
sensors

Article

Quantified, Interactive Simulation of AMCW ToF
Camera Including Multipath Effects

David Bulczak * ID , Martin Lambers and Andreas Kolb

Computer Graphics Group, Institute for Vision and Graphics, University of Siegen, 57076 Siegen, Germany;
martin.lambers@uni-siegen.de (M.L.); andreas.kolb@uni-siegen.de (A.K.)
* Correspondence: david.bulczak@uni-siegen.de; Tel.: +49-271-740-2603

Received: 27 October 2017; Accepted: 14 December 2017; Published: 22 December 2017

Abstract: In the last decade, Time-of-Flight (ToF) range cameras have gained increasing popularity
in robotics, automotive industry, and home entertainment. Despite technological developments,
ToF cameras still suffer from error sources such as multipath interference or motion artifacts.
Thus, simulation of ToF cameras, including these artifacts, is important to improve camera and
algorithm development. This paper presents a physically-based, interactive simulation technique for
amplitude modulated continuous wave (AMCW) ToF cameras, which, among other error sources,
includes single bounce indirect multipath interference based on an enhanced image-space approach.
The simulation accounts for physical units down to the charge level accumulated in sensor pixels.
Furthermore, we present the first quantified comparison for ToF camera simulators. We present
bidirectional reference distribution function (BRDF) measurements for selected, purchasable materials
in the near-infrared (NIR) range, craft real and synthetic scenes out of these materials and
quantitatively compare the range sensor data.
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1. Introduction

Amplitude modulated continuous wave Time-of-Flight (AMCW-ToF) depth sensors provide
per-pixel distance information by estimating the phase shift of a received amplitude modulated light
signal that has been emitted by an active light source using a reference signal [1]. This phase shift
is proportional to the time light traveled from the light source to the sensor. Despite recent rapid
development progress, AMCW ToF cameras still suffer from several error sources. Some of the major
effects that severely influence AMCW ToF range measurements are motion artifacts, flying pixels and
multipath interference (MPI).

The simulation of AMCW ToF cameras including reproduction of the major sensor effects benefits
the development of new sensors by allowing tests of variations to the sensor design [2], as well as
the development of down-stream data processing algorithms by providing ground truth and test
data [3,4]. AMCW ToF simulation requires modeling the illumination, the light propagation in the
scene, and the individual sensor pixel behavior. Furthermore, computationally efficient approaches are
of great importance for simulating dynamic scenes and/or for parameter studies in hardware layout
and algorithm design [2,5].

Up to now, there has only been very little research in multipath interference (MPI) simulation
for AMCW ToF cameras. Meister et al. simulate MPI using non-interactive global illumination
schemes, which implicate very high computational costs of approximately 2 h per depth image,
including simple analytic bidirectional reflectance distribution functions (BRDFs) [4]. Furthermore,
there is very little research in providing quantitative comparison to real-world measurements, which is
indispensable to reliably predict the behavior of prospective AMCW ToF cameras and their application.
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Such a comparison needs to take real scene material properties into account, typically provided by
BRDF measurements. We are not aware of any work that uses such measurements at the relevant
near-infrared wavelength for AMCW ToF simulation.

In this paper, we present a physically based simulation method for AMCW ToF cameras that runs
on interactive frame rates. Our approach is based on Lambers et al. [2], which already accounts for
physical units. Our simulation approach is fully GPU-based and comprises the following contributions:

• Enhancement of the Reflective Shadow Map (RSM) algorithm [6] for GPU-based, interactive,
single-bounce, image-space, multipath interference simulation.

• BRDF-based reflection simulation for measured real-world materials.
• Extension of the simulation model to include realistic electronic and optical shot noise.

Furthermore, this paper presents evaluation approaches for ToF simulations based on data
captured by real cameras with the following contributions:

• Measurement of isotropic BRDF at 850 nm wavelength for several specified materials that can be
purchased worldwide and thus can be used to reproduce scenes reliably.

