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Abstract: Image scene recognition is a core technology for many aerial remote sensing applications.
Different landforms are inputted as different scenes in aerial imaging, and all landform information
is regarded as valuable for aerial image scene recognition. However, the conventional features of
the Bag-of-Words model are designed using local points or other related information and thus
are unable to fully describe landform areas. This limitation cannot be ignored when the aim
is to ensure accurate aerial scene recognition. A novel superpixel-based feature is proposed in
this study to characterize aerial image scenes. Then, based on the proposed feature, a scene
recognition method of the Bag-of-Words model for aerial imaging is designed. The proposed
superpixel-based feature that utilizes landform information establishes top-task superpixel extraction
of landforms to bottom-task expression of feature vectors. This characterization technique comprises
the following steps: simple linear iterative clustering based superpixel segmentation, adaptive filter
bank construction, Lie group-based feature quantification, and visual saliency model-based feature
weighting. Experiments of image scene recognition are carried out using real image data captured by
an unmanned aerial vehicle (UAV). The recognition accuracy of the proposed superpixel-based feature
is 95.1%, which is higher than those of scene recognition algorithms based on other local features.

Keywords: superpixel-based feature; image scene recognition; aerial remote sensing

1. Introduction

1.1. Background

Aerial remote sensing significantly complements satellite remote sensing. Recent developments
in unmanned aerial vehicles (UAVs), platforms, positional and attitudinal measurement sensors,
imaging sensors, and processing approaches have opened up considerable opportunities for applying
remote sensing in national environmental protection [1], land use survey [2], marine environmental
monitoring [3], water resource development, crop growth monitoring and assessment [4], wildlife
multispecies remote sensing [5], forest protection and monitoring [6], natural disaster monitoring and
evaluation [7], target surveillance [8], and Digital Earth. Subsequently, these applications have greatly
promoted the development of aerial remote sensing.

Scene recognition has long been a popular and significant research field [9]. Image scene
recognition, the most common task of aerial remote sensing applications, is the process of marking
images according to semantic categories, such as seashore, forest, field, mountain, and city scenes.
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Scene recognition has also been the research focus in machine learning, computer vision, and image
processing, among others.

1.2. Related Work

Despite the rapid development of convolutional neural networks in recent years, traditional
methods for feature-based machine learning offer important application value to image scene
recognition. Image feature description and extraction are core technologies for many aerial remote
sensing applications. Image scene features can be described accurately by their hierarchical levels
using the following techniques: scale-invariant feature transform (SIFT) [10,11] and histogram of
oriented gradient (HOG) [12] for low-level features; Bag-of-Words [13,14] modeling, sparse coding [15],
and deformable parts modeling [16] for middle-level features; and topic modeling [17,18] and spatial
pyramid matching [19,20] for high-level features.

Low-level features are closest to the digital storage forms of images (i.e., color, texture, and
shape). Regarded the most direct source of image information, low-level features can be used to
obtain higher-level information. Thus, low-level features provide the basis for image scene cognition.
Middle-level features are extracted statistically or by reasonable judgment through image mining
techniques. Thus, middle-level features can describe semantic content, which implies higher-level
accuracy for image scene recognition. High-level features can be obtained by modeling the features of
the middle layer to subsequently describe the content closest to the human perception of an image.

Among the above feature levels and image recognition techniques, the middle-level semantic
feature of the Bag-of-Words model effectively solves the “semantic gap” between low-level image
information and high-level semantics. The multi-level characterization of the Bag-of-Words model is
more advanced than low-level imaging techniques and is therefore widely used in scene recognition.
In Bag-of-Words modeling, local features are regarded as major factors affecting scene recognition
performance. Scene feature descriptions are generally divided into two kinds. The first set of
descriptors is based on the detection of points of interest, such as Harris corner detector [21], features
from accelerated segment test (FAST) [22], Gaussian laplacian, and Gaussian difference, among others.
The other set of descriptors is based on dense extraction, such as SIFT, HOG, and extraction of local
binary patterns (LBP) [23], among others. However, these methods employ bottom-to-top descriptions
and consider image characteristics (point, color, texture, and shape) from a certain aspect only, thereby
leading to incomplete image information. These conditions imply that even the advanced feature
modeling processes (e.g., Bag-of-Words model) employ bottom-led mathematical deduction and
statistics while neglecting top-led semantic expression.

