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Abstract: A time-dependent fatigue reliability assessment approach is proposed for welded details of
orthotropic steel decks (OSDs) using long-term strain monitoring data. The fatigue reliability limit
function of the welded details is established based on the Eurocode specifications. Depending on
the distribution characteristics of the measured daily equivalent stress range, either the lognormal
distribution or Gaussian mixture model (GMM) is selected to quantify its uncertainty. Subsequently,
the fatigue reliability can be calculated using either an explicit formula or the Monte Carlo method.
This proposed approach is applied for the fatigue reliability evaluation of two rib-to-deck and
two rib-to-rib welded fatigue details of an in-service suspension bridge. The results show that the
reliability indices decrease significantly with bridge’s service life. Except for a rib-to-deck detail,
all other three welded details cannot meet the target fatigue reliability during this bridge’s 100-year
service life. The proposed approach can help bridge owners and operators make informed decisions
regarding maintenance and repair of potential fatigue cracks.

Keywords: orthotropic steel deck; structural health monitoring; fatigue reliability; gaussian mixture
model; suspension bridge

1. Introduction

Orthotropic steel decks (OSDs) have been widely adopted for long-span bridges due to their
notable advantages, such as light weight, high strength and durability, and rapid construction [1–3].
However, various types of cracking in the OSDs have been reported owing to lack of knowledge in its
fatigue characteristics, design defects, and harsh loading conditions such as heavy-duty vehicles and
high-density traffic volumes [1,4,5]. In the past few decades, significant efforts have been made on the
design of S–N curves and development of fatigue life prediction approaches [6–9].

Fatigue reliability evaluation for the in-service OSD bridges requires accurate measurement
of fatigue stress spectra, which can be obtained using the structural health monitoring system
(SHMS) [2,10–12]. Existing SHMS-based fatigue evaluation approaches for the OSDs can be classified
into two categories. The first type is to develop fatigue stress spectra using the finite element (FE)
analysis based on measured operational vehicle flows by weigh-in-motion systems [12–14]. Because of
complex structural behaviors and randomness in the actual traffic loadings, this type method relies
on the accuracy of reconstructed vehicle loading models and developed FE models [12]. The second
type is directly based on the strain measurements collected by strain sensors [10,11]. For example,
Guo et al. [10] investigated effects of ambient temperature and traffic volume on fatigue damage of
welded steel deck details using long-term strain monitoring data. Teixeira de Freitas et al. [11] applied
strain measurements from controlled load tests and one-year of field monitoring to investigate the
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fatigue performance of an OSD strengthened by bonding a second steel plate to the existing deck.
The above strain monitoring-based studies mainly focused on deterministic analyses.

In this study, to consider uncertainties in fatigue analysis, a reliability-based fatigue evaluation
approach for welded details of orthotropic steel decks is proposed using both the fatigue strength
curves from existing specification and the long-term monitoring strain data.

2. Formulation of the Proposed Fatigue Reliability Analysis

2.1. Fatigue Limit State Function

Eurocode 3 provides the fatigue detail categories of welded orthotropic decks with either closed
ribs or open ribs [7]. The S–N curves in Eurocode 3 adopt double slopes to consider the low-level
stress cycles. As shown in Figure 1, when stress range is above the constant amplitude fatigue limit
(CAFL) ∆σD, the slope of the curves is −1/3; when stress range is below the CAFL, the slope of the
curves is −1/5; and when stress range is below the variable amplitude fatigue limit (VAFL) ∆σL,
the curves become horizontal straight lines. ∆σC is the detail category. Two types of weld details for
OSDs, referring to rib-to-deck and the rib-to-rib details, respectively, will be investigated in this study.
The S–N curve parameters for these welds are listed in Table 1.