• Quantitative evaluations of the proposed simulator based on AMCW ToF camera acquisition
of real-world reference scenes. We clearly see the improved ToF simulation results of our
single-bounce approach over direct simulation in terms of quality, and over higher-order global
illumination simulation [4] in terms of computational performance.

• Publicly available simulator, BRDF data including references to material vendors, geometry of
the reference scenes, and real AMCW ToF camera measurements, in order to promote further
activities in quantitative evaluation of AMCW ToF simulation.

2. Related Work

Keller and Kolb [5] present a GPU-based AMCW ToF simulation approach that computes light
propagation in real-time by using basic rasterization techniques, including local illumination with
a Lambertian reflection model. Their simulation approach generates so-called phase images, i.e., the raw
images acquired by a AMCW-ToF camera, and can reproduce spatio-temporal artifacts such as flying
pixels and motion artifacts.

Meister et al. [4] propose an AMCW ToF simulation method that adopts a global illumination
technique, i.e., bidirectional path tracing, to simulate multipath interference. This approach is
computationally very expensive and only suitable to simulate static scenes. They provide a visual
comparison with real data on range image basis for two scenes (“corner” and “box”) as well as limited
quantitative comparison of simulated data with real data captured with a PMDTec CamCube 3 (pmd
technologies ag, Siegen, Germany). Neither real material properties are acquired nor used within
their simulator.

Alternative AMCW ToF sensor simulation approaches have a stronger focus on the sensor
hardware. Schmidt and Jähne [7] model optical excitation and target response to simulate the
conversion of photons to electrical charges. Their approach does not simulate light propagation
and illumination.

Lambers et al. [2] introduce a realistic sensor model to simulate both the photometric relations
in the scene including light propagation and illumination, and physically correct charges at a sensor
pixel’s readout circuit level, that result from incoming photons. Their simulation is limited to scene
materials that are Lambertian reflectors. They provide quantitative comparison of AMCW ToF camera
simulation data with real captured data, but their evaluation is limited to sensor pixel based plausibility
checks of their simulation model and ignores characteristic error sources.

So far, none of the existing AMCW ToF simulation approaches is capable of simulating MPI effects
at interactive rates, none take realistic scene material properties into account in the light propagation
simulation, and no quantitative evaluation is available at range image level.
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Ritschel et al. [8] give an overview of interactive global illumination methods.
These approximations of global illumination are more suitable to simulate MPI effects at interactive
rates than the more general, but computationally much more expensive methods, such as the
bidirectional path tracing used by Meister. Image-space approximations of global illumination
such as Reflective Shadow Maps [6] are especially efficient and sufficient for our use case despite
their limitations.

In addition to global illumination approximation, realistic scene materials need to be taken into
account to allow comparisons of simulated results and measurements. Most existing BRDF databases
for material properties, such as the widely known MERL [9] and CUReT [10] databases, focus on
visible wavelengths and are typically limited to RGB channels.

Lacking near-infrared BRDF measurements, Mutny et al. [11] use an Oren–Nayar BRDF model
with parameters fitted from the CUReT database for AMCW ToF simulation using Meister’s simulator
to create a database of scenes for correcting multipath artifacts based on a machine learning approach.

Choe et al. [10] recently published the first BRDF database for near-infrared wavelengths,
demonstrating that material properties at these wavelengths may differ significantly from those
at visible wavelengths. They focus on finely-structured materials such as fabrics. In contrast, in this
work, we focus on standardized materials that are available for purchase worldwide, in order to allow
reliable reproduction of scenes with defined material properties.

3. Time-of-Flight Simulation

Our simulation model is based on Lambers et al. [2] that consists of two parts, the direct
light propagation (Section 3.1) and sensor pixel behaviour (Section 3.2). We describe our extension
of this model with respect to BRDF-based materials (Section 3.1), multipath effect simulation via
global illumination approximation (Section 3.3), and a realistic noise model (Section 3.4). For further
information on the AMCW ToF principle, we refer the reader to, e.g., [1,2,12].