Scenes from current aerial imaging processes are often characterized as follows: (1) depth of
information is lost and entire scenes are approximated as a plane given the far-off distance between the
aerial equipment and captured images; (2) contents of image planes are categorized as classical types
of landforms, such as grasslands, deserts, buildings, and rivers, among others; and (3) the recognized
image scenes are constrained to the classical types of landforms only. Based on these delimited
aerial image scene characteristics, the bottom-to-top method for low-level feature description cannot
acquire local surface content. Thus, the Bag-of-Words model is not as effective when dealing with
scene recognition.

1.3. Contribution of This Paper

This study first considers aerial image landforms for scene identification. Then, the study proposes
a top-down feature-based image scene recognition method for aerial application.

The main work and contributions of this study are as follows: (1) A novel superpixel-based
feature description method is proposed. To utilize landform information, the study establishes the
features acquired by top-task landform superpixel extraction to bottom-task expression of feature
vectors. (2) Using the proposed superpixel-based features, a type of Bag-of-Words model is constructed
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and an image scene recognition algorithm is designed. (3) Experiments are carried out using real
image data captured by UAVs.

2. Methodology

2.1. Aerial Image Semantic Hierarchical Structure

To better demonstrate the motivation and basis of the proposed method, this section introduces
a hierarchical structure model of aerial image semantics.

Image semantics is the description of the image content itself. According to the abstraction
degree of image semantics, Eakin [24] divides it into 3 layers: low-level feature layer, object layer and
semantic concept layer. From bottom to top, it includes feature semantics, object semantics, spatial
relations semantics, scene semantics, behavior semantics and emotion semantics, as shown in Figure 1a.
High level semantics are often more abstract than low-level semantics and are quantified by a lower
level of semantics.
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Figure 1. Image semantic hierarchical structure: (a) generalized image semantic hierarchical structure;
and (b) aerial image semantic hierarchical structure.

Because of the characteristics of long-distance imaging, there are few information about spatial
relations semantics, behavior semantics and emotional semantics in aerial images. Its main semantic
features are feature semantics, object semantics and scene semantics, as shown in Figure 1b. Feature
semantics include texture, color, shape, structure and so on, which correspond to the basic visual
perception. The object semantics is embodied in the landform area or target area of the aerial image,
which can be used to model the semantic features for scene and target recognition. Scene semantics
refers to the image scene label, which involves a higher level of abstract attributes, and is derived from
the object semantics.

Based on the above aerial image semantic hierarchical structure, a novel superpixel-based feature
is proposed in this paper, which corresponds to the object semantics in the semantic structure. In the
process of proposed feature based image scene recognition, landform is a useful and basic clue for
method design. In the object semantic layer, superpixel is used to express landform information
in Section 2.2.1. Then, Sections 2.2.2–2.2.4 describe how to extract the low-level landform feature
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of superpixel region, which corresponds to the feature semantics in the semantic structure. Finally,
Section 2.3 gives the overall flow of the scene recognition of aerial images.

2.2. Superpixel-Based Feature Description

A novel process for superpixel-based feature description is proposed for capturing landforms
aerially during scene identification. The process mainly consists of the following steps: simple linear
iterative clustering (SLIC) [25] based superpixel segmentation, adaptive filter bank construction,
Lie group-based feature quantification, and feature weighting based on the visual saliency model
(Figure 2). SLIC is used to extract superpixels, whereas filter banking, feature quantification, and
feature weighting are conducted to transform the superpixels into feature vectors.
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In Figure 2, input image I0 is initially segmented by SLIC superpixel algorithms to collect landform
data of the image. Based on on prior landform information, 2D linear discriminant analysis [26,27] is
conducted to adaptively construct the filter bank. Second, the filter bank is convolved with the image
to obtain matrix C with low-level information (color, texture, context, etc.). Each pixel corresponds to
a filter response vector, and the image content of the irregular surface is described by a feature matrix
that comprises the corresponding feature vectors of the pixels. Third, the Lie group theory based on
Riemann manifold geometry [28–31] is used to analyze the topological relations of surface pixels, and
then the feature matrix is mapped into vector space to generate feature vector F. Finally, local feature
vector F′ is obtained by weighting the feature vectors according to the visual saliency model.

