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Abstract: The frequency of terahertz radar ranges from 0.1 THz to 10 THz, which is higher than
that of microwaves. Multi-modal signals, including high-resolution range profile (HRRP) and
Doppler signatures, can be acquired by the terahertz radar system. These two kinds of information
are commonly used in automatic target recognition; however, dynamic gesture recognition is
rarely discussed in the terahertz regime. In this paper, a dynamic gesture recognition system
using a terahertz radar is proposed, based on multi-modal signals. The HRRP sequences and
Doppler signatures were first achieved from the radar echoes. Considering the electromagnetic
scattering characteristics, a feature extraction model is designed using location parameter estimation
of scattering centers. Dynamic Time Warping (DTW) extended to multi-modal signals is used
to accomplish the classifications. Ten types of gesture signals, collected from a terahertz radar,
are applied to validate the analysis and the recognition system. The results of the experiment indicate
that the recognition rate reaches more than 91%. This research verifies the potential applications of
dynamic gesture recognition using a terahertz radar.
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1. Introduction

The frequency of terahertz radar ranges from 0.1 THz to 10 THz, which is situated between
microwaves and infrared waves [1]. High-resolution range profiles and Doppler signatures can be
achieved easily due to the high frequency of terahertz waves. As a result, a terahertz wave has
advantages with regards to target detection and recognition [2]. With the development of terahertz
radar systems, terahertz imaging [3], and detection [4], there has been much interest in the study of
terahertz radar. However, the research on practical applications is rare and gesture recognition using
terahertz radar is still an unexplored field.

A great deal of the research into hand-gesture recognition is based on computer vision and
contact-based gesture classifications [5]. The performance of vision-based approaches depends
strongly on lighting conditions [6]. Contact-based gesture recognition demands individuals to be
accustomed with the usage of the interface device, which is not adaptable to new users [7]. As a result,
the application of vision-based and contact-based gesture recognition has many limits. In contrast,
terahertz radar can not only provide full-time observation of targets [8], but can also work without
wearable devices. In addition, terahertz radar can be used for speed and distance detection [9].
It is applicable to the recognition of hand gestures by detecting changes in distance and speed.
In recent years, centimeter-wave radar (frequency in the 3–30 GHz range) has been used in gesture
recognition systems [10]. However, large-scale motion has usually been studied, which is confined
to low resolution. Very recently, a gesture recognition system Soli was designed for some specific
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usage scenarios based on millimeter-wave radar with a short range (frequency in 60 GHz). Compared
with the lower frequency radar system, the terahertz radar has a higher carrier frequency. It’s easy for
terahertz radar to achieve wider bandwidth and provide better range resolution, which can precisely
capture a change of hand gesture.

Information for tracking, Jet Engine Modulation (JEM), polarization, Doppler shifts, HRRP,
and radar images are usually utilized to perform target recognition [11–15]. In this paper, we focus on
gesture recognition for terahertz radar using multi-modal signals. Multi-modal signals in terahertz
systems include HRRP and Doppler signatures. A range profile of terahertz radar is actually a
one-dimensional terahertz radar image. Since terahertz radar has sufficient bandwidth, the shape of
the returned wave from a target can easily describe the geometric shape and structure of a target [16].
As a result, a change in targets will definitely lead to a change in range profiles. In addition to the
change in the target itself, aspect changes are shown in dynamic gestures. Furthermore, a range
profile of a single aspect is sensitive to aspect changes [17]. Therefore, range profiles have been
widely used in the target recognition. However, most of the previous studies focused on the target
itself. HRRP sequences in continuous time reflect movement characteristics, but gesture recognition
is rarely discussed. On the other hand, terahertz radar systems used the theory of Doppler speed
detection to measure the offset of a frequency. Doppler signatures obtained from terahertz radar are the
velocity information of the target motion, which can be used in the hand-gesture recognition field [18].
Multi-modal signals, including HRRP and Doppler signatures in terahertz radar systems, provide
target information for both image and velocity. This property allows terahertz radar signals to carry
much more information than single sensors, such as camera, infrared sensors, data gloves, and so on.
Since gesture recognition has its advantages, thanks to the characteristics of terahertz waves, gesture
recognition represents a promising future development for terahertz radar systems. To our knowledge,
there have been no reports regarding gesture recognition in the terahertz region.