3.1. Direct Light Propagation

The model described by Lambers et al. [2] assumes Lambertian reflectors only. We directly extend
this model to use BRDFs. Starting with the power PL[W] of the camera light source L, we can deduce the
radiant intensity I(θL→P) from L to a surface point P. This radiant intensity can be assumed constant
for an isotropic light source model, or taken from a vendor-provided intensity table depending on the
angle θL→P between the main light direction~nL and P− L; see Figure 1b.
Version December 14, 2017 submitted to Sensors 3 of 15
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Figure 1. Scheme of a AMCW ToF camera including the pixel layout and the optically active pixel area
AS (gray) with the two readout circuits A (red) and B (green) (Fig. 1(a)). Direct illumination and one
path of single-bounce indirect illumination in the AMCW ToF simulation (Fig. 1(b)).
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Figure 1. Scheme of a AMCW ToF camera including the pixel layout and the optically active pixel area
AS (gray) with the two readout circuits A (red) and B (green) (a); direct illumination and one path of
single-bounce indirect illumination in the AMCW ToF simulation (b).

The irradiance EL→P [W/m2] of P resulting from direct illumination is:

EL→P = IL(θL→P)
cos θP→L

‖P− L‖2 , (1)
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where θP→L is the angle between L− P and the surface normal ~nP at P. This notation will be used
throughout the following derivations.

The resulting direct-illumination radiance LL→P→S from surface point P to sensor S depends on
the material of the surface, described by its BRDF fL→P→S at P for incoming light direction L→ P and
outgoing light direction P→ S:

LL→P→S = EL→P · fL→P→S. (2)

3.2. Sensor Pixel Model

The AMCW ToF sensor consists of an array of w× h sensor pixels. Each sensor pixel accumulates
charges in the readout circuits, A and B, depending on its irradiation; see Figure 1a. The irradiance ES
of the pixel’s photosensitive area AS resulting from direct illumination is given as

EL→P→S = LL→P→S · cos θS→P. (3)

EL→P→S determines the optical power PS[W] and from that the energy WS[J] that is accumulated
in one pixel over the integration time T for a common AMCW duty cycle of 50%:

PS = ES · AS, WS = PS · T · 0.5. (4)

The conversion into electron–hole pairs in the pixel depends on the quantum efficiency νq,
which describes how many electrons are generated per incoming photon, and the wavelength λ:

Ntot =
WS

νq · q·λ
h·c

, (5)

where h is the Planck-constant, c is the speed of light, and q is the value of elementary charge.
This total charge Ntot = NA + NB is accumulated in the two circuits A and B depending on the

phase shift φ, the internal phase delay τ, and the achievable demodulation contrast D ∈ [0, 1]:

NA =
Ntot

2
(1 + D · f (τ, φ)), NB =

Ntot

2
(1− D · f (τ, φ)). (6)

Here, f is the correlation function resulting from the mixing of the optical signal s with the delayed
reference signal g; see Figure 1a. Commonly, it is assumed that g and s are ideal cosine shaped
functions, which results in a cosine shaped correlation function f (τ, φ) = cos(τ + φ).

3.3. Multipath Simulation

The simulation model of Lambers et al. [2] is restricted to direct illumination, i.e., light paths
L → P → S. Here, we describe an approximation of the total radiance LP→S reaching the sensor S
from point P based on the rendering equation (see Figure 1b), which in our notation is

LP→S =
∫

P′∈scene
fP′→P→S · LP′→P · cos θP→P′ ·VP,P′ dP′, (7)

where fP′→P→S is the BRDF at P for incoming light direction P′ → P and outgoing light direction
P→ S, and VP,P′ = 1 if P and P′ are mutually visible, otherwise 0.

We adapt the ideas of instant radiosity [13] and its implementation via Reflective Shadow
Maps (RSMs) [6] for our purposes. First, we separate the direct illumination path LL→P→S from
the single-bounce indirect illumination paths LP′→P→S. Second, we consider a discrete set of points
P′ in the scene that are directly illuminated by L. This set of virtual point lights (VPLs) is generated
by rendering the scene from the point of view of the light source into a two-dimensional map
(called reflective shadow map, RSM). Each pixel in this RSM describes one VPL. Note that the RSM
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approach ignores multi-bounce indirect illumination paths and realizes single-bounce multipath
reflections only.