2.2.1. SLIC Superpixel Segmentation

Aerial image scenes differ from low-altitude outdoor images. Scenes in low-altitude outdoor
images are mostly composed of a background and a target, which are defined differently. Backgrounds
may include skies, roads, grasslands, and buildings; by contrast, targets may include pedestrians and
vehicles. Objects such as pedestrians and vehicles are proportionally small compared with the image
because of the far-off imaging distance of aerial platforms; thus, the depths of field of image planes
are nearly the same. Image scenes are generally composed of different landforms, such as grasslands,
deserts, buildings, rivers, and so on. Therefore, landforms comprise the basic components of scene
semantics of aerial images.

Statistical analyses of aerial images generally depict landforms as irregularly shaped images with
different colors and textures. In particular, the superpixels of images comprise irregular pixel blocks
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with a certain visual sense, i.e., adjacent pixels with similar textures, colors, brightness and other
features. Thus, the superpixel area of aerial images can represent actual landform surfaces.

This study uses color and space distance based on the SLIC algorithm [25] to segment aerial
images into landform areas. The specific steps of SLIC superpixel segmentation are as follows:

(1) Cluster center initialization is conducted by assuming N pixels in the image. The size of each
superpixel is approximately N/K after setting the number of superpixels to K. To avoid clustering
at the edge of an object, the initial cluster is “centered” to the position wherein the gradient value is
smallest, for instance, at the center of a 3× 3 neighborhood window. The image gradient calculation
formula is

G(x, y) = ‖v(x + 1, y)− v(x− 1, y)‖2 + ‖v(x, y + 1)− v(x, y− 1)‖2 (1)

where v(x, y) is the pixel value at point (x, y). The cluster center is defined by (Oi, i = 1, . . . , K).
(2) Similarity measurement in SLIC is expressed by the following:

d(i, k) = dlab +
m
S

dxy (2)

dlab =

√
(lk − li)

2 + (ak − ai)
2 + (bk − bi)

2 (3)

dxy =

√
(xk − xi)

2 + (yk − yi)
2 (4)

where dlab is the color difference between two pixels; l, a, and b are the three components of Lab color
space; dxy is the spatial distance between two pixels; (x, y) is pixel position; d(i, k) is the similarity
between ith pixel and kth cluster center (i.e., the smaller the value, the higher the similarity); and
m ∈ [1, 20] is the parameter that balances color and spatial information in the similarity measure,
which is set to 10 in this study. The desired superpixel size is S× S, where S =

√
N/K.

(3) The K-means clustering method involves an iteration of the clustering center. Based on the
measured similarity, the K-means clustering method is performed on the 2S× 2S region in the X – Y
image plane. The process is repeated until convergence (i.e., the maximum number of times) is reached.
The initial cluster centers are uniformly initialized in the image with all pixels situated near their
cluster center.

(4) The process of generating the superpixel regions is conducted given that some small areas
may be present in the regions. Each generated small area is labeled as a superpixel even if these areas
are not connected to the superpixel. The small areas are thus connected to the largest superpixel to
ensure the integrity of every superpixel. For instance, Figure 3b is the result of the superpixel region
segmentation of Figure 3a.
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2.2.2. Adaptive Filter Bank Construction

Different types of landforms in aerial images vary greatly in color, texture, and shape. To fully
describe landform features, the aerial images are filtered and low-level feature modeling is performed
using a filter bank. Filter banks are an array of band-pass filters that separate input signal from multiple
components. Filter types, scale parameters, and direction parameters are determined in accordance
with the actual situation on the basis of different task requirements.

In the construction of the filter bank, any prior information about the surface is assumed to have
five types of image landforms, namely, buildings, trees, grasses, bare lands, and roads. Then, 2D linear
discriminant analysis [27] is conducted on the basis of the surface prior information to adaptively
construct image filter banks and their weight templates. Consequently, the filter banks are convolved
with the input image to generate low-level features.

If image I0 is filtered by filter F0, then the response image is I′0. Then, filtering response r(ψ)

corresponding to point ψ in response image I′0 is regarded a convolution value of filter F0 and the
image area in which point ψ is contained. The process can be expressed as Equation (5).

r(ψ) = F0
Tpψ (5)

where F0
T ∈ RLn×1 represents the vector form of filter F0 and pψ represents the vector form of the

image region in which point ψ is the center.
The constructed adaptive filter bank and corresponding processes are shown in Figure 4.
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Figure 4. Adaptive filter bank construction. Filter banks are convolved with input image I0, to generate
low-level feature ψ.