For the nominal stress range spectrum, the fatigue strength curves are expressed as

∆σ3
RNR = ∆σ3

C·2× 106 = KC

(
N ≤ 5× 106

)
(1a)

∆σ5
RNR = ∆σ5

D·5× 106 = KD

(
5× 106 ≤ N ≤ 108

)
(1b)

where ∆σR is the stress range; NR is the corresponding life in terms of number of cycles. In this study,
the fatigue strength coefficient is defined as KC when ∆σR is larger than ∆σD, and KD when ∆σR is
smaller than ∆σD. According to Equation (1a,b), the fatigue damage D induced by stress range S is

D =
n
N

=
nS3

KC
(∆σD ≤ S) (2a)

D =
n
N

=
nS5

KD
(∆σL < S ≤ ∆σD) (2a)

where n is the number of S in the stress range spectrum, N is the fatigue life corresponding to stress
range S. According to the Palmgren-Miner rule [15], the fatigue damage under variable amplitude
loading can be calculated as

D = ∑
∆σD≤Si

niS3
i

KC
+ ∑

∆σL<Sj≤∆σD

njS5
j

KD
(3)

where ni is the number of stress range Si (larger than ∆σD) and nj is the number of stress range Sj
(between ∆σD and ∆σL). Based on the equivalence principle, the variable amplitude stress range can
be equivalent to a constant amplitude stress range, namely, the equivalent stress range. The expression
of equivalent stress range Seq and corresponding number of cycles Nc is [16]

Seq =

∑∆σD≤Si

niS3
i

KC
+ ∑∆σL<Sj≤∆σD

njS5
j

KD

Nc/KD


1/5

(4)

Nc = ∑
∆σD≤Si

ni + ∑
∆σL<Sj≤∆σD

nj (5)
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Thus, the fatigue damage induced from Seq and Nc can be written into

D =
NcS5

eq

KD
(6)

For the fatigue reliability analysis based on monitoring data, the limit state function can be
established as [13,16]

G(X) = ∆− e·D = ∆− e·
NcS5

eq

KD
= 0 (7)

where ∆, the critical damage, represents the fatigue resistance, e is an error coefficient for field
measurements [17,18]. The accumulated number of stress cycles Nc is often treated as a deterministic
variable and in the service years of Y it can be estimated by

Nc(Y) = 365·Y·ADSC (8)

where ADSC is the average daily stress cycles, which can be determined using monitoring data.
The parameters in Equation (7) can be treated as random variables to account for the uncertainties
in both monitoring data and S–N curves. From existing literature [17–20], the lognormal distribution
can be used to quantify the uncertainties in the error coefficient e [17,18], the critical damage ∆ [19],
and the fatigue strength coefficient KD [20]. The statistics of these variables are summarized in Table 2.
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Figure 1. Fatigue strength curves in Eurocode 3.

Table 1. S–N curves of Eurocode 3.

Description of Welds Detail Category ∆σC (MPa) CAFL ∆σD (MPa) Cut-Off Limit ∆σL (MPa) Fatigue Strength Coefficient KD

Rib-to-deck 50 37 20 3.47 × 1014

Rib-to-rib 71 52 29 1.90 × 1015
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Table 2. Statistic information of parameters.

Random Variable Description Distribution Type Mean Value COV Source

KD
Rib-to-deck Lognormal 3.47 × 1014 0.45 Zhao et al. [20],

Eurocode 3 [7]Rib-to-rib Lognormal 1.90 × 1015 0.45

∆ Critical damage Lognormal 1.0 0.3 Wirsching [19]
e Measurement error coefficient Lognormal 1.0 0.03 Frangopol et al. [17,18]

Nc Accumulated number of stress cycles Deterministic - - SHM data

∆ and e are dimensionless. As defined in Equation (2), KD is related to the fatigue damage D, number of stress cycles
n, and stress range S (unit: MPa). Therefore, the unit of KD is MPa5 × cycle.

2.2. Probabilistic Model for the Equivalent Stress Range

Most studies indicated that the distribution of the Seq from monitoring data by SHMS
are unimodal [21–23]. However, the authors’ most recent studies based on field measurements
demonstrated that the Seq for certain OSD fatigue details is distributed multimodally. Hence, both the
lognormal model and Gaussian mixture model (GMM) are employed to account for the actual
distribution characteristics of the measured equivalent stress ranges.