Considering the separated direct and single-bounce reflections using RSM, the rendering equation
then simplifies to

LP→S = LL→P→S + ∑
P′∈RSM

fP′→P→S · LL→P′→P · cos θP→P′ ·VP′ ,P ·WP′ ,P (8)

with (analogous to the direct illumination path)

LL→P′→P = EL→P′ · fL→P′→P, EL→P′ = IL(θL→P′)
cos θP′→L

‖P′ − L‖2 (9)

and the VPL weight factor

WP′ ,P = AP′
cos θP→P′

‖P′ − P‖2 . (10)

WP′ ,P describes the steradiant of the VLP P′ (considered as area light source) at surface point P. In order
to provide all necessary information, each VPL in the RSM stores the irradiance EL→P′ and the VPL’s
area AP′ .

Furthermore, for the image-space RSM approach, visibility tests between P and P′ are impractical,
thus we simplify this term by suppressing light directions below the horizon, i.e.,

VP,P′ =

{
1, if θP′→P < π

2 ∧ θP→P′ <
π
2 ,

0, otherwise.
. (11)

As the results will show, the limitations of the RSM approach are acceptable in our use
case. Its benefits as a purely image-space approach are its simplicity and efficiency, especially for
GPU-based implementations.

In contrast to the original RSM approach that samples VLPs only in the vicinity of P, we sample
the entire RSM when computing the incident radiance at P.

In the sensor pixel, the charges NA and NB now result from a superimposed signal from the direct
and multiple single-bounce indirect light paths. We convert radiance incident to the sensor pixel from
indirect illumination paths and LL→P′→P→S into irradiance

EL→P′→P→S = cos θS→P · LP→S (12)

and can then deduce electron pair counts Ntot,L→P′→P→S for each indirect path using
Equations (4) and (5).

Denoting the phase shift along the direct and a single-bounce indirect light path as φL→P→S
and φL→P′→P→S, respectively, we can compute the total charges NA and NB by combining
Equations (6) and (8), yielding

NA =
Ntot,L→P→S

2
(1 + D cos(τ + φL→P→S)) + ∑

P′∈RSM

Ntot,L→P′→P→S
2

(1 + D cos(τ + φL→P′→P→S)), (13)

NB =
Ntot,L→P→S

2
(1− D cos(τ + φL→P→S)) + ∑

P′∈RSM

Ntot,L→P′→P→S
2

(1− D cos(τ + φL→P′→P→S)). (14)

3.4. Noise Model

Electronic and optical shot noise plays the dominant role for ToF cameras [12], which is especially
the case for low light situations [14]. In contrast to other noise sources, shot noise cannot be reduced by

signal processing methods but has an impact on range resolution ∆L =
L

360◦
· ∆φ with non-ambiguity
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range L and phase error ∆φ [12]. Shot noise is Poisson distributed, but fitting an explicit Poisson model
to is known to be numerically unstable. A common approach to handle this instability is to use variance
stabilization transformations [15]. We apply a Freeman–Tukey (FT) transform [16], which transforms
the Poisson distributed charge values into an approximate standard normal distribution. Applying
a Gaussian fitting to the FT-transformed mean and variance values yields the distribution model
in FT space.

More precisely, we acquire 1000 images of the ToF camera, a PMD CamCube 3.0 in our case, for 80
different integration times. Correcting each raw image by subtracting the dark image (fix pattern
noise) yields the raw data that is transformed into FT space. Selecting random pixels in each batch of
1000 × 4 phase images, mean and variance values are computed (blue dots in Figure 2). In order to
deduce the final noise model, we apply a polynomial fitting of degree 9 over the the mean-variance
measurements (see Figure 2). The resulting fit error is (sums of squares error) SSE = 0.0391 and
(root mean square error) RMSE = 0.0112. Applying the model is done by transforming the charge
values from Equations (13) and (14) into the FT domain, computing the Gaussian parameters by
evaluating the variance curve for the given intensity, generating the noise value using a random
number and the variance, and, finally, back-transforming this value in the original domain of the
charge values. This noise value is then added to the noise-free charge value in order to get the final
charge value.