In Figure 4, F ={f1, f2, . . . , fn} is the vector expression of filter bank F = {f1, f2, . . . , fn}. After
the convolution of F ={f1, f2, . . . , fF} and image I0, the corresponding filtering response of point ψ is
defined as Equation (6).

r(ψ) = FTpψ = (r(ψ)
1 , r(ψ)

2 , . . . , r(ψ)
n )

T
∀1 ≤ k ≤ nr(ψ)

k = fk
Tpψ (6)

After weighted calculation, the corresponding feature vectors of point ψ are obtained by
Equation (7).

rψ =
1
d ∑

i∈R(ψ)

(r(ψ)
1 , r(ψ)

2 , . . . , r(ψ)
n )

T
=

1
d ∑

i∈R(ψ)

FTpi (7)

where d is filter template size, while pi = (p1
k , p2

k . . . , pd
k) is the vector form of the corresponding region

of an image containing point ψ. The pixels in different positions affect the feature vectors of ψ points
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differently. Subsequently, weight template w is defined for the obtained feature vectors, and the
corresponding vector form is w = (w1, w2, . . . , wd). The feature vector value of point ψ is expressed as
Equation (8).

rψ = FTpiw (8)

To ensure that the extracted feature vectors contain abundant image information and can strongly
express the surface, all prior information about the aerial landform image is used for low-level feature
extraction. Based on the Fisher criterion [32], the 2D-LDA method is used to adaptively learn the filter
bank and extract the low-level features of the landforms.

Variable rn
m is defined as the vector form of the nth image region extracted from the mth landform

category. Intra-class and inter-class differences are quantified by Equation (9).
Lintra =

M
∑

m=1

N
∑

n=1
(rn

m − rm)(rn
m − rm)

T

Linter =
M
∑

m=1
Nm(rm − r)(rm − r)T

(9)

where M represents surface type; Nm represents the number of features extracted from the mth
landform category; rm is the mean of all feature vectors in the mth landform category; and r represents
the mean of all feature vectors. After the derived feature vector formula is added to the model,
intra-class and inter-class differences are determined as Equation (10).

Lintra =
M
∑

m=1

N
∑

n=1
FT(Pn

m − Pm)wwT(Pn
m − Pm)

TF

Linter =
M
∑

m=1
NmFT(Pm − P)wwT(Pm − P)TF

(10)

where Pn
m represents the vector form of the corresponding region of the nth image in the mth landform

category training set Itrain; Pm represents the mean value of the mth category; and P is the mean value
of the entire dataset.

Then, filter bank F and its weighting template w are solved by the objective functions of intra-class
difference and inter-class difference, as shown in Equation (11).

J(F, w) = argmax
(F,w)

M
∑

m=1
NmFT(Pm − P)wwT(Pm − P)TF

M
∑

m=1

N
∑

n=1
FT(Pn

m − Pm)wwT(Pn
m − Pm)

TF
(11)

Equation (11) can be solved by the 2D-LDA algorithm. Equations (12) and (13) are used as
optimization functions to solve F and w.

J(F) = maxtrace
(
FTLw

intraF
)−1(FLw

interF
T)

Lw
intra =

M
∑

m=1

N
∑

n=1
(Pn

m − Pm)wwT(Pn
m − Pm)

T

Lw
inter =

M
∑

m=1
Nm(Pm − P)wwT(Pm − P)T

(12)


J(w) = maxtrace

(
wTLF

intraw
)−1(

wLF
interw

T
)

LF
intra =

M
∑

m=1

N
∑

n=1
(Pn

m − Pm)
TFFT(Pn

m − Pm)

LF
inter =

M
∑

m=1
Nm(Pm − P)TFFT(Pm − P)

(13)
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The final filter bank F and its weight template w can be obtained after multiple iterations of
the optimization function. Then, filter bank F and weight template w are convolved with image I0

to obtain the filter response image set Ires = {I1, I2, . . . , IF}. The filter bank is usually convolved
with a gray image of the input image for low-level feature extraction. However, low-level features
can only describe the texture, context, and other information of an image, but cannot reflect color
characteristics. To solve this problem, this study combines nine channel images of the input image
corresponding to RGB, HSV, and Lab color space with the filter response image to form the image
feature set Ifea = {I1, I2, . . . , IF, IF+1, . . . , IF+9}.