Target classification algorithms include Dynamic Time Warping, Hidden Markov model (HMM),
Random Forest, Adaptive Boosting (AdaBoost), and so on [19–23]. The Dynamic Time Warping
(DTW) algorithm allows two temporal sequences to be aligned in terms of length, and also allows
similarities between them to be measured. Therefore, DTW is frequently used in gesture recognition.
In [24], hand gesture data was acquired using a multisensor system and the use of DTW as a fusion
processor was studied. In [25], a modified DTW algorithm is designed for gesture recognition using an
inertial-sensor based digital pen. In [26], gesture signals acquired from a depth camera were accurately
classified using a novel DTW algorithm. In [27], the efficiency of different dynamic time warping
methods was compared, based on a database of 2160 simple gestures.

Inspired by the preceding works, gesture recognition using terahertz radar is proposed in this
paper. HRRP sequences of hand gestures, in continuous time, are obtained from the received signals
of a terahertz radar system. The location parameter features of scattering centers are extracted from
HRRP sequences using the Relax algorithm [28]. On the other hand, Doppler signatures are extracted
using time-frequency analyses using a terahertz radar. Since two characteristics of hand gestures
are obtained, the local distance measure of DTW is extended to deal with vectors at each time point.
Furthermore, DTW distance fusion is added to accomplish decision-making. A terahertz radar dataset
is built in order to verify the effectiveness of our proposed method. The dataset is composed of
10 different classes of gesture signals performed by five people. The total number of gesture signal
samples is 1050. The recognition rates are eventually acquired, based on the dynamic hand gesture
dataset. In the experiments, we demonstrate that the recognition scheme proves to be effective in the
terahertz region. We also conducted a comparison experiment with project Soli. The experimental
results prove the contribution of high resolution of our terahertz radar system and the effectiveness of
our method.

The rest of the paper is structured as follows. The terahertz radar system is introduced,
and multi-modal signals, including HRRP and Doppler signatures, are achieved in the terahertz
region in Section 2. In Section 3, a recognition approach is proposed and a recognition scheme is
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presented. In Section 4, the experimental data and data preprocessing are discussed. In Section 5,
some experimental results are presented. Finally, conclusions are given in Section 6.

2. Radar System and Multi-Modal Signals

2.1. Radar System

The signals of gestures used in this paper were acquired using a terahertz radar. The framework
of the terahertz radar comprises four models: wave generator unit, chirp source unit, transceiver unit
and signal processing unit. The front-end setup of the terahertz radar is shown in Figure 1. A block
diagram of the terahertz radar system is shown in Figure 2. First, a chirp signal (bandwidth: 800 MHz)
was generated using the direct digital synthesizer based waveform generator. Then, the chirp
frequency was increased from the original 9 GHz to 340 GHz using a transmit (36 multiplication)
chain. Downconversion was achieved using a subharmonic mixer pumped by the 165–172-GHz local
oscillator signal.
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Figure 2. Block diagram of the terahertz radar system. TX is transmitter, RX is receiver, SHM is
subharmonic mixer, A/D is Analog-to-Digital, I/Q is In-phase/Quadratic and NCO is numerically
controlled oscillator.

Detailed parameters of the terahertz radar are shown in Table 1.

Table 1. Terahertz radar parameters.

Parameters Value

Carrier frequency 340 GHz
Bandwidth 28.8 GHz

Sampling frequency 1.5625 MHz
Pulse repetition frequency 1000 Hz

Cover Range 10 m
Range Resolution 5 mm
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2.2. HRRP Sequences

Considering the linear frequency modulated (LFM) signal we used as the illuminating signal,
inverse fast Fourier transform (IFT) was employed to achieve a high-resolution range profile of the
target [29].