Figure 2. Plot of noise model that describes the Gaussian variance as function of the mean value
(transformed intensity) in Freeman–Tukey space with SSE= 0.0391 and RMSE = 0.0112.

4. NIR BRDF Measurements

In addition to multipath and noise effects in the simulator (Section 3), a quantified comparison
between simulated and real AMCW ToF data requires a realistic model of materials in the scene in the
form of BRDFs. Analytic BRDF models such as Cook-Torrance [17] offer only limited capabilities to
represent real world material. Databases of measured BRDFs, such as MERL [9] and CUReT [10], do not
provide data for the operating wavelength of AMCW ToF camera, i.e., around 870 nm, and/or do not
contain standardized, purchasable materials that can be used to craft real-world reference scenes.

In this section, we briefly describe the measurement and data processing procedures to acquire
isotropic BRDF at 850 nm. We apply this procedure to standard material that can be purchased
worldwide (see Section 5).
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4.1. Measurement Setup

Even though there are various potential approaches to acquire BRDFs [18], similar to Li et al. [19],
we opt for a rather simple approach using a three-axis gonioreflectometer. The gonioreflectometer
controls the elevation angles of the incoming and outgoing light and their relative azimuth;
see Figure 3 left.
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Figure 3. The schematic gonioreflectometer measurement setup (left) and a photo of the real setup
(right).
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Our measurement setup is parameterized using the angles α = ∠(~n′,~l), β = ∠(~d,~l) and the
elevation angle γ of the sample’s normal ~n. Here, ~n′ is the projection of ~n onto the ~l-~d-plane,
~l = (0, 0, 1)T the light direction towards the NIR laser, and ~d the direction towards the detector;
see Figure 3, right. Using a simple vector calculus, we get ~n = (sin α · cos γ,− sin γ, cos α · cos γ)T

and ~d = (sin β, 0, cos β)T . This simply transfers to the angles θi, θo between the surface normal and
the light and detector direction, respectively, and the azimuthal difference φd with respect to the
sample’s coordinates:

(θi, θo, φd)
T = (arccos(~n ·~z), arccos(~n · ~d), arccos(~z′ · ~d′))T , (15)

where ~z′ and ~d′ are the projections of~z and ~d onto the plane perpendicular to~n.

4.2. Extrapolating BRDF Measurements

Due to physical limitations, the angular regions β ∈ [−10◦, 10◦] and θi, θo > 80◦ can not be
acquired. Inspired by the work of Panzer and Ponteggia [20], who have a similar problem in sampling
directional acoustic reflection values, we tested two approaches: inverse distance weighting (IDW),
which is basically a Shepard’s method, and spherical harmonic interpolation. In our experiments,
we found that a extended version of the first method delivers the most reliable results.

Given the BRDF acquisition values f (~ρ′) for sampling angular parameters ~ρ′ = (θ′i , θ′o, φ′d),
the IDW approach computes the BRDF f (~ρ) for an unmeasured parameter vector ~ρ by taking the
measurements in its neighborhood N(ρ) into account:

f (~ρ) =





f (ρ′), if ρ→ ρ′

1
W ∑~ρ′∈N(~ρ)

w(~ρ, ~ρ′) · f (~ρ′), else
, with W = ∑

ρ′∈N(ρ)

w(ρ, ρ′). (16)

Here, w(~ρ, ~ρ′) is a distance measure, or weight, between the two parameter vectors. In our case,
we define w as

w(~ρ1,~ρ2) = (arccos(~l1 ·~l2) + arccos(~d1 · ~d2))
−u (17)
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with incoming~l1,~l2 and outgoing directions ~d1, ~d2 corresponding to~ρ1 and~ρ2, respectively. This weight
definition accounts for angular differences between both the incident and the outgoing angles.
Thus, measured BRDF values have a large weight in the BRDF estimation of a set of unobservable
angular parameters, if their angular parameters are similar. We use u = 5, which has been
determined experimentally.