2.2.3. Lie Group-Based Feature Quantification

The aerial images are divided into a number of superpixel regions in which every pixel point
corresponds to a multidimensional feature vector. Inputs to the Bag-of-Words model usually take
the form of a feature expression vector of a local region. Thus, to effectively integrate low-level
features to the Bag-of-Words model, the feature matrix describing the superpixel region is quantized
as a feature vector.

This study therefore introduces the Lie group structure [28] to the Riemann manifold space [30].
The Lie group can reflect the correlation between two feature vectors of each pixel and describe the
spatial structure information of all the pixel feature vectors in the entire superpixel region.

A total of N superpixels pixels in an input image can be extracted after superpixel segmentation.
An arbitrary superpixel {Pi ∈ I, i = 1, . . . , N} in an image contains C pixels

{
xj ∈ Rk×1, j = 1, . . . , C

}
,

and the superpixel region is expressed by the Gaussian model in accordance with the maximum
likelihood method (Equation (14)).

φ(xi|µ, Σ) =
exp(− 1

2 (xi − µ)TΣ−1(xi − µ))√
(2π)kdet(Σ)

(14)

where µ = 1
N ∑N

i=1 xi and Σ = 1
N−1 ∑N

i=1 (xi − µ)(xi − µ)T are the mean value and covariance of the
vector while det(·) is the matrix determinant. The Gaussian model with K dimensions is a Riemann
manifold, and φ(µ, Σ) is defined as the Gaussian model with µmean value and Σ covariance. For any
random vector of the Gaussian distributions, a unique transformation can be used to meet the
requirements of Equation (15). [

x
1

]
=

[
H µ

0 1

][
x0

1

]
(15)

where H is an upper triangular matrix that satisfies Σ = HHT . Covariance matrix Σ and H are
both positive definite. Thus, the upper triangular positive definite affine matrix can be expressed as
Equation (16).

M =

[
H µ

0 1

]
(16)

A double shooting may occur between matrix M and Gaussian function. According to Lie group
theory, an invertible affine scaling matrix can form a Lie group. Thus, the upper triangular positive
definite affine matrix is assumed equivalent to the Gaussian function. After affine transformation,
φ(µ, Σ) can be uniquely transformed into (k + 1)× (k + 1) dimensional positive definite symmetric
matrix, as expressed in Equation (17).

φ(µ, Σ) ∼ S =

[
Σ + µµT µ

µT 1

]
(17)
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The vector space S+
k+1 of positive definite symmetric matrices with (k + 1)× (k + 1) dimensions

is a Lie group and a Riemann manifold with local topology properties equivalent to vector space.
For any element in the Lie group, a corresponding Lie algebra exists in which the tangent space is a
vector space. The elements of the Gaussian Lie group can be mapped between tangent space (Gaussian
Lie algebras) and manifolds (Gaussian Lie group) by means of log operations and exponential matrix
operations. Finally, by adopting upper triangular positive definite affine matrix transformation,
the (k + 1)(k + 2)/2 (i.e., 190) dimensional feature vector is obtained for describing superpixel region
Pi. Consequently, the final input image is expressed by N 190-dimensional manifold-based superpixel
feature fi.

2.2.4. Visual Saliency Model-Based Feature Weighting

For two images belonging to different categories but with similar contents, the contents of the
salient regions often serve an important basis for determining image categories. To enhance the
expression capability of low-level features and image semantic features, a feature weighting method
based on saliency is proposed in this study for aerial scene recognition.

The steps for the algorithm are as follows: A visual saliency map Smap with the same size as the
input image is obtained according to the visual saliency model. For the feature fi of superpixel region
Pi, the feature weight wi is defined as the average value of the saliency map corresponding to all pixels
in the superpixel region, as shown in Equation (18).

wi = mean(Smap{Pi}) (18)

The feature corresponding to each area Pi of the landform is wi ∗ fi.

2.3. Scene Recognition of Aerial Images

The image scene recognition algorithm based on the Bag-of-Words model is determined using the
proposed superpixel-based feature for aerial remote sensing applications.