The HRRP of a hand in the radar line of sight is shown in Figure 3. As we can see, the scattering
points lie mainly on the fingertips, knuckles, or some other points of the hand.
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Figure 3. The high-resolution range profile (HRRP) from a hand in the radar line of sight (LOS),
in which the circles represent sources of scattering points.

As shown in Figure 4, the HRRP sequences in a motion period are a collection of 1D radar images
at every sample time [30], which can precisely reflect the motions of gestures. The sampling time in
our terahertz system was 1 ms.
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Figure 4. (a–d) HRRP of a hand at a certain point in time; (e) HRRP sequences of a dynamic gesture
over five seconds, where the brightness represents the amplitude (a–d).

2.3. Doppler Signatures

Doppler signatures provide information on hand movements, as well as structure for dynamic
hand gesture recognition. In the radar line of sight, positive Doppler frequencies will appear when
a hand moves in the direction of the terahertz radar. On the other hand, a target moving away from
the radar will lead to negative Doppler frequencies [31].

Radar echoes are gained from the terahertz radar and then by FFT (fast Fourier transform) analysis,
the time-range profiles are used for Doppler information extraction. Then, the strongest points can
be easily determined at each time point. Finally, the method of time-frequency analysis (Short-time
Fourier Transform) is employed for the strongest points in continuous time using a sliding Hamming
window to extract the Doppler signature from the HRRP sequences [32].

3. Gesture Recognition Scheme

3.1. Feature Extraction of HRRP Sequences

The HRRP at a given time, with N points back scatterings (PBSs), can be represented using
a matrix: {

f1, f2, . . . , fN
σ1, σ2, . . . , σN

}
The location features of all scattering centers on the target can be represented by a set of

parameters { fi, i = 1, 2, . . . , N}. Meanwhile, the amplitude features of all scattering centers of
a target can be represented using a set of parameters

{
σj, j = 1, 2, . . . , N

}
. Previous studies have used

a variety of methods including alternative projection algorithm (ANPA), method of direct estimation
(MODE), estimation signal parameters via rotational invariance techniques (ESPRIT), and the Relax
algorithm [33–35]. Since the Relax algorithm has the advantages of better robustness variation and
convergence speed, it was selected for the extraction of locations and amplitude features in this
paper. However, the number of scattering centers from a target relates to the size and electromagnetic
scattering characteristics of the target. As a result, the number of scattering centers changes when
a dynamic hand gesture is performed. A range profile can be represented by a few of the strongest
scattering centers. The features of the n (n = 5 in this paper) strongest scattering centers were selected
to complete the classification.
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Supposing that a range profile in Ts seconds is acquired, and the length of time required to
finish a gesture is T seconds, the number of range profiles during that time would be M = T/Ts.
The parameter-set of HRRP sequences representing a gesture can be described as:

f11 σ11 f21 σ21 · · · fM1 σM1

f12 σ12 f22 σ22 · · · fM2 σM2

f13 σ13 f23 σ23 · · · fM3 σM3
...

...
...

...
. . .

...
...

f1n σ1n f2n σ2n · · · fMn σMn


In general, the location of the distribution of a target is more robust to variation in the target’s

aspect angle than the amplitude [36]; as a result, the locations of the scattering centers were chosen as
recognition features of the HRRP sequences:

f11 f21 · · · fM1

f12 f22 · · · fM2

f13 f23 · · · fM1
...

...
. . .

...
f1n f2n · · · fMn


In addition, the computation load is also decreased by 50% by choosing only location features

when compared with choosing features related to both location and amplitude.

3.2. Classification Method

DTW is an algorithm that measures the similarity between two sequences (mostly in different
lengths). It aims to find the shortest path by twisting and bending a time series. Therefore, the DTW
algorithm is widely used in the fields of voice, handwriting, and gesture recognition. This feature of
the DTW algorithm also makes it applicable to gesture recognition, based on terahertz radar.