5. Results

In this section, we present the results related to the BRDF measurement for standard materials
(Section 5.1) and the evaluation of the multipath interference using the proposed simulation technique
(Section 5.2).

5.1. BRDF Measurement

The measurement setup has been equipped with a 850 nm NIR-laser as a light source
(LDM850/5LT, Roithner Lasertechnik GmbH, Vienna, Austria) and a photo diode as detector.
The chosen sampling stepsizes are ∆α = ∆β = ∆γ = 2◦ for specular material and ∆α = ∆β = ∆γ = 5◦

for diffuse materials. To reduce noise, we averaged 1000 measurements for each parameter set
~ρ = (α, β, γ). Finally, we normalized the measured reflection values by the maximum energy
arriving directly from laser to detector and the cosine of the incident angle θi in order to get the
final BRDF values.

We have selected materials with rather diffuse and rather glossy reflection properties. Since we
consider reflections but not scattering, transmission, and other properties, we have chosen opaque
materials so that almost no light transmission occurs. As diffuse materials, we have chosen
guttagliss PVC rigid foam variants [21], as materials with glossy specular reflection we have chosen
PLEXIGLAS R© [22]; see Table 1.

Table 1. Materials used for BRDF measurement. The PLEXIGLAS R© provides more specular reflection,
and the PVC rigid foam is rather diffuse.

Mat. No. PLEXIGLAS R© (Glossy) Mat. No. Guttagliss PVC (Diffuse)

1 XT (allround), White WN297 GT 5 Rigid Foam, White
2 XT (allround), Red 3N570 GT 6 Rigid Foam, Red
3 XT (allround), Green 6N570 GT 7 Rigid Foam, Green
4 XT (allround), Blue 5N870 GT 8 Rigid Foam, Blue

9 Rigid Foam, Yellow
10 Rigid Foam, Gray

Figure 4 shows the polar plots of the raw measured and the resulting interpolated BRDFs;
see Section 4. Plots of the raw measurement visualize the missing measurements around the
incoming direction for β ∈ [−10◦, 10◦]. The IDW interpolation closes the gap and slightly smooths
the measurements.

Open Science

Upon acceptance of this paper, we will make the full BRDF data publicly available, thus other
researchers can purchase the respective materials in order to setup their own test scenes for
quantitative evaluations.
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for ToF camer pose estimation, Fig. 5(c).
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Figure 4. BRDF raw data and IDW interpolation results for materials #1, #5, #6 and #8 acquired for an
incident light angle θi = 30◦. The blue ray indicates the incident light direction, the red ray the ideally
reflected incident light direction and the red curve the BRDF value related to the corresponding ray
from the center to a point of this curve.

5.2. Simulator Evaluation

In our evaluation of the simulator, we have used three different scene geometries. All geometries
are variants of a corner, for which multipath effects are to be expected (see Figure 5a): Corner is
a simple corner scene without an additional cube, in the CornerCube scene an additional cube is
placed directly in the corner, and in the CornerCubeShift the cube is shifted by 10 cm from each corner
wall. We have setup the three scenes with Material #1 and Material #5.