The Bag-of-Words model constructs a visual dictionary using the low-level features of an image;
performs feature coding to obtain middle-level semantic features; and integrates a classifier to realize
image scene recognition. As shown in Figure 5, the three main steps of Bag-of-Words modeling are as
follows: first, the superpixel-based low-level features are extracted; second, the dictionary is generated;
and, finally, image scene classification is conducted.
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In the first step, superpixel-based low-level features are extracted using the proposed method.
In the second step, the main feature encoding methods (vector quantization, sparse, local linear
constraint, Fisher vector [32], etc.) are conducted for Bag-of-Words modeling. Fisher vector
encoding, which simultaneously conducts generative and discriminative modeling to record first- and
second-order differences between a local feature and its nearest visual words, is generally considered
for its strong capability to express features. Thus, Fisher vector encoding is selected to further quantify
the local features of the extracted aerial image and generate semantic features to complete the aerial
image scene recognition. In the third and final step, the SVM classifier is used to recognize five image
scenes (i.e., urban, suburban, rural, wilderness, and green land).

3. Result and Discussion

3.1. Experimental Data

The experimental data used in this study are collected from UAV images. The dataset for scene
recognition is divided into five categories, each containing 100 images (30 images for training and
70 images for testing). The designated scene categories are urban, suburban, rural, wilderness, and
green land, as shown in Figure 6. The landform images used to train adaptive filters are collected from
the training set of scene recognition data. Each landform image has the size of 100 × 100 (resolution),
and landforms are categorized as buildings, trees, grasses, bare lands, and roads, as shown in Figure 7.
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3.2. Experimental Results Analysis

This study applies Bag-of-Words model-based scene recognition and compares this technique
with typical feature-based Bag-of-Words modeling to verify the expression capability of the proposed
superpixel-based features. Model performance is evaluated in terms of scene recognition accuracy
and extraction time. Filter template size and saliency model are considered during feature extraction,
as both are regarded as important factors that can affect feature expression.

3.2.1. Influence of Filter Template Size on Feature Expression

The 2D linear discriminant analysis is conducted based on prior image surface information, which
is also used to construct the image filter bank. Then, the filter bank is convolved with the image to
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obtain the low-level features of the image. This method does necessarily consider filter type, scale factor,
and direction factor; however, filter template size needs to be artificially determined. This requirement
suggests that filter template size can influence the capability of the proposed method to express the
local features and semantic features of the image; moreover, the level of influence can be reflected by
the results of the final scene recognition. The experimental results are shown in Table 1. Experiments
for the low-level features are carried out under non-overlapping saliency weight conditions.

Table 1. Influence of filter template size on recognition results.

Template Size 3 × 3 5 × 5 7 × 7 9 × 9

Recognition Accuracy 88.3% 88% 88.3% 88.9%

Experimental results show that filter template size has little influence on low-level and semantic
features. Differences in scene recognition accuracy for the different templates are below 1%.
The situation can be explained by large single superpixel areas (i.e., segmentation result), whereas filter
template size is small. Image filtering is usually conducted in one-pixel steps; therefore, pixel filter
response is related only to neighboring image regions and the filter's own parameters. In addition,
different filter templates are trained using the same training dataset, and this approach leads to similar
filtering responses despite the different size templates in the same location.

3.2.2. Influence of Saliency Model on Scene Recognition

To test the influence of the saliency model on scene recognition, this study introduces four kinds
of saliency models for comparison, namely, the Itti model [33], Erdem model [34], Achanta model, [35]
and SIM model [36].

The Itti visual saliency model [33] is based on the three characteristics of brightness, color, and
direction, and then the salient region of an image is determined after normalization. The color
difference of different landforms is large, and artificial building parts (buildings and roads) have
relatively high reflection coefficients than natural surfaces; thus, the brightness varies greatly for
different regions in aerial images. Erdem [34] introduced region covariance into visual saliency to
improve model robustness by nonlinear feature fusion. Subsequently, the capability of local features
to describe image content is strengthened. The visual saliency model proposed by Achanta [35]
theoretically starts with a frequency domain. Then, the saliency value of each pixel is set as the
Euclidean distance between two pixel values after Gaussian low-pass filtering and pixel value
averaging of the entire image in Lab space. The method uses fixed value filtering. When the salient
object is relatively large, the calculation of the Lab space mean is affected; consequently, the saliency
value of the salient region is less than that of the background. No obvious differences exist between
target and background in aerial images, and salient areas mostly comprise artificial buildings and roads.
When the proportion of the building or road to the image is extremely large, the effect of local features
weighting using the salient model is unsatisfactory. To a certain extent, the category differentiation
of image scenes is reduced, thereby weakening the final expressive capability of the image semantic
features. SIM saliency maps [36], which are based on mathematical and statistical methods, adopt
biological bottom visioning using multi-scale weight optimization for feature extraction. The method
effectively captures landform information in aerial images, and the multi-scale weight optimization
method can well adapt to landform regions with different scales. Therefore, the capability to express
image features is enhanced to a great extent.