GMM is one of the finite mixture distributions (FMD). The FMD has been used to quantify the
uncertainty of the measured stress ranges in fatigue analysis of steel bridges [24,25]. For example,
Ni et al. [24] fitted the FMDs to the measured stress range histograms of the Tsing Ma Bridge, in which
several peaks are available which can be attributed to the highway traffic, the railway traffic, and the
wind excitations [25]. In this study, the GMM is used to quantify the uncertainty of the measured daily
equivalent stress ranges rather than the measured stress range histograms.

The probability density distribution of the GMM, which contains M Gaussian components, can be
expressed as [26]

f ( x|θ) =
M

∑
i=1

wi N
(

x
∣∣∣µi, σ2

i

)
=

M

∑
i=1

wi
1√

2πσi
· exp

[
− (x− µi)

2

2σ2
i

]
(9)

M

∑
i=1

wi = 1 (10)

where N
(

x
∣∣µi, σ2

i
)

is the ith Gaussian component, of which the mean value and the variance are µi
and σ2

i , respectively. wi denotes the weight of the ith component. The unknown parameter vector
θ =

(
w1, w2, . . . , wM; µ1, µ1, . . . , µ1; σ2

1 , σ2
2 , . . . , σ2

M
)

is usually estimated by using the expectation
maximization (EM) algorithm [27].

The Gaussian component number M should be priori information before estimating the unknown
parameter vector θ with the EM algorithm. Although more Gaussian components can enable more
accurate fitting results, subjective selections of the number of Gaussian component are inappropriate.
Obviously, inadequate Gaussian components lead to inaccurate fitting results. On the other hand,
excessive Gaussian components result in unnecessary complexity in the probability models. Hence,
the Akaike information criterion (AIC) [28] and the Bayesian information criteria (BIC) [29] are
employed to search the optimal Gaussian component number to achieve both accuracy and conciseness.
The expressions of the AIC and BIC can be given as

AIC = 2m− ln L(x|M, θ) (11)

BIC = m× ln l − ln L(x|M, θ) (12)

where m is the number of the unknown parameters; l is the length of the observed data sample;
L(x|M, θ) is the maximum value of the likelihood function of the fitted model. The Gaussian component
number is the optimal number which produce lowest AIC or BIC.
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2.3. Fatigue Reliability Estimation Methods

Based on the estimated probability distributions of Seq and the statistic information listed in
Table 2, fatigue reliability can be obtained from either of the following two methods:

(1) Method I. An explicit formula of the fatigue reliability index β can be derived when the lognormal
distribution is adopted for the daily Seq. For a variable x that follows a lognormal distribution,
the probability density function is

f (x) =

 0 x ≤ 0
1√

2πσx
e−

1
2 (

ln x−µ
σ )

2

x > 0
(13)

The mean value µlnX and the standard deviation σlnX of the variable lnX can be expressed as
µln X = ln

(
µX√
1+δ2

X

)
σln X =

√
ln
(
1 + δ2

X
) (14)

where δX = σX/µX. Assuming that all the variables in Equation (7) are independent, the fatigue
reliability index β can be defined as

β =
∑ µln Xi ,R −∑ µln Xi ,S√

∑ σ2
ln Xi ,R

+ ∑ σ2
ln Xi ,S

=
µln ∆ + µln KD −

(
µln e + ln Nc + 5·µln Seq

)
√

σ2
ln ∆ + σ2

ln e + σ2
ln KD

+
(

5σln Seq

)2
(15)

where µlnX and σlnX denote the mean value and the standard deviation of lnX (herein, X = ∆, e,
KD or Seq), respectively.

(2) Method II. The fatigue failure probability can be calculated by using the Monte Carlo method
due to the difficulty in developing an explicit formula for the fatigue reliability index with the
fitted GMM of Seq. Instead, the fatigue reliability index can be derived from the fatigue failure
probability pf, which is simulated by using the Monte Carlo method. Therefore, the fatigue
reliability index β is

β = Φ−1
(

1− p f

)
= −Φ−1

(
p f

)
(16)

where Φ−1(·) is the inverse CDF of standard normal distribution.

2.4. Proposed Outline for Fatigue Reliability Analysis

Based on the above formulation, the proposed outline for fatigue reliability assessment based on
long-term strain monitoring is summarized and presented in Figure 2.
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Figure 2. Outline of fatigue reliability assessment based on long-term strain monitoring.

3. Application on Runyang Suspension Bridge Based on Monitoring Data

3.1. Description of the Bridge and Strain Monitoring

Runyang Suspension Bridge (RSB), open to traffic in April 2005, is a single-span steel suspension
bridge, as shown in Figure 3a. It has a main span length of 1490 m. The aerodynamically shaped closed
box steel girder is 36.3 m wide and 3.0 m high. The material of the box girder is Q345 steel, with a yield
strength of 345 MPa. The health monitoring system for the RSB was developed and installed for
real-time monitoring of bridge responses under various environment actions and traffic loads [10].
Three types of strain sensors—i.e., optical fiber strain sensors, vibration chord strain sensors, and strain
gauges—were installed on the mid-span section of the RSB’s steel box girder, as shown in Figure 3b.

The dynamic strain measurements collected by the strain gauges are processed and analyzed
in this study. As shown in Figure 3c, gauges ZLNL4-13 and ZLNL4-15 are used for longitudinal
strain measurements of the rib-to-deck weld details, while ZLNL4-14 and ZLNL4-16 are measuring
transverse strains of the rib-to-rib weld details. The thicknesses of the deck plate and the U-shape
rib are 14 mm and 6 mm, respectively. The rib-to-deck fillet welds were shop welded to obtain 100%
penetration. U ribs were field spliced by butt welding in conjunction with two back-up plates and an
embedded U rib segment. The thicknesses of the back-up plates and the embedded U rib are both
6 mm.
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ZLNL4-16 ZLNL4-15
ZLNL4-13

ZLNL4-14

Optical fiber strain sensor vibrational chord strain sensor strain gauge 

UpstreamDownstream

 

Figure 3. Layout of strain sensors at the mid-span of the RSB: (a) Overview of the RSB Prototype
suspension bridge; (b) Mid-span cross section; (c) Orthotropic deck configuration.

To evaluate the long-term fatigue performance of the rib-to-deck and rib-to-rib weld details
subject to operational traffic loadings, monitoring data collected during a total of 327 days in 2009 are
used. The stress range histograms from the 327-day monitoring data are obtained by using the rain
flow algorithm [30], as presented in Figure 4. It can be observed that small-amplitude stress ranges of
less than 3 MPa dominate the histograms, which is a typical finding for fatigue details of highway steel
bridges [3,19,24]. Table 3 lists the number of stress cycles in the histograms, which indicates that these
details have a similar number of total cycles. The numbers of stress cycles, which are larger than the
cut-off limit or the VAFL, only account for a small portion of the total cycles. Furthermore, the cycle
number of the welded details in the downstream is less than that of the welded details in the upstream.
This phenomenon may be attributed to the differences in the traffic volumes between upstream and
downstream directions.
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Figure 4. Stress range histograms: (a) ZLNL4-13; (b) ZLNL4-14; (c) ZLNL4-15; (d) ZLNL4-16.

Table 3. Cycles of stress ranges.

Welded Details Total Cycle Number Cycle Number (Larger than ∆σL) Cycle Number (Larger than ∆σD)

ZLNL4-13 1.319 × 108 660.5 76.5
ZLNL4-14 1.384 × 108 143,039 2537.5
ZLNL4-15 1.276 × 108 17,620 826.5
ZLNL4-16 1.379 × 108 270,087 5468
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3.2. Probability Density Functions of Seq

As introduced in Section 2.2, the probability density function of Seq for the four selected weld
details can be obtained using the lognormal distribution and the GMM. Firstly, daily stress range
histograms can be derived from recorded stress time histories by the rain-flow counting. Then the
Seq can be obtained using Equation (4). A total of 327 data points of Seq are obtained from 327-day
measurements, which are further used to develop the probability density function of Seq. Figure 5 and
Figure 6 plot the statistical histograms of Seq for the four details. As can be seen, for the rib-to-deck
details, there is only one dominant peak. Therefore, the lognormal distribution can be fitted to these
data points using the maximum likelihood method. The fitted probability density functions of Seq for
the two rib-to-deck details are presented in Equations (17) and (18).
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Figure 5. Probability densities of Seq of the rib-to-deck details: (a) ZLNL4-13; (b) ZLNL4-15.

For the rib-to-rib details, there are multiple peaks in the Seq histograms, and thus the GMM is used.
The optimal number of Gaussian components is firstly determined by using the information criterions
introduced in Section 2.2. Figure 7 shows the values of AIC and BIC with the number of Gaussian
components varying from 1 to 10. It is observed that both the AIC and BIC are minimized when the
number of Gaussian components is 3, meaning that the optimal number of Gaussian components for
both ZLNL4-14 and ZLNL4-16 is 3. The estimated parameters are shown in Table 4.

For ZLNL4− 13, f
(
Seq
)
= 1√

2π×0.142×Seq
e−

1
2 (

ln Seq−3.48
0.142 )

2

Seq > 0 (17)

For ZLNL4− 15, f
(
Seq
)
= 1√

2π×0.113×Seq
e−

1
2 (

ln Seq−3.45
0.113 )

2

Seq > 0 (18)

Table 4. GMM parameters for the equivalent stress range Seq.

Component i
ZLNL4-14 ZLNL4-16

wi µi σi
2 wi µi σi

2

1 0.306 39.0 0.54 0.262 32.8 0.23
2 0.236 33.3 0.37 0.346 35.4 1.48
3 0.458 36.1 3.23 0.392 39.0 1.15



Sensors 2018, 18, 181 10 of 13

Sensors 2018, 18, 181  9 of 12 

 

For ZLNL4-13, 𝑓𝑓�𝑆𝑆𝑒𝑒𝑒𝑒� = 1
√2𝜋𝜋×0.142×𝑆𝑆𝑒𝑒𝑒𝑒

𝑒𝑒−
1
2�
ln𝑆𝑆𝑒𝑒𝑒𝑒−3.48

0.142 �
2

𝑆𝑆𝑒𝑒𝑒𝑒 > 0 (17) 

For ZLNL4-15, 𝑓𝑓�𝑆𝑆𝑒𝑒𝑒𝑒� = 1
√2𝜋𝜋×0.113×𝑆𝑆𝑒𝑒𝑒𝑒

𝑒𝑒−
1
2�
ln𝑆𝑆𝑒𝑒𝑒𝑒−3.45

0.113 �
2

𝑆𝑆𝑒𝑒𝑒𝑒 > 0 (18) 

Table 4. GMM parameters for the equivalent stress range Seq. 

Component i 
ZLNL4-14 ZLNL4-16 

wi μi σi2 wi μi σi2 
1 0.306 39.0 0.54 0.262 32.8 0.23 
2 0.236 33.3 0.37 0.346 35.4 1.48 
3 0.458 36.1 3.23 0.392 39.0 1.15 

  
(a) (b) 

Figure 6. Criterions for GMM component determination: (a) ZLNL4-14; (b) ZLNL4-16. 

  
(a) (b) 

Figure 7. Probability densities of Seq of the rib-to-rib details: (a) ZLNL4-14; (b) ZLNL4-16. 

3.3. Results of the Fatigue Reliability Assessment 

With the statistic information listed in Table 2 and the probability density functions of Seq 
presented in Section 3.2, the fatigue reliabilities of the rib-to-deck details (with unimodal Seq) and the 
rib-to-rib details (with multimodal Seq) can be respectively calculated using Method I and Method II. 
It is noted that the times of the Monte Carlo simulation for rib-to-rib details is set to be 2 × 108. 

The time-dependent fatigue reliability indices are shown in Figures 8 and 9. It is observed that 
the reliability indices are pretty high at the beginning of the service life of these welded details. 
However, as time goes on, the reliability indices decrease significantly. Figure 8 shows that during 
the first 10 years of the service life, the fatigue reliability indices of the rib-to-rib details cannot be 
obtained due to the extremely low failure possibility. According to the ISO 2394 [31], the target 

1280

1320

1360

1400

1440

1480

1 2 3 4 5 6 7 8 9 10

AI
C

 a
nd

 B
IC

Number of components

AIC

BIC

1320

1360

1400

1440

1480

1520

1 2 3 4 5 6 7 8 9 10

AI
C

 a
nd

 B
IC

Number of components

AIC

BIC

  
30 32 34 36 38 40

0

0.05

0.1

0.15

0.2

Stress range (MPa)

Pr
ob

ab
ilit

y 
de

ns
ity

 

 

  

32 34 36 38 40
0

0.05

0.1

0.15

0.2

Stress range (MPa)

Pr
ob

ab
ilit

y 
de

ns
ity

 

 

Figure 6. Probability densities of Seq of the rib-to-rib details: (a) ZLNL4-14; (b) ZLNL4-16.

Sensors 2018, 18, 181  9 of 12 

 

For ZLNL4-13, 𝑓𝑓�𝑆𝑆𝑒𝑒𝑒𝑒� = 1
√2𝜋𝜋×0.142×𝑆𝑆𝑒𝑒𝑒𝑒

𝑒𝑒−
1
2�
ln𝑆𝑆𝑒𝑒𝑒𝑒−3.48

0.142 �
2

𝑆𝑆𝑒𝑒𝑒𝑒 > 0 (17) 

For ZLNL4-15, 𝑓𝑓�𝑆𝑆𝑒𝑒𝑒𝑒� = 1
√2𝜋𝜋×0.113×𝑆𝑆𝑒𝑒𝑒𝑒

𝑒𝑒−
1
2�
ln𝑆𝑆𝑒𝑒𝑒𝑒−3.45

0.113 �
2

𝑆𝑆𝑒𝑒𝑒𝑒 > 0 (18) 

Table 4. GMM parameters for the equivalent stress range Seq. 

Component i 
ZLNL4-14 ZLNL4-16 

wi μi σi2 wi μi σi2 
1 0.306 39.0 0.54 0.262 32.8 0.23 
2 0.236 33.3 0.37 0.346 35.4 1.48 
3 0.458 36.1 3.23 0.392 39.0 1.15 

  
(a) (b) 

Figure 6. Criterions for GMM component determination: (a) ZLNL4-14; (b) ZLNL4-16. 

  
(a) (b) 

Figure 7. Probability densities of Seq of the rib-to-rib details: (a) ZLNL4-14; (b) ZLNL4-16. 

3.3. Results of the Fatigue Reliability Assessment 

With the statistic information listed in Table 2 and the probability density functions of Seq 
presented in Section 3.2, the fatigue reliabilities of the rib-to-deck details (with unimodal Seq) and the 
rib-to-rib details (with multimodal Seq) can be respectively calculated using Method I and Method II. 
It is noted that the times of the Monte Carlo simulation for rib-to-rib details is set to be 2 × 108. 

The time-dependent fatigue reliability indices are shown in Figures 8 and 9. It is observed that 
the reliability indices are pretty high at the beginning of the service life of these welded details. 
However, as time goes on, the reliability indices decrease significantly. Figure 8 shows that during 
the first 10 years of the service life, the fatigue reliability indices of the rib-to-rib details cannot be 
obtained due to the extremely low failure possibility. According to the ISO 2394 [31], the target 

1280

1320

1360

1400

1440

1480

1 2 3 4 5 6 7 8 9 10

AI
C

 a
nd

 B
IC

Number of components

AIC

BIC

1320

1360

1400

1440

1480

1520

1 2 3 4 5 6 7 8 9 10

AI
C

 a
nd

 B
IC

Number of components

AIC

BIC

  
30 32 34 36 38 40

0

0.05

0.1

0.15

0.2

Stress range (MPa)

Pr
ob

ab
ilit

y 
de

ns
ity

 

 

  

32 34 36 38 40
0

0.05

0.1

0.15

0.2

Stress range (MPa)

Pr
ob

ab
ilit

y 
de

ns
ity

 

 

Figure 7. Criterions for GMM component determination: (a) ZLNL4-14; (b) ZLNL4-16.

3.3. Results of the Fatigue Reliability Assessment

With the statistic information listed in Table 2 and the probability density functions of Seq presented
in Section 3.2, the fatigue reliabilities of the rib-to-deck details (with unimodal Seq) and the rib-to-rib
details (with multimodal Seq) can be respectively calculated using Method I and Method II. It is noted
that the times of the Monte Carlo simulation for rib-to-rib details is set to be 2 × 108.

The time-dependent fatigue reliability indices are shown in Figures 8 and 9. It is observed that the
reliability indices are pretty high at the beginning of the service life of these welded details. However,
as time goes on, the reliability indices decrease significantly. Figure 8 shows that during the first
10 years of the service life, the fatigue reliability indices of the rib-to-rib details cannot be obtained due
to the extremely low failure possibility. According to the ISO 2394 [31], the target reliability index for
a structural component with certain consequences of failure and moderate costs of safety measures is
2.3. As show in the figures, the service years for details of ZLNL4-14, ZLNL4-15 and ZLNL4-16 are
33, 65, and 18, respectively, when the fatigue reliability indices reach βtarget. Only the welded detail of
ZLNL4-13 has fatigue reliability higher than βtarget during the entire 100-year service life. Results also
indicate that for both the two types of weld details, the fatigue reliability index of the downstream
detail is higher than that of the upstream detail. Besides, the reliability index of the rib-to-deck detail is
higher than that of the rib-to-rib detail. The results suggest that during the service life the RSB, there are
high levels of fatigue failure for welded details of the orthotropic deck. Hence, routine and in-depth
field inspections are required to locate the potential fatigue cracks and make timely mitigation plans.
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Figure 8. Time-dependent fatigue reliability indices of the rib-to-deck welds.
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Figure 9. Time-dependent fatigue reliability indices of the rib-to-rib welds.

4. Conclusions

This study proposed a systematic time-dependent fatigue reliability assessment approach for
welded details of OSDs using long-term strain monitoring data. Depending on whether the equivalent
stress range is distributed unimodally or multimodally, the fatigue reliability can be calculated based
on either an explicit formula or the Monte Carlo method. According to the proposed procedure,
fatigue reliabilities of two types of welded details (i.e., rib-to-deck and rib-to-rib details) of an in-service
long-span suspension bridge are investigated. The following conclusions can be made:

(1) Two probabilistic models, namely, the lognormal distribution and the GMM, are adopted to
quantify uncertainties of the daily Seq. The lognormal distribution is more suitable for the
unimodal Seq for rib-to-deck details. By contrast, the daily Seq for the rib-to-rib details can
be represented by the GMM, which is composed of three Gaussian components.

(2) The results indicate that the reliability indices decrease significantly as the service life increases.
During the 100-year service life, except for a rib-to-deck detail, other three welded details cannot
meet the target fatigue reliability during the bridge’s 100-year service life.

(3) This study also reveals that the fatigue reliability indices of the downstream details are higher
than those of the upstream details, which is probably due to the difference in the traffic volumes
between upstream and downstream directions. Besides, the rib-to-deck details for the RSB have
higher fatigue reliabilities than those of the rib-to-rib details.

The proposed approach can help bridge owners and practitioners make informed decisions
regarding maintenance and repair of potential fatigue cracks.
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