For real world data acquisition, we have used a PMD CamCube 3.0 ToF camera that captures depth
images at 200× 200 px resolution. The CamCube’s driver delivers data that is already corrected for the
so-called wiggling error, which is a systematic error occurring due to imperfections in the signal shape
of the real-world camera with respect to the theoretically assumed cosine function; see Equation (6).
Its active light source operates at 870 nm wavelength. The ToF camera is positioned symmetrically
towards the corner. Even though there are sophisticated approaches that utilize range and intensity
data to determine intrinsic and extrinsic ToF camera parameters [23], we use OpenCV’s implementation
Zhang’s simple checkerboard method [24] to estimate these parameters (see Figure 5c). Lindner [25]
reports a distance error of less than 0.9–1.9 cm at 1.2–2.2 m using this method (see Table 2.2 in [25]). The
range measurements of the PMD CamCube are denoted as CamCube, while the simulation results are
labeled as SimDirect (only direct reflection is simulated) and SimSingle (additional single-bounce
indirect reflections are simulated). Furthermore, we add the ground truth depth information for
comparison (GroundTruth). Our evaluation indirectly compares to Lambers et al. [2], as SimDirect
essentially is the approach in Lambers et al. [2] enhanced with the noise model described in Section 3.4
and BRDF-based reflection (instead of Lambertian).
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Figure 5. The geometry of our box scene (light brown) with the additional cube (blue) (a); a photo of
the AMCW ToF measurement setup (b); and the positioning of the calibration pattern for ToF camera
pose estimation (c).
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Figure 6 shows the depth images for all three test-scenes for GroundTruth, the CamCube
measurements, and the SimDirect and SimSingle simulations. Figures 7 and 8 give additional insight
into range simulation results by showing the signed differences between the simulation and the
CamCube measurements for the scenes CornerCube, CornerCubeShift and the explicit range values
along row 100 for all three scenes, respectively. As expected, the real ToF data exhibits significant
multipath effects in all three scenes. Considering the simulation without multipath component
(SimDirect), the resulting range values are close to the ground truth depth. This is consistent with
the ToF measurement principle, which explicitly considers direct reflection only. Table 2 states all
error values for all scenes and material with respect to the measured CamCube data. Especially for
scenes Corner and CornerCube, our approach outperforms SimDirect since it captures multipath
effects in the corners. In CornerCubeShifted, our approach still decreases the errors by more than 50%.
In summary, we find that adding single-bounce indirect reflections (SimSingle) significantly improves
the simulation results with respect to the CamCube measurements. This is especially the case for the
Corner and the CornerCube scenes. For the CornerCubeShift scene, however, the deviation between
the ToF measurement CamCube and the simulation including single-bounce reflections SimSingle
still deviate, mainly in the visual corners between the base corner and the inserted, shifted cube.

Table 2. Evaluation of error for all simulation methods and scenes with respect to to the measured
CamCube data. For each method you can see the the mean-absolute-error (MAE), mean-squared-error,
(MSE) and the root-mean-squared-error (RSME).

Corner CornerCube CornerCubeShifted
Material #1 Material #5 Material #1 Material #5 Material #1 Material #5

GroundTruth
MAE 0.1001 0.0998 0.0831 0.0790 0.0969 0.0897
MSE 0.0103 0.0105 0.0071 0.0068 0.0106 0.0091

RMSE 0.1017 0.1025 0.0853 0.0823 0.1029 0.0956

SimDirect
MAE 0.0885 0.0884 0.0728 0.0688 0.0846 0.0777
MSE 0.0084 0.0085 0.0079 0.0069 0.0086 0.0074

RMSE 0.0916 0.0924 0.0888 0.0829 0.0927 0.0859

SimSingle
MAE 0.0238 0.0200 0.0194 0.0138 0.0396 0.0342
MSE 0.0007 0.0005 0.0006 0.0003 0.0023 0.0017

RMSE 0.0270 0.0226 0.0233 0.0171 0.0476 0.0417

Figure 9 shows the limitations of our simulation method. We have used a variant of the
CornerCube scene, where have placed an aluminum cube with an edge length of 5 cm into the
glossy corner (Material #1). In our simulation, we have used a Cook-Torrance BRDF to model the
reflection behavior of the aluminum cube. In this highly reflective scenario, the multipath effects
have a strong influence on the CamCube measurements (see range values in row 108, Figure 9 right).
Here, the cube nearly vanishes in the distance measurements between pixels 90 and 110. SimSingle,
in comparison, cannot capture this camera behavior, as no higher order multipath effects are simulated.

Regarding the noise model, we observe that the noise level of the SimSingle simulations and the
real ToF measurements CamCube are comparable, whereas the noise level for the direct simulation
SimDirect is higher. This is due to the fact that the total amount of charge is lower and that, in this case,
the additive Poisson noise is with a fixed amplitude. Thus, the relative impact of the noise is higher in
the case of the lower overall charge in the SimDirect simulation. This effect gets very apparent for flat
incident angle with respect to the direct light–surface impact .