The influence of feature weights (i.e., extracted from different saliency maps) on the scene
recognition of aerial images is shown in Table 2. Filter template size is specified as 9 × 9. According to
the four typical saliency models, feature weighting can be designed to complete local feature modeling.
In this study, SIM is used for the proposed algorithm.
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Table 2. Influence of saliency models on recognition accuracy.

Saliency Model Null Itti Erdem Achanta SIM

Recognition Accuracy 88.9% 92.1% 94.2% 85.4% 95.1%

3.2.3. Comparison of Feature Performances

This study evaluates and compares the expression capability of the proposed superpixel-based
features with the six commonly used features of Bag-of-Words modeling (i.e., dense SIFT, dense HOG,
dense LBP, dense Gabor, Harris interest points, and FAST interest points). The final result is measured
in terms of scene recognition accuracy and time consumption to extract the local features of each image,
as shown in Table 3.

Table 3. Comparison and analysis of local feature description methods.

Local Feature Type Recognition Accuracy Time Consumption

Dense SIFT 78.3% 16.86 s
Dense HOG 79.1% 15.23 s
Dense LBP 82.6% 15.96 s

Dense Gabor 72.8% 45.75 s
Harris Interest Points 73.5% 0.73 s
FAST Interest Points 78.2% 0.53 s

Proposed Feature 95.1% 21.57 s

Dense local features were compared with interest point local features. All of the dense features,
except that of dense Gabor, showed stronger expression capability than those of interest points.
The condition can be explained by the sparsely distributed local features of the interest points, which
resulted in limited image information. The information loss effect is further expanded after quantifying
the Bag-of-Words model, the analysis of which showed a decline in semantic feature expression
capability. Gabor features can comprehensively extract low-level image information using time and
frequency domains. The Gabor filter sifts dense image blocks in several directions and scales in
the dense modeling of local image regions; however, redundant information is generated, and this
phenomenon weakens feature expression.

The capability of dense local features to describe image content is weaker than that of the proposed
feature. The phenomenon can be explained by features (i.e., dense local features) that are mainly
extracted by traversing image blocks, and this approach cannot accurately capture local surface areas.
This dense local feature method also often uses a single feature descriptor to model the local area
of images. However, the local content of the image cannot be fully covered; thus, the capability to
generate image semantic features is weaker than the method proposed in this study.

The number of extracted dense local features is much larger than the number of interest point
features because aerial image sizes are frequently large. Therefore, in terms of time consumption,
the extraction of dense local features consumes much more time than those of interest point features.
With regard to local feature modeling, image segmentation and saliency weighting extraction are
required by the proposed method, and these additional processes may lead to relatively high time
complexity. However, final results verify the high recognition accuracy of the proposed method.
Moreover, the time consumption of the proposed method has not increased significantly unlike the
dense SIFT, dense HOG, and dense LBP methods. The time consumption of the proposed method is
even lower than that of dense Gabor features.

4. Conclusions

The superpixel-based feature description method proposed in this study can be applied to image
scene recognition for aerial remote sensing applications. The image scene recognition algorithm based
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on the Bag-of-Words model is designed using the proposed feature. The following conclusions can
be drawn from the experiments: (1) The proposed superpixel feature can be extracted adaptively by
using the landform characteristics of aerial images. Image saliency, which is highly adaptable to aerial
images, is introduced into the algorithm to complete the local area modeling. (2) The scene recognition
accuracy of aerial images based on the proposed feature is 95.1%, and this result is higher than those
of scene recognition algorithms based on other local features.

In the future, the proposed method can be improved and applied to other types of remote images,
such as satellite images. Finally, the method may also be transplanted to embedded systems.
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