In the classic DTW algorithm, a local distance measure is defined to acquire the similarity
between a training sample and a number of testing samples by finding an optimal path. Suppose
we have a test template named s of length I and a training template named t of length J, non-linear
matching is achieved between the two templates by finding an optimal path using an I-by-J matrix.
The distance function, denoted as d f (i, j), is the Euclidean distance, typically used for similarity
measures. A warping path, D, can be described as:

D =

{
d(i(q), j(q))

∣∣∣∣∣ q = 1, . . . , Q,
max(I, J) ≤ Q ≤ I + J − 1

}
(1)

There are several constraints to be discussed in terms of path selection.
Bounded constraints: The starting point is fixed at (1, 1) and point (I, J) is always the end point.

It is possible that the gestures may take different times to complete, but the order of the motion cannot
be changed.

Continuity constraints: no breaks in the path are guaranteed using continuity constraints.
Monotonicity constraints: the monotonicity constraints require the character of a gesture signal to

be clustered in monotonically increasing order.
Slope constraints: the slope constraints ensure that there is no excessive sway in the path. The slope

is usually restricted to (0.5, 2).
Based on the constraints above, the similarity measure, DTW(t, s), between the training template

and the testing template can be acquired from the accumulated local distance by following path D.
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The minimal overall distance of the warping path is the best alignment between the testing sample
and the training sample:

DTW
(→

t ,
→
s
)
= argmin

D

∑Q
q=1 d(i(q), j(q))

k

 (2)

where k is used for normalization.
The classic DTW method has mainly been applied to find the optimal path between

one-dimensional temporal sequences. However, the location features of HRRP sequences and Doppler
signatures are not one-dimensional temporal sequences, due to the high-resolution capabilities of
terahertz radiation. On the other hand, the extensions to multi-feature temporal sequences are
straightforward. Thus, the classic DTW algorithm needs to be improved.

In the classic DTW algorithm, the difference in only two values (Ti and Sj) is calculated as
a similarity measure. To extend to the gesture recognition using a terahertz radar, the difference
of two vectors (TN

i and SN
j ) is denoted as a similarity measure instead of the difference between

two points. We focused on two vector similarity measurements (Euclidian distance and the Cosine
correlation coefficient) in this paper. The performances of the two kinds of local distance measures
is discussed in the next section. Considering the characteristics of HRRP and Doppler signatures,
the Euclidian distance is defined as:

dE

(
TN

i , SN
j

)
=

√√√√ N

∑
n=1

(
Ti(n) − Sj(n)

)2
(3)

The Cosine correlation coefficient can be described as:

dC

(
TN

i , SN
j

)
= 1−

N
∑

n=1
Sj(n)Ti(n)√

N
∑

n=1
S2

j(n)

√
N
∑

n=1
T2

i(n)

(4)

A test template was compared using one of the training templates by seeking the optimal
path between the two templates. The optimal path of the two templates is illustrated in Figure 5.
By convenience, the shorter template is aligned along the Y-axis.
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Since we had two types of signals, HRRP sequences and Doppler signatures, it was necessary
to take data fusion into account. The training templates, D(M× I), and test templates, F(M× J),
represent location features of HRRP sequences. The training templates, G(O× K), and test templates,
H(O× L), represented Doppler signature sequences. Thus, the overall Euclidian distance after data
fusion was defined as:

DTWe = W(1)× DTWe(D, F) + W(2)× DTWe(G, H) (5)

The overall Cosine correlation coefficient is defined as:

DTWc = V(1)× DTWc(D, F) + V(2)× DTWc(G, H) (6)

where elements W and V are positive. Weight vectors W and V were used to accomplish the data
fusion and enhance the accuracy of hand gesture recognition. When all the elements of the vectors are
equal, the normal Euclidian distance and Cosine correlation coefficient could be obtained.

3.3. Recognition Scheme Overview

The recognition system was primarily composed of data preparation and DTW fusion. Data
preparation mainly consisted of