Some final notes on the performance of the simulator: The computation of RSMs takes approx.
1.5 ms. Since we sample the whole RSM, the final accumulation step takes approx. 80 ms. Thus,
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our simulation operates at interactive frame rates. Meister et al. [4], the only other AMCW simulation
method accounting for multipath effects, requires computation times in the order of hours.
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Figure 6. Range image comparison: GroundTruth (left) and CamCube (mid-left) compared with
simulation using direct illumination (SimDirect, mid-right) and single bounce reflection (SimSingle,
right) for the three test scenes Corner (row 1, 4), CornerCube (row 2, 5) and CornerCubeShift (row 3,
6) for Material # 1 and Material # 5.

Figure 6. Range image comparison: GroundTruth (left) and CamCube (mid-left) compared
with simulation using direct illumination (SimDirect, mid-right) and single bounce reflection
(SimSingle, right) for the three test scenes Corner (rows 1,4), CornerCube (rows 2,5) and
CornerCubeShift (rows 3,6) for Material # 1 and Material # 5.
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Figure 7. Signed difference images to the CamCube measurement for CornerCube and
CornerCubeShift: GroundTruth (left) and the simulation with direct illumination (SimDirect, middle)
and with single bounce reflection (SimSingle, right) for Material #1 (top row) Material #5 (bottom).
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Figure 8. Range comparison for scanlines 100 for the three test scenes Corner (left), CornerCube
(middle) and CornerCubeShift (right) for Material #1 & Material #5.

Figure 7. Signed difference images to the CamCube measurement for CornerCube and CornerCubeShift:
GroundTruth (Left) and the simulation with direct illumination (SimDirect, middle) and with single
bounce reflection (SimSingle, Right) for Material #1 (top row) and Material #5 (bottom).
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CornerCubeShift: GroundTruth (left) and the simulation with direct illumination (SimDirect, middle)
and with single bounce reflection (SimSingle, right) for Material #1 (top row) Material #5 (bottom).
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Figure 8. Range comparison for scanlines 100 for the three test scenes Corner (left), CornerCube
(middle) and CornerCubeShift (right) for Material #1 & Material #5.

Figure 8. Range comparison for scan lines 100 for the three test scenes Corner (Left), CornerCube
(Middle) and CornerCubeShift (Right) for Material #1 and Material #5.
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Figure 9. Evaluation of the corner scene with an aluminium cube (extraction of pixel regions [70, 130]×
[70, 130]): This scene comprises a significant larger amount of multipath effects that cannot be fully
covered by our single-bounce simulation method.
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Figure 9. Evaluation of the corner scene with an aluminum cube (extraction of pixel regions
[70, 130]× [70, 130]): this scene comprises a significantly larger amount of multipath effects that cannot
be fully covered by our single-bounce simulation method.

6. Conclusions

We present an enhancement of a physically-based simulation technique for AMCW ToF
cameras with respect to multi-path effects and shot noise, while maintaining interactive frame
rates in a GPU-based implementation. We further provide a database of BRDF measurements in
the near-infrared range for a selection of purchasable materials. This database enables researchers
to build up their own real-world and virtual reference scenes out of materials with known reflection
properties. This allows for quantitative comparison between corresponding real-world and virtual
scenes and, thus, allows for quantitative evaluation of ToF cameras.

The comparison of simulated and measured depth data in Section 5 demonstrates that the
combination of BRDF measurements, multi-path effects, and noise enables realistic simulation
results that closely match real measurements of reference scenes, even though our model contains
single-bounce indirect reflections only.

In future work, it would be interesting to adapt our simulation technique to other types of sensors,
e.g., pulse-based ToF cameras, which are also affected by multi-path effects. These cameras operate at
similar wavelengths so that our BRDF database again facilitates quantitative comparisons of simulated
and real data.
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