CS encoder prototype.

Figure 15 shows the evaluation environment for the proposed CS encoder. The measurement
system, which is shown in Figure 15a, comprises of the prototype CS encoder, a prototype evaluation
board, an FPGA board, a power supply, and a PC. A logic analyzer is used for the development
and debugging of the environment. The prototype is controlled by the control logic and the micro
controller (MCU), which are embedded in the FPGA. The test signal of the encoder is provided for
each measurement unit as a time-interleaved voltage signal from DAC. The test signal which simulates
spontaneous neuronal activity is generated on MATLAB. The details are described in Appendix A.

Prototype evaluation board

Prototype CS encoder
PC

(for system control)

FPGA

board

Power supply

Logic analyzer (for development/debug)

PC

FPGA

MCU

Control logic

DAC array

Prototype

CS

encoder

Encoder

 output

Input vector (interleaved)

(a)
(b)

Figure 15. (a) Evaluation system for the prototype CS encoder and (b) its block diagram.

The evaluation procedure for the CS encoder is shown in Figure 16. In this measurement, spatial
test signal (input vector) were prepared for each frame and directly stored in the S/H circuits of the
prototype at the beginning of the conversion frame. The test signals are generated for simulating the
AP waveforms from a neural probe array, and each signal represents a 2-dimensional input voltage
distribution. The acquired data from the prototype CS encoder is transferred to the PC and then
reconstructed by a MATLAB-based program. Note that the reconstruction by solving the convex
optimization was realized using CVX [42]. As the basis for the reconstruction, a discrete cosine
transformation (DCT) matrix was selected. Data compression method based on spatial DCT has been
proposed in Ref. [43] with 1/69 times data reduction at 6% root mean square error. Using DCT for
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data compression can imply that multi-channel APs is inherently sparse on 2D frequency domain, and
thus DCT matrix can be potentially used as basis of spatial CS reconstruction.

2D distribution of 

an input vector

Time (frame)

Encoder output

50mV/div.

x axis
y axis

Prototype

CS encoder

Reconstructed vector

Voltage

Voltage

Comparison

Voltage

Figure 16. Evaluation procedure for the CS encoder.

Finally, the reconstructed signal quality is evaluated by calculating the reconstructed SNR defined
in Equation (2).

Figure 17 shows the 100-ch. reconstructed temporal waveforms from the compressed data
encoded by the prototype CS encoder at CR = 4, and Figure 18 plots the temporal change in the
reconstructed SNR. Note that amplitude of waveforms shown in Figure 17 indicates input voltage for
VTCs. The reconstructed SNR at t = 11.1 ms (when the input signal becomes peak amplitude) was
15.3 dB. Since the reconstructed SNR depends on the input signal, non-sparse signal degrades the
SNR. If a improved SNR is required, CR should be relaxed which means an increase in the number
of sampling for each frame, M. In this design, the frame rate of the encoder is defined to support
uncompressed condition (M = N). Therefore, the proposed encoder can control CR from 1.0 to 20
without any hardware changes. The reconstructed SNR vs. compression ratio (CR) at t = 11.1 ms is
plotted in Figure 19. Note that the measurement results of Figures 17–19 include all noises induced
by the prototype chip and the measurement environment. In practical applications, influence for a
spike sorting [44] must be discussed. Not to affect spike sorting performance, enough reconstructed
SNR before and after spike is required for spike detection and spike classification [44]. As shown
in Figures 17 and 18, spike amplitude and waveform are successfully reconstructed at CR = 4, and
reconstructed SNR before and after spikes (indicated with allows in Figure 18) are around 10 dB. Note
that the measurement results of Figures 17 and 18 include noise of the measurement environment.
SNR for a spike detection and a classification requires more than 10 dB [45], recovered data do not affect
spike sorting performance. The SNR was saturated at 20.0 dB with a CR lower than 3. The saturated
SNR is lower than the expected MATLAB simulation result as shown in Figure 6. In addition, the SNR
at CR = 4 is 15.3 dB, and it dropped over 3 dB compared to the SNR simulated using MATLAB (19.5 dB).
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From the simulation result shown in Figure 6, it is equivalent to a degradation of 0.7 effective number
of bits (ENOB), and it is considered a systematic variation in the gain of the VTC’s, which degrades
the dynamic range of the CS encoder. Since the gain variation of VTCs is not compensated in this
design, it could be affected by the process, voltage, and temperature (PVT) variation. Therefore, a gain
compensating technique for VTC is desired for improving the SNR. To achieve further improvement
of CR and reconstructed SNR in practical in vivo measurement, an optimized basis could be used,
which is obtained from uncompressed (CR = 1) recorded data by dictionary learning algorithm such
as K-SVD [46]. As other solution for improving reconstructed SNR, an optimization techniques for
sensing matrix have been proposed in Ref. [47]. Indeed, optimization techniques for sensing matrix
can improve reconstruction performance. However, extra registers, which almost consumes 20% active
area of the prototype, to contain the optimized sensing matrix is required. Thus, the technique have
not been applied in this prototype, and the sensing matrix is generated on the chip by using simple
linear-feedback shift register (LFSR).

Original data
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Figure 17. 100-ch. reconstructed temporal waveforms from the compressed data encoded by the
prototype CS encoder at CR = 4.
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Figure 19. Reconstructed SNR vs. CR at t = 11.1 ms.

Figure 20 plots the measured power consumption vs. CR at fs = 20 ksps. The power consumption
for the analog front-end (AFE) part, which comprises LNA and S/H, was constant at 1.68 µW/ch.
On the other hand, the power consumption of the CS encoder parts has become inversely proportional
to CR. An energy efficiency of 25.0 pJ/ch.·conv. was achieved for the CS encoder (without AFE) per
channel and per conversion.
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Figure 20. Measured power consumption vs. CR ( fs = 20 ksps).

A performance comparison of the proposed CS encoder with those developed in previous works
for neural recording applications is summarized in Table 1. The prototype CS encoder achieved the
lowest power consumption and the smallest area compared to the encoders from previous works.
Especially, the power efficiency of the CS encoder improved by about 10-times compared to the digital
CS encoder.

Table 1. Performance comparison to previous works.

Parameter [28] [31] [32] [33] [34] This Work
(Simulated)

Technology [nm] 90 180 180 180 180 180

Number of channels 1 12 16 16 16 100

Target signal type EEG Neural
signal

LFP / AP EEG AP AP

Input signal BW [kHz] 10 7 10 2 10 10

Resolution [bit] 8 12 10 10 - 10

Implementation method Digital CS Digital
CS

Digital
CS

Analog
CS

Analog
CS

Time-domain
analog CS

Input vector type Temporal Temporal Temporal Spatial Spatial Spatial

Compression ratio (CR) 20 ≤ 8 8–16 ≤ 16 2.3 1–20

Reconstructed SNR [dB] 10
(CR = 20)

- 9.78
(CR = 8)

10.9
(CR = 4)

6.47
(CR = 2.3)

15.3
(CR = 4)

Total area [mm2/ch.] 0.104 (w/o
LNA)

0.563 0.0489 0.0464 - 0.0331

CS encoder area (w/o
AFE) [mm2/ch.]

0.09 - 0.0117 0.008 0.0023 0.0065

Total power efficiency
[pJ/ch.·conv.]

- - 475
(CR = 8)

238
(CR = 4)

343.5
(CR = 2.3)

92.6 (CR = 4)

CS encoder power
efficiency (w/o AFE)
[pJ/ch.·conv.]

- - 241
(CR = 8)

131
(CR = 4)

53.5
(CR = 2.3)

25.0 (CR = 4)
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6. Conclusions

In this paper, a low-power energy-efficient neural signal acquisition system, which uses the novel
time-domain analog spatial CS encoder, is proposed. In this technique, the product-sum operation for
the CS encoder can be executed by accumulating the delay time information. Since a major part of
the proposed CS encoder can be realized by using logic elements, it can reduce power consumption
and chip area compared to conventional analog or digital CS encoders. Some design parameters
for the proposed encoders were considered and optimized by a trade-off between noise and power
consumption.

The 100-ch. neural signal acquisition system employing the proposed time-domain CS encoder
was fabricated in a 180 nm 1P6M CMOS process, and its active area is 0.0331 mm2/ch. A 100-ch. CS
encode experiment was performed using the prototype CS encoder, and it achieved a reconstructed
SNR of 15.3 dB and conversion energy efficiency of 25.0 pJ/ch.·conv. at fs = 20 ksps and CR = 4.
The prototype CS encoder achieved the lowest power consumption and the smallest area compared
to the encoders in other previous works for neural recording applications. Therefore, the proposed
time-domain spatial CS encoder is suitable for exponentially increasing multi-channel neural recording
applications.

Future works are to generate a basis which is optimized for measured spatial APs and thoroughly
to evaluate the performance of spike sorting with reconstructed spatial information.
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Appendix A. Test Signal Generation

A real neural dataset which meets the conditions of our prototype chip including electrode density,
electrode arrangement and the number of electrodes could not be found. Hence, in this study, the test
signal which simulates spontaneous neuronal activity is generated by using MATLAB.

Upon pseudo AP signal generation, at first, membrane voltage signal of the neuron Vm is generated
by using algorithm based on Ref. [48]. Then, Vm is converted to membrane current Im. Finally,
extracellular potential is obtained from Im. An equivalent circuit of nerve cell’s membrane is shown
in Figure A1a, where Cm is a membrane capacity, RNa and RK are sodium and potassium resistance,
respectively, ENa and EK are potassium and sodium potentials, respectively, RL and EL are leakage
resistance and potential, respectively [49]. Practical parameters of the equivalent circuit shown in
Figure A1a are referred to Ref. [49]. N neurons are randomly placed around electrodes, which are
arranged at equal intervals, as shown in Figure A1b. Note that neuron density is determined by
referring to Ref. [21] as 150 neurons/mm2, averaged firing rate of neurons is 0.3 Hz, and the average
number of firing neuron in the sensing area per 25 ms is 6 times. A membrane current of i-th (1 ≤ i ≤ N)
neuron can be expressed as

Im,i = Ii + Cm
∂Vm,i

∂t
,

where Im,i is an ionic current, Cm is a membrane capacity. When Im,i is assumed to be a point sink
current source, extracellular potential of j’th(1 ≤ j ≤ 100) electrode can be obtained as

φj = −
1

4πσ

N

∑
n=1

Im,n

rij
,

where σ is constant conductivity, and rij is distance between current source and electrode [50].
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Figure A1. (a) Equivalent circuit of nerve membrane [49] and (b) electrodes arranged at equal intervals
and randomly placed membrane current sources of neurons.
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