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Abstract: Energy harvesting sensor systems typically incorporate energy buffers (e.g., rechargeable
batteries and supercapacitors) to accommodate fluctuations in supply. However, the presence of
these elements limits the miniaturization of devices. In recent years, researchers have proposed
a new paradigm, transient computing, where systems operate directly from the energy harvesting
source and allow computation to span across power cycles, without adding energy buffers. Various
transient computing approaches have addressed the challenge of power intermittency by retaining the
processor’s state using non-volatile memory. However, no generic approach has yet been proposed
to retain the state of peripherals external to the processing element. This paper proposes RESTOP,
flexible middleware which retains the state of multiple external peripherals that are connected to
a computing element (i.e., a microcontroller) through protocols such as SPI or I2C. RESTOP acts as
an interface between the main application and the peripheral, which keeps a record, at run-time, of the
transmitted data in order to restore peripheral configuration after a power interruption. RESTOP
is practically implemented and validated using three digitally interfaced peripherals, successfully
restoring their configuration after power interruptions, imposing a maximum time overhead of 15%
when configuring a peripheral. However, this represents an overhead of only 0.82% during complete
execution of our typical sensing application, which is substantially lower than existing approaches.
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1. Introduction

Energy harvesting (EH) potentially enables the long-term deployment of low-power sensor
systems without the need to replace batteries. However, EH sources are usually intermittent
and unpredictable because they depend on external conditions (i.e., availability of energy to be
harvested) [1]. To overcome this limitation, systems typically integrate energy storage devices
(e.g., supercapacitors or rechargeable batteries) to smooth out supply variations. This approach
is known as energy-neutral operation, where energy storage is used to balance the stored energy
with the long-term energy consumed and, thus, sustain operation during power shortages [2]. This is
shown in Figure 1a, where energy storage is used to sustain computation when there is insufficient
energy being harvested. However, energy storage increases the system’s cost, size and mass. Transient
computing (Figure 1b) aims to power systems directly from the EH source, operating when energy is
available and retaining system state during supply interruptions.

Various software solutions for transient computing have coped with power intermittency
by saving the system state (contents of main memory, core and general purpose registers) into
a Non-Volatile Memory (NVM) [3–7]. Thus, after a supply interruption, the system state is restored
and the program continues from the point where it was interrupted, instead of restarting from the
beginning. Recent hardware approaches overcome the need to save and restore the system’s state by
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using non-volatile processors [8]. These approaches are only effective in retaining the state of on-chip
peripherals that are controlled by the special function registers of the microcontroller unit (MCU),
e.g., internal ADCs. However, the vast majority of sensing systems also include external sensors,
actuators, radio transceivers, etc. A recent approach [9] attempted to save and restore the state of
external peripherals; however, it only operates with peripherals that interact with the MCU through
SPI. Moreover, this approach requires the user to make several adjustments depending on the type
and number of peripherals connected (it is not generic) and causes a high time overhead.
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Figure 1. Schematic of: (a) an energy-neutral; and (b) a transient, EH sensor system.

In this paper, we present RESTOP (REtaining the STate Of Peripherals), a novel middleware to
retain the state of digitally interfaced peripherals in transiently-powered systems. RESTOP provides
generic functions to read data from the external peripherals or write to them, keeps track of and
saves the transmitted configuration data, and hence retains the peripheral state. Thus, after a power
failure, the peripheral state can be restored, without requiring for the user to implement the save and
restore functions for each attached peripheral and indicate the order in which they have to be restored.
The key contributions of this work are:

• A novel and generic approach for transient computing systems, which retains the state of multiple
digitally interfaced peripherals between power outages (Section 3).

• Implementation of the approach into a middleware (available open-source to download from
http://www.transient.ecs.soton.ac.uk) that works with both SPI and I2C protocols (Section 4).

• A thorough practical evaluation of RESTOP in order to validate the operation of the middleware
and the time overhead it causes in an intermittently-powered sensor system (Section 5).

RESTOP can be integrated into any of the existing approaches to transient computing [3,4,6,7,10].
Experiments demonstrate that RESTOP is able to retain and restore peripheral state with a peripheral
configuration time overhead of up to 15%. However, this represents an overhead of only 0.82% during
complete execution of our typical sensing application.

2. Problem Statement and Motivation

A transiently-powered sensor system could not operate properly unless the peripheral state was
restored after a power outage. Figure 2 shows an example of an incorrect operation that may occur in
a conventional transient system (e.g., HarvOS [10]). The application first configures the serial protocol
(Configure_protocol) to communicate with the external peripheral (in this example, a digital sensor).
Then, the MCU sends a reset instruction to the peripheral (Sensor_reset) and configures the sensor
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to start sampling data (Configure_sensor). However, before the peripheral starts sampling, a power
failure occurs. Then, when the energy is again available the system state is restored. Nevertheless,
the peripheral’s state is not restored, i.e., the sensor is not properly configured (the configuration was
not saved into NVM). Therefore, the sensor would revert to its default configuration after the power
outage, and the program would be unaware of this.

Program Restored

Configure_protocol

Sensor_reset

Configure_sensor

sample1=Read_sensor

sample2=Read_sensor

Application

Program Interrupted

Configure_protocol
Sensor_reset
Configure_sensor

sample1=Read_sensor
sample2=Read_sensor

Transient Computing Sytem

Sensor not Configured!

Figure 2. Operation of existing transient computing approaches when working with external
peripherals after a power failure.

There are various software approaches to transient computing that save a copy of system state into
NVM (snapshot), before a power failure [3,4,6,7,10] and restore it when the energy is again available
instead of starting from the beginning. However, these solutions are focused on retaining the state of
the main memory, core registers (i.e., program counter, stack pointer, link register and general purpose
registers) and peripheral registers (which are used to control internal peripherals such as ADC, DAC,
GPIO, etc). These approaches are not concerned with retaining the configuration of external peripherals
because they are not included in the design. This has led researchers to engage in developing solutions
that allow the state of external peripherals to be retained between power outages.

Berthou et al. [9] proposed Sytare, a software approach which retains not only the system state
but also the configuration of external peripherals attached to the MCU through SPI. This approach
includes so-called kernel code, which operates between the main application and the library to access
the external peripheral features (peripheral driver), and it is in charge of saving and restoring the
peripheral state. However, the user not only has to write the function to configure the peripherals
but also implement a structure called device context for each attached peripheral. This structure is
used by Sytare to encapsulate the functions and save the data exchanged between the MCU and the
external peripheral. Moreover, the user has to write a function to restore the peripheral configuration
(one per connected peripheral). If more than one peripheral is attached, the developer has to indicate
in which order they have to be restored, because this solution would not work in a system where the
peripherals are accessed in a different order from one cycle to another. However, it excludes essential
details: it does not describe how the developer has to change each peripheral driver in order to update
the structure (device context) needed to avoid peripheral volatility and how to implement the restore
function for each attached peripheral. Besides that, Sytare incurs a time overhead of over 30 µs per
peripheral instruction because it needs to save the peripheral state each time an instruction is issued.
This imposes an overhead of up to 137% when configuring a radio transceiver.

Recently, designers have oriented their research towards implementing non-volatile solutions for
external peripherals. Li et al. [11] proposed a ferroelectric non-volatile flip-flop based input-output (IO)
architecture that aims to reduce the initialization overhead caused by power outages. They replaced
typical IO D-type flip flops with non-volatile flip-flops by adding two ferroelectric capacitors. Thus,
when a power outage occurs, the peripheral configuration is retained in local ferroelectric capacitors,
allowing a fast backup operation. However, this approach is focused exclusively on sensors, requires
special-purpose hardware and does not offer a solution for off-the-shelf peripherals. Hardware
approaches such as Non-Volatile Processors (NVPs) [8] attempt to save in-place snapshots by adopting
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non-volatile SRAM and registers. However, these hardware approaches do not offer solutions as
they only retain the system state (main memory and processor registers), but not the configuration of
digitally interfaced peripherals. Other solutions such as WISP [12], WISPCam [13] or federated energy
storage [14] do not snapshot the configuration of the external peripherals because they operate only
when the energy stored in small capacitors is enough to complete the required task. The peripherals
are configured from scratch and perform the same function each time they are enabled.

In summary, there is an unmet need for a generic solution capable of retaining the state of multiple
peripherals connected to the MCU through external interfaces such as I2C and SPI. This would enable
the state of complete sensor systems, e.g., incorporating an MCU, a digital luminosity sensor [15] and
a transceiver [16].

3. RESTOP: A Middleware for Peripheral State Retention

External digital peripherals are typically connected to the MCU via serial protocols, unlike the
on-chip peripherals that are controlled by special function registers. Figure 3 shows a block diagram
of an MCU interacting with three peripherals: an analog sensor connected via an on-chip ADC,
a transceiver connected through SPI and a digital sensor attached via I2C. In Section 2, the limitations
of existing transient computing systems when working with digitally interfaced peripherals were
described. To address them, we propose RESTOP, a middleware which is generic for different
peripherals and serial communication protocols (e.g., SPI or I2C), capable of retaining (saving and
restoring) peripheral configurations between power failures. The following terms are introduced here
to aid understanding of the operating principles of RESTOP:

• Peripheral operation: The action to be performed on the peripheral, i.e., write or read.
• Peripheral instruction: The information required by the system to issue the operation on the

peripheral (e.g., peripheral address, register to be read, value to be written on the register, etc.).
• Parameters: Elements that constitute each function that executes the peripheral instructions.

CPUDigital 
Sensor

Radio 
Transceiver

I2C 
Controller

SPI 
Controller

General Purpose 
I/O Interface

ADC

MCU

Analog 
Sensor

Figure 3. Block diagram of an MCU interacting with different peripherals.

Figure 4 shows the parts that make up RESTOP and how this middleware interacts in a sensor
system when saving and executing a peripheral instruction (the Restore module is later described in
Figure 6). Each peripheral instruction is issued through the generic functions provided by RESTOP and
saved in a history table. In order to execute the instruction on the peripheral, RESTOP complements
the information entered through the generic functions with that defined in a configuration file
(these modules are detailed in Section 4). The history table can either be: (1) placed in main memory;
or (2) directly located in NVM. In the first case, the developer can utilize any of the existing approaches
for transient computing [3,6,7,10] that can save the system state (including main memory) to NVM
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at the right time before a power failure. Thus, after a power outage, the system state (including the
instruction table) is restored and then RESTOP restores the peripheral configuration by re-issuing
the instructions from the table. In the second case, RESTOP has to be included with interrupt-based
approaches such as Hibernus [6] and QuickRecall [4] in order to ensure that the system and peripheral
states are restored in the same point where they were interrupted, i.e., there is no more code executed
after the snapshot. Thus, it is possible to maintain coherence, avoiding the table being modified after
the last snapshot was saved. This is important because in a transient system with external peripherals,
repeated peripheral instructions (or system code) may result in functionality issues [5]. In Section 3.1,
the different factors that RESTOP considers before saving and executing a peripheral instruction are
described. Later, in Section 3.2, the process of restoring the peripheral configuration is detailed.

Main

MCU 
Initialization

Serial Interface 
Configuration

Task

RESTOP

Instruction 
History Table

Execute 
Instruction

External 
PeripheralSensor Transceiver

Save Instruction

Configuration 
File

Generic 
Function

Peripheral Instruction

Figure 4. Diagram of RESTOP interacting with the application and peripherals.

3.1. Saving and Executing Peripheral Instructions

Figure 5 details the process of saving and executing a peripheral instruction issued over a serial
protocol. The decision about whether RESTOP should save an instruction in the table is made by the
programmer at design time for each peripheral instruction, considering four choices:

1. Not-save: The user might consider that a certain instruction should not be saved because it is not
a peripheral configuration instruction (e.g., reading a status register).

2. Save: The issued instruction must be saved in the history table without checking whether a similar
instruction (i.e., with same peripheral address and register value) was previously saved.

3. Save-but-replace: The issued instruction would replace any other similar instruction (i.e., same
peripheral address and register value) that was previously saved in the history table.

4. Preserve: An instruction has to be kept in the history table regardless of whether a similar
instruction is later issued.

As shown in Figure 5, RESTOP first checks whether the issued instruction is applying a Reset on
the peripheral. Reset is a write peripheral instruction that, when issued, causes RESTOP to delete all
instructions saved in the table for that peripheral. This condition is important for efficient memory
usage because it is unnecessary to keep peripheral instructions prior to a Reset. Next, RESTOP checks
whether the issued instruction has to be saved. If not (Not-save), RESTOP executes the instruction on the
peripheral and the application continues to the next task. If the peripheral instruction must be saved,
RESTOP considers two choices: Save and Save-but-replace. If the first option is asserted, the issued
instruction is saved in the table and then executed on the peripheral. In case that Save-but-replace is
selected, the middleware looks in the table for a similar instruction previously saved. If a similar
instruction is found in the table, RESTOP checks whether the instruction is marked to be preserved
(Preserve). If so, the instruction is saved in a new element in the table and then executed. Preserving
an instruction, instead of replacing it, is particularly useful for certain peripherals that need an unlock
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instruction, which enables the peripheral to be accessed or configured. Thus, each unlock instruction
is saved in the table no matter how many times it is repeated. If Preserve is not asserted, the previous
instruction is deleted and the issued one is saved instead, but keeping the chronological order in which
the instructions are sent. Keeping track of the instruction sequence is important because peripherals
often need the registers to be accessed in a certain order to operate properly (e.g., in a transceiver,
it has to set the channel before transmitting the data, not the other way around).

Replace 
Instruction

1) Figure 6 (apart from the fact that the caption doesn’t actually tell me what it is), I assume is just looking at the state ‘capture’ part of the process. I follow the difference a bit more
now and agree that it’s different to Figure 4. However, it could be much more clearly formatted, people normally expect a flowchart to generally progress vertically, and yours goes all
over the place – it’s a nightmare to trace through! It could also be clearer where there is a difference between Replace Instruction IN THE ‘LOG’/’TABLE’ and Save the new Instruction 
(does it need to be ‘new’?) IN THE ‘LOG’/’TABLE’ vs Execute Instruction ON THE PROCESSOR. There’s lots of verbs, and the meaning gets confused.
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Figure 5. Path followed to save and execute an instruction depending on the selected criteria.

It is important to mention that each instruction must be saved before executing it in order to
cope with power failures occurring before peripheral access is completed, avoiding consistency issues.
Issuing an instruction on a serial interface involves, among other things, enabling the peripheral,
sending the register to be read or written, waiting for the transmission to be completed, and disabling
the peripheral. This sequence has to be completed without interruptions, i.e., if a supply failure
occurs while an instruction is issued, the sequence has to be restarted from scratch when power
recovers (e.g., it is not possible to send a partial packet). Therefore, if the instruction was not
saved into the history table before the power failure, it would neither be properly executed because
the sequence was interrupted, nor restored because it was not saved. A possible concern is that,
when the peripheral is a radio transceiver, the user may send the instruction with the packet to be
transmitted, but there would be no certainty that it was sent (i.e., a power outage may occur before
packet transmission has completed). When restoring the transceiver state, the packet would be resent,
leading to a duplicate packet being received. However, this can occur normally in a noisy wireless
network, and communication protocols are typically already present to ignore duplicate packets and
request those missed.

3.2. Restoring Peripheral State

The restore routine is shown in Figure 6. This is executed after the system state has been restored
by the transient computing approach used to protect the system from volatility. Here, RESTOP fetches
each instruction from the history table and issues it over the digital interface in the correct order.
This process is repeated until all saved instructions are executed, and, therefore, the state of the
peripheral is restored. Once the routine is completed, the main application continues its execution
from the point where it was interrupted by the power outage.
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Figure 6. RESTOP has to re-issue each saved instruction to restore the peripheral state, after a power outage.

4. Software Algorithm Design

The requirement for a generic interface implies that it can work across different protocols and
handle different types of instructions, and that it fits in not only with programming structures but also
with the use cases of transient technologies. In this section, we describe the implementation of the
three main elements that compose RESTOP. First, we detail the RESTOP functions that will execute the
peripheral instructions (Section 4.1). Then, we list the parameters that have to be saved to properly
describe each peripheral instruction without losing generality, and how the users will introduce the
required information for each instruction (Section 4.2). Lastly, we explain how the instruction history
table will be efficiently built in terms of time and memory usage (Section 4.3).

4.1. Function Implementation

Defining the functions to execute each peripheral configuration instruction, and the information
to be saved from them, required the analysis of various peripherals with digital interfaces, identifying
patterns that help to implement the RESTOP functions that are generic for different peripherals
and serial protocols. From this analysis, we found that peripheral instructions perform two main
operations: read and write. However, the number of parameters required to perform these operations
varies from one peripheral to another. For example, some peripherals [17] need a 1-byte parameter
called command to indicate the type of operation the issued instruction will perform (i.e., read or write)
on a register address (i.e., the sequence would be <command byte><register address><data byte>).
Others allow certain single byte instructions (no data is transferred), usually so-called command strobes
that cause internal sequences to start in the peripheral, e.g., some peripherals have a single header
byte that, when addressed, starts a self-calibration routine to define the sampling frequency [17].
Most peripherals support multiple byte transfers also known as data burst transmissions which send
first the register address and then a sequence of different values to write to this address (this can also
be applied for read operations).

Considering this analysis, we have defined the functions that will be used by the middleware to
save, execute and restore each instruction:

1. RESTOP_read(): Returns the read value from the desired register.
2. RESTOP_write(): Writes a value into a peripheral register.
3. RESTOP_strobe(): Performs write operations that, unlike RESTOP_write(), executes single

byte instructions.
4. RESTOP_restore(): Restores the peripheral state by executing all the instructions saved in the

history table after a power failure. It has to be incorporated into the restore routine of the
main application.
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These functions have to be used by the developer to configure the peripherals and obtain data
from them. The parameters of each function are described in Section 4.2.

4.2. Parameters to be Saved and Configuration File

Following the definition of the generic functions, the parameters that will constitute each
peripheral instruction need to be defined. For this purpose, we separate the dynamic parameters
that vary from one peripheral instruction to another, and those that are static for each peripheral
attached to the system. Table 1 shows the dynamic parameters that will be saved in the history table.
The size (number of bits) of each parameter varies depending on the information that they contain.
The first parameter (Protocol) is a 1-bit flag to indicate the serial protocol type of each peripheral (0→SPI;
1→I2C). Parameter Burst is also a 1-bit flag that has to be set to 1 when the function will execute a burst
read/write instruction. Read is a flag used by RESTOP to distinguish when the instruction is for a read
(R=1) or write (R=0) operation. Prv is a 3-bit flag that can have five different values as shown in Table 2.
These values are defined following the criteria described in Section 3.1. Thus, the first three options
indicate whether the instruction will not be saved in the table (Not-save), will be saved in a new element
(Save) or will replace a similar one if it was previously saved in the table (Save-but-replace). The last two
criteria, shown in Table 2, indicate the instruction will be not only saved but also preserved in the table
regardless of whether a similar instruction is later issued (Preserve).

Table 1. Dynamic parameters to be considered for describing a peripheral instruction.

Parameter Size (Bits) Definition

Protocol 1 Serial Protocol of Peripheral
Burst 1 Burst instruction
Read 1 Read or write instruction
Prv 3 Preserve flag
ID 3 Peripheral identification

Register 8 Address to be accessed
Value 8 Value to be written in the register
Next 8 Pointer to the next instruction

Previous 8 Pointer to the previous instruction

The parameter ID is used to indicate the peripheral to which the saved instruction corresponds.
A system may have more than one peripheral attached to the MCU, hence, we would have to identify
which instruction corresponds to each peripheral. The parameters Register and Value are each one
byte, corresponding to the register width of typical digital interface peripherals. Next and Prev are
used to keep track of the order in which the instructions are issued. Thus, when a new instruction
replaces another previously saved or is added in a new element in the table, RESTOP can keep the
chronological sequence in order to properly restore the peripheral state after a power outage. The size
of these parameters is one byte each too, allowing the system to map up to 256 peripheral instructions.
This is considered sufficient for most peripherals (e.g., a typical transceiver [16] is configured with less
than 50 instructions), but their size could be expanded for particular scenarios.

Table 2. Values that Prv flag can have.

Bit 2 Bit 1 Bit 0 Criteria

0 0 0 Not-save
0 0 1 Save
0 1 0 Save-but-replace
1 0 1 Save and Preserve
1 1 0 Save-but-replace and Preserve

In the case of the static parameters, we define four:
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• reg_reset: To declare the register address that represents a reset instruction in each peripheral.
• cmd_write: This parameter is used to introduce the write command value for peripherals that need

it as explained in Section 4.1.
• cmd_read: This is similar to the previous one, but this is the command for reading operations.

If no command is needed in a peripheral, it has to be filled with zeros.
• i2c_add: This parameter is used to define the address of the peripherals that are attached to the

MCU through I2C protocol.

The static parameters are declared in a configuration file unlike the dynamic ones, which are saved
in the history table and entered by the user through the generic functions (except R, Next and Previous,
which are defined by RESTOP). To reset a peripheral, the user not only has to use the RESTOP_write()
function but also declare the register address in reg_reset. As mentioned in Section 3.1, Reset is a write
instruction that when issued causes RESTOP to delete the saved instructions that correspond to the
reset peripheral. cmd_write and cmd_read have to be filled with zeros for those peripherals that do not
need a command parameter (described in Section 3.1). If an I2C peripheral is attached to the system, its
address has to be written in i2c_add, if not, this parameter has to be filled with zeros as well. Figure 7
shows the configuration file with example values and the description of the dynamic parameters that
each generic function requires. The configuration file also includes the microcontroller ports where the
peripherals are attached. For example, if a user connects a peripheral to port P1.3, it will be marked
with the peripheral identification ID1.

Configuration File
RESTOP

 void      RESTOP_write      (Prv,ID,Register,Value,Burst,Protocol) 
 uint8_t  RESTOP_read       (Prv,ID,Register,Burst,Protocol)
 void      RESTOP_strobe    (Prv,ID,Register,Protocol)
 void      RESTOP_restore   (void)

RESTOP Functions

Peripheral 
(ID) Port

1 P1.3
2 P4.0
3 P2.6
4 P1.6

Parameter
Register or 

address for ID1 
Register or 

address for ID2 

reg_reset 0x1F 0x30
cmd_write 0x0A 0x00
cmd_read 0x0B 0x00
i2c_add 0xEE 0x55

Figure 7. Configuration file with example values and the functions description.

4.3. Instruction History Table

As already mentioned in Section 4.2, RESTOP requires an instruction history table to which it can
save the data exchanged between the MCU and the peripherals. It is based on a linked list in which
each element corresponds to a peripheral instruction. A static array of structures can simplify the
implementation of this table, as allocating memory dynamically may substantially increase time and
memory overheads [18,19]. The maximum size of the table (i.e., the number of available locations
where the instructions are saved) is defined by the user in the configuration file. Figure 8 shows
an example of the history table with two saved instructions. From the values showed in the figure,
the static parameters and the generic functions for the two saved instructions would be as follows:

• reg_reset [] = {0x1F}
• cmd_write [] = {0x0A}
• cmd_read [] = {0x0B}
• i2c_add [] = {0x00}
• RESTOP_write(2,1,0x2C,0x02,0,0)
• RESTOP_read(2,1,0x08,0,0)
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In this example, the value of the Protocol flag (P = 0) indicates both instructions correspond to the
same SPI peripheral, which is connected to the P1.3 port (ID = 1). Therefore, the parameter i2c_add is
filled with zeros. The Burst flag (B) is zero which means these are not burst instructions. According
with the Read flag (R), the first instruction is to write on the peripheral (R = 0) and the second is to read
from it (R = 1). The Prv flag value is 2 in both saved instructions, which means that they would replace
any similar instruction (same peripheral, command and register) previously saved, but they can also
be replaced if a similar instruction is later issued (Preserve bit = 0). The attached peripheral needs
a command to indicate when the instruction is to write (0x0A) and when to read (0x0B). If an instruction
was issued with a register value of 0x1F, RESTOP would apply a reset in the peripheral and delete the
two instructions from the table.

B R PNext PreviousRegister ValueCSPrv

P B R
0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Instruction 1
Register Value Next PreviousCSPrv

P B R
Free

Next PreviousRegister ValueCSPrv

P B R
0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Prv ID Next PreviousCommand Register Value
Instruction 0

P B R
0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Prv ID Next PreviousCommand Register Value
Instruction 0

P B R
0 0 1 0 1 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

IDPrv Command Register Value Next Previous
Instruction 1

P B R Next PreviousCommand Register ValueIDPrv
Free

Figure 8. Instruction history table of two saved instructions.

5. Experimental Validation

RESTOP has been practically implemented and experimentally validated. To allow computation
to span across power cycles, we combined RESTOP with Hibernus [6]. This solution was chosen
because it is platform and application agnostic, and has excellent performance in terms of energy and
time overhead [20]. However, we believe that RESTOP can be integrated with any other software
approach for transient computing. Figure 9 shows an example application before (Figure 9a) and after
(Figure 9b) incorporating the proposed middleware. The example code includes Hibernus to retain
the system state between power outages. The inclusion of RESTOP in an application is simple. The
developer only has to import the configuration file (Config.h) and the library that contains RESTOP
functionality (RESTOP_ f unc.h), and use the RESTOP functions (described in Section 4.1) to configure
the peripherals and read data from them. In order to restore the peripheral state after a power outage,
the RESTOP restore function has to be included in the restore routine of the transient approach as
shown in Figure 9b.

The voltage threshold at which Hibernus restores the system state (VR) has to be adjusted because
now the system incorporates external peripherals whose state is restored as well. Therefore, we
describe how VR is modified for Hibernus, which is used in our validation (a similar modification
would need to be made for other approaches). In this sense, it is necessary to first calculate the amount
of energy required to restore the state of attached peripherals (Er_ps), which is given by:

Er_ps =
n

∑
i=1

(
Ppi

mi

∑
j=1

Tpi instj

)
(1)

where n is the number of attached peripherals, Ppi is the power consumed by the system while
undertaking serial communications with each peripheral, mi is the number of saved instructions
for each attached peripheral and Tpi instj is the time taken by the system to issue each instruction to
the peripheral. These parameters (power and time) may be obtained from datasheets, or measured
experimentally. The time varies from one instruction to another depending on the data rate of each
peripheral and the number of bytes that are transmitted for each instruction. In Section 4.1, we detailed
how the number of parameters that are transmitted for each instruction (i.e., one parameter is equal
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to one byte) varies by peripheral. It is important to mention that Equation (1) only accounts for the
power consumption of the MCU. The effect of issuing the instructions may cause additional energy to
be consumed by the external peripherals, e.g., a restoration of state causing a wireless transceiver to
make an energy-intensive radio transmission. This is not currently modeled, but is a potential area of
future investigation.

#include "hibernus.h"

int main(void)
{

 // Hibernus 
 if(flag) Restore();  //Restore System State  
 else     Initialise();  //Initialise Hibernus  

 // Main Application goes here
 Protocol_init(); //Initialise Serial Protocol

 // Functions to write in the peripheral or read from it 
 Write(Register,Value); //Write a value   
read = Read(Register);  //Read a value

}

void Restore(void)
{

 //Hibernus Code to Restore System State  
}

#include hibernus.h

#include "Config.h"  //Configuration file
#include "RESTOP_func.h"   //RESTOP functionality

int main(void)
{

 // Hibernus 
 if(flag) Restore();  //Restore System State  
 else     Initialise();  //Initialise Hibernus  

 // Main Application goes here
 Protocol_init(); //Initialise Serial Protocol

 // Functions to write in the peripheral or read from it 
 RESTOP_write(Prv,ID,Register,Value,Burst,Protocol); //Write a value  
read = RESTOP_read(Prv,ID,Register,Burst,Protocol);  //Read a value

}

void Restore(void)
{

 //Hibernus Code to Restore System State  

 RESTOP_restore();   //Restore Peripheral Configuration
}

#include "hibernus.h"

int main(void)
{

 // Hibernus 
 if(flag) Restore();  //Restore System State  
 else     Initialise();  //Initialise Hibernus  

 // Main Application goes here
 Protocol_init(); //Initialise Serial Protocol

 // Functions to write in the peripheral or read from it 
 Write(Register,Value);  //Write a value   
 read = Read(Register);  //Read a value

}

void Restore(void)
{

 //Hibernus Code to Restore System State  
}

#include "hibernus.h"

#include "Config.h"  //Configuration file
#include "RESTOP_func.h"   //RESTOP functionality

int main(void)
{

// Hibernus 
 if(flag) Restore(); //Restore System State  
 else     Initialise();  //Initialise Hibernus 

 // Main Application goes here
 Protocol_init(); //Initialise Serial Protocol

 // Functions to write in the peripheral or read from it 
 RESTOP_write(Prv,ID,Register,Value,Burst,Protocol); //Write a value  
 read = RESTOP_read(Prv,ID,Register,Burst,Protocol); //Read a value

}

void Restore(void)
{

//Hibernus Code to Restore System State 

 RESTOP_restore();   //Restore Peripheral Configuration
}

(a) Application without RESTOP.

#include "hibernus.h"

int main(void)
{

 // Hibernus 
 if(flag) Restore();  //Restore System State  
 else     Initialise();  //Initialise Hibernus  

 // Main Application goes here
 Protocol_init(); //Initialise Serial Protocol

 // Functions to write in the peripheral or read from it 
 Write(Register,Value);  //Write a value   

  read = Read(Register);  //Read a value
}

void Restore(void)
{

 //Hibernus Code to Restore System State  
}

#include hibernus.h

#include "Config.h"     //Configuration file
#include "RESTOP_func.h"   //RESTOP functionality

int main(void)
{

 // Hibernus 
 if(flag) Restore();  //Restore System State  
 else     Initialise();  //Initialise Hibernus  

 // Main Application goes here
 Protocol_init(); //Initialise Serial Protocol

 // Functions to write in the peripheral or read from it 
 RESTOP_write(Prv,ID,Register,Value,Burst,Protocol);  //Write a value  

  read = RESTOP_read(Prv,ID,Register,Burst,Protocol);  //Read a value
}

void Restore(void)
{

 //Hibernus Code to Restore System State  

 RESTOP_restore();   //Restore Peripheral Configuration
}

#include "hibernus.h"

int main(void)
{

 // Hibernus 
 if(flag) Restore();  //Restore System State  
 else     Initialise();  //Initialise Hibernus  

 // Main Application goes here
 Protocol_init(); //Initialise Serial Protocol

 // Functions to write in the peripheral or read from it 
 Write(Register,Value);  //Write a value   
 read = Read(Register);  //Read a value

}

void Restore(void)
{

 //Hibernus Code to Restore System State  
}

#include "hibernus.h"

#include "Config.h"     //Configuration file
#include "RESTOP_func.h"   //RESTOP functionality

int main(void)
{

 // Hibernus 
 if(flag) Restore();  //Restore System State  
 else     Initialise();  //Initialise Hibernus 

 // Main Application goes here
 Protocol_init(); //Initialise Serial Protocol

 // Functions to write in the peripheral or read from it 
 RESTOP_write(Prv,ID,Register,Value,Burst,Protocol);  //Write a value  
 read = RESTOP_read(Prv,ID,Register,Burst,Protocol);  //Read a value

}

void Restore(void)
{

 //Hibernus Code to Restore System State 

 RESTOP_restore();   //Restore Peripheral Configuration
}

(b) Application including RESTOP.

Figure 9. Example code of how to use RESTOP in an application, including Hibernus, showing: (a) code
without RESTOP; and (b) including RESTOP.

Once Er_ps is calculated, and considering the energy required to restore the system state (Er_sys [6]),
VR can be calculated as follows:

VR =

√
2(Er_sys + Er_ps)

C
+ V2

min (2)

where Vmin is the minimum voltage required by the system to operate and C is the total capacitance on
the supply lines, which can be used as an energy buffer. The process of calculating Er_ps and adjusting
VR is performed at the beginning of the snapshotting routine, in order to guarantee that the restore
threshold is properly set before a power failure occurs. Although Equation (1) is performed once
per supply interruption, a running total of Tpi instj is updated each time a peripheral instruction is
saved. This reduces the complexity of the calculation that needs to be performed at the start of the
snapshotting procedure. Thus, VR can be dynamically adjusted considering the number of saved
instructions (provided by RESTOP) for each attached peripheral.

An important concern is the size of C. Transient computing schemes commonly use only the
system decoupling capacitance, Cdecouple (Figure 10), but this could be insufficient in systems interfacing
with external peripherals. It may be necessary to introduce additional capacitance to deliver reliable
operation. To do this, and for design purposes only, the worst case of energy used for restoring the
peripheral state (Er_max) has to be calculated. In this sense, Equation (1) is simplified as follows:

Er_max = Pp_max · ninst · Tp_max (3)

where Pp_max corresponds to the maximum power consumed by the system when an instruction is
issued, ninst is the maximum number of instructions than can be saved in the instruction history table
and Tp_max is the longest time taken to issue a single instruction. Once Er_max is obtained, and with
knowledge of the Vmin and Vmax (the system’s maximum operating voltage), the required C can be
calculated as:

C ≥
2(Er_sys + Er_max)

V2
max −V2

min
(4)

If C > Cdecouple, RESTOP will require additional capacitance to supplement the decoupling
capacitance. However, no other hardware changes are required.
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Figure 10. Schematic of the test platform, including the external peripherals.

Figure 10 shows the experimental set-up which consists of a test board and three peripherals.
The chosen board was the MSP-EXP430FR5739 [21], which contains an MCU with FRAM, an on-chip
comparator and supports SPI and I2C communication protocols. The comparator is used by Hibernus
to monitor the input voltage. It was configured with an on-chip variable reference voltage generator
and an external voltage divider (R = 1 MΩ) giving VCC/2 as input. We considered three different
external peripherals: an ADXL362 digital accelerometer [17], a TSL2560 digital luminosity sensor [15]
and a CC1101 radio transceiver [16]. The accelerometer and the transceiver are attached to the MCU
through SPI, while the luminosity sensor is accessed via I2C. Each peripheral was tested separately
(i.e., only one peripheral is used for each of the tests), giving three different scenarios in total. Cdecouple
represents the total decoupling capacitance of the board, which is 20 µF. To verify whether additional
capacitance was needed, we evaluated the worst case energy use for each of the attached peripherals
and the minimum capacitance needed for each scenario; the results are listed in Table 3.

Table 3. Worst case energy use for each peripheral, and the minimum capacitance needed.

Peripheral Er_max (µJ) C (µF)

Accelerometer 1.40 1.58
Luminosity 2.87 2.76
Transceiver 9.37 3.36

It was therefore concluded that Cdecouple was sufficient for all cases, and hence no additional
capacitance was needed. The whole system was powered by two different signals:

1. A half-wave rectified sinusoidal signal with ±3.4 V amplitude operating at a frequency of 6 Hz,
to emulate an intermittent source, in order to validate whether RESTOP is able to retain the
peripheral’s state between power failures.

2. A square wave signal with 3.4 V amplitude and variable duty cycle, sweeping the active time
from 10 ms to 100 ms, to measure the time overhead caused by RESTOP with respect to the total
application execution time.

The aim of these variable signals is to emulate intermittent sources. Behaviour with a real EH source
was not evaluated, as this has already been demonstrated for Hibernus-based systems in [6,7,20].

5.1. Accelerometer

To validate the proper operation of RESTOP with the accelerometer, we implemented an application
that changes the output data rate (ODR) to reduce the current consumption of the sensor. As shown in
Figure 11, after configuring the SPI protocol, the accelerometer is reset and the ODR is set to 50 Hz
(ODR = 0x02). Then, the accelerometer is configured in measurement mode and the application enters
in a loop where the three axes are read to detect movement at each iteration. During the time the
program is running inside the loop, a voltage drop occurs and the snapshotting routing of Hibernus is
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called. There, Er_ps is calculated using Equation (1) and the obtained value is 0.6 µJ. Substituting it in
Equation (2) and considering Er_sys = 5.7 µJ [6], the new restore threshold is set to 2.15 V. After VR is
adjusted, the system state is saved in NVM. Later, when the power is restored, an ODR reading is
taken before and after restoring the accelerometer state. This step was purely for testing purposes in
order to check RESTOP operation: the ODR reads would not be needed in a real application. Thus, the
ODR value read before restoring has to be the default (ODR = 0x03), whilst the value after restoring
has to be the same as before the power failure (ODR = 0x02). As we can see in Figure 12, the value read
before restoring the peripheral state is the default (ODR = 0x03), but once it is restored, the ODR value
is the same as before the interrupt. This shows that RESTOP is able to restore the accelerometer state.

MCU 
Initialization

SPI 
Configuration

Reset Acc

Main

ODR = 50Hz

Measure 
Mode

While (1)

Read Axes

Restore

Read ODR

Restore 
Peripheral

Read ODR

Hibernate

Save a Snapshot 
to NVM

Sleep

Power 
Failure

System Restored 
Program Continues

Restore System 
State

Supply < VH?
Interrupt

Voltage Monitor

Supply > VR?

Y

Interrupt
Y

MCU 
Initialization

Main Hibernate

Save a Snapshot 
to NVM

Power 
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Supply < V ?

Voltage Monitor

Y

N

N

Figure 11. Testing routine to validate RESTOP with the accelerometer.
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Figure 12. Operation of the accelerometer testing routine. After the power failure, ODR is read before
and after RESTOP restores the accelerometer state.

5.2. Luminosity Sensor

RESTOP was tested with a luminosity sensor to validate the proposed middleware with an I2C
peripheral. Figure 13 shows the test algorithm, which consists of initializing the MCU, configuring
the I2C protocol, and then changing the integration time (Tint) from the default value (400 ms) to
13.7 ms. Tint defines the time after which the ADC channels begin a conversion. Once the integration
time was changed, an end-of-conversion signal is configured in order to generate an interrupt when
an ADC conversion is completed. Thus, the light intensity value is available in the data registers after
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13.7 ms. Figure 14 shows the experimental results. After configuring the sensor, the light intensity
is continuously read until the input voltage drops and the snapshotting routine is executed. In the
same way as with the accelerometer, Er_ps and VR are calculated. However, for the luminosity sensor,
the minimum operating voltage is 2.6 V, which is then defined as Vmin in Equation (2) (unlike the
accelerometer’s, which is 2 V); therefore, the obtained values for Er_ps and VR are 1.72 µJ and 2.74 V,
respectively. To validate the proper operation of RESTOP, the integration time register is read before
and after restoring the peripheral state. As we can see in Figure 14, the value read before restoring the
peripheral configuration is Tint = 0x02 corresponding to an integration time of 400 ms. Then, when
the peripheral state is restored, the value read is Tint = 0x00, which corresponds to 13.7 ms. This can
also be proved because the end-of-conversion interrupt signal of the sensor is enabled every 13.7 ms,
which means the sensor’s configuration was successfully restored by RESTOP.

Restore

Read ODR

Restore 
Peripheral

Read ODR

Hibernate

ave a Snapshot 
to NVM

Sleep

estore System 
State

MCU 
Initialization

I2C 
Configuration
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Sensor Interrupt 
Configuration

While (1)
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Interrupt
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Read Tint

Restore 
Peripheral
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Save a Snapshot 
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Power 
Failure

System Restored 
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Restore System 
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Supply < VH?
Interrupt

Voltage Monitor
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Y

Interrupt
N

N

Read Data 
Registers

Y

Figure 13. Testing routine to validate RESTOP with the luminosity sensor.

5.3. Transceiver

The operation of RESTOP was also validated with a CC1101 radio transceiver. Exclusively for
debugging purposes, we implemented a routine (Figure 15) that initializes the MCU, configures the SPI
protocol, resets and configures the peripheral and then, inside an infinite loop, the program changes
the transmission channel (from 0 to 20) and sends a packet at each cycle. The idea is that we can
check the channel number before the power failure, and before and after restoring the peripheral
state. This is to verify whether the transceiver configuration is restored after a power outage and in
consequence the channel number is retained. Figure 16 shows the experimental results of RESTOP
with the transceiver. When the input voltage drops, the channel number read is 4. Then, inside the
snapshotting routine, the energy required to restore the transceiver state is calculated. The obtained
value is 8.43 µJ, which is used to calculate VR = 2.33 V. When the supply voltage rises above VR, and
before the peripheral state is restored, the channel number read is 0, which is the default value. Then,
RESTOP restores the peripheral state and the channel number read is 4, which is the same channel as
before the power failure.
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Figure 14. Operation of the luminosity sensor in an intermittently-powered system. After the power
failure, the timing registers are configured as before the interruption.
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Figure 15. Testing routine to validate RESTOP with the transceiver.
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Figure 16. Operation of the transceiver testing routine. After the power failure, the transmission
channel number is read before and after RESTOP restores the transceiver state.
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5.4. Time Overhead

To analyse the time overhead caused by RESTOP in an intermittently-powered system, we
implemented three applications that run under two different scenarios powered by a square wave
signal with 3.4 V amplitude and variable duty cycle (from 10 ms to 100 ms). In the first scenario, the
peripherals are accessed without using RESTOP (restarting the peripheral’s state from scratch after
each power failure), while, in the second scenario, our middleware is included. Each application
consists of reading data sampled by the luminosity sensor, and reading data from the accelerometer
(ACC) and processing it with a Fast Fourier Transform (FFT). Then, the sampled and processed data is
transmitted through the radio transceiver. The difference in the applications is the number of samples
(32, 64 and 128) that are obtained from the accelerometer and processed by the FFT.

Table 4 shows the time needed to access the peripherals with and without RESTOP. The proposed
middleware saves and executes all the write instructions to configure the three peripherals and the
read instructions to get the data from the sensors. The time taken by the FFT is the same in both
scenarios because RESTOP is transparent for this task. In the case of the luminosity sensor and the
transceiver, they spend the same time in all the applications because they operate only once per case,
unlike the accelerometer which takes different amounts of samples. Table 4 also presents the total time
spent to complete the FFT, including the time to snapshot and restore both the system state and the
peripheral configuration. The last column (at the right side) indicates the time overhead caused by
RESTOP on the whole application with different active times. RESTOP causes a time overhead of about
15% when configuring a peripheral. However, this represents a maximum overhead of 0.82% during
complete execution of our typical sensing application and is substantially lower than the existing
approach Sytare [9], which causes a time overhead of up to 137% (30 µs per peripheral instruction)
when configuring a radio transceiver. Moreover, the time overhead caused by RESTOP will decrease
further as the ratio of the peripheral instructions: normal operation decreases.

Table 4. Time overhead caused by RESTOP in a system with three external peripherals.

Bit 2 Bit 1 Bit 0 Criteria
Active
time
(ms)

No.
Sampl.

No.
Exec.
Inst’s

No.
S’shot

No.
Rest.

Time (ms)
O’head

(%)
Without RESTOP With RESTOP

FFT Lum. Acc. Xcvr. Total Lum. Acc. Xcvr. Total

10 32 80 2 2 19.7 - 0.72 1.05 26.96 - 0.78 1.21 27.18 0.82
10 64 112 6 6 47.3 - 1.43 1.05 66.19 - 1.49 1.21 66.41 0.33
10 128 176 14 14 100 - 2.97 1.05 142.4 - 3.03 1.21 142.6 0.15
40 32 85 0 0 19.7 14.1 0.72 1.05 35.58 14.2 0.78 1.21 35.86 0.79
40 64 117 1 1 47.3 14.1 1.43 1.05 66.59 14.2 1.49 1.21 66.87 0.42
40 128 181 3 3 100 14.1 2.97 1.05 126.3 14.2 3.03 1.21 126.6 0.22
70 32 85 0 0 19.7 14.1 0.72 1.05 35.58 14.2 0.78 1.21 35.86 0.79
70 64 117 0 0 47.3 14.1 1.43 1.05 63.85 14.2 1.49 1.21 64.13 0.44
70 128 181 1 1 100 14.1 2.97 1.05 120.9 14.2 3.03 1.21 121.1 0.23
100 32 85 0 0 19.7 14.1 0.72 1.05 35.58 14.2 0.78 1.21 35.86 0.79
100 64 117 0 0 47.3 14.1 1.43 1.05 63.85 14.2 1.49 1.21 64.13 0.44
100 128 181 1 1 100 14.1 2.97 1.05 120.9 14.2 3.03 1.21 121.1 0.23

6. Conclusions and Future Work

We have proposed RESTOP, a new approach to retain the state of peripherals that communicate
with an MCU through a digital interface, in transient computing systems. The presented middleware
provides generic functions to read data from the external peripherals or write to them, and keeps
track of and saves the transmitted configuration data into the instruction history table from where the
peripheral state is restored after a power failure. With these characteristics, RESTOP can be integrated
into any of the existing approaches for transient computing and, unlike existing approaches, it is able to
operate generically with multiple devices that communicate with the MCU through different protocols
such as SPI or I2C. RESTOP has been validated with a digital accelerometer (SPI), a luminosity sensor
(I2C) and a radio transceiver (SPI) in an intermittently-powered system. Results demonstrate that
RESTOP is capable of restoring the peripheral state after power outages causing a time overhead to



Sensors 2018, 18, 172 17 of 19

the application of up to 0.82% during complete execution of our typical sensing application, which is
considerably lower than that caused by existing approaches.

In this work, the energy cost of restoring the state of peripherals was modeled, but any additional
energy used by the peripherals (e.g., a restored instruction that then triggers a radio transmission) was
not taken into account. Hence, in the future we are looking to account for the energy requirements of
the complete system, i.e., not just the MCU. A potential solution to this is to implement a calibration
routine similar to that used in Hibernus++ [7], but in this case for measuring the energy consumed
when executing each peripheral instruction. As shown in Figure 17a, the calibration routine would
wait for the supply voltage to reach the calibration voltage (Vp_cal). When this voltage is reached,
the EH source would be short-circuited by closing the switch in Figure 17b, and an instruction is issued
to the peripheral. The drop in supply voltage caused by issuing and executing the instruction is given
by Vp_cal - Vm, where Vm is the voltage measured after the instruction has been completed. This process
would be executed once per each attached peripheral.
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Figure 17. Calibration routine to measure the energy consumed by external peripherals when executing
an instruction, showing: (a) the algorithm; and (b) the circuit schematic.

Another package of work is to integrate RESTOP with a generic operating system, e.g., the ARM
mbed OS which has already been demonstrated with Hibernus [22]. Operating systems have
components and abstractions for peripheral interface, which could be combined with RESTOP. This
would further increase the accessibility of transient computing systems and promote standardization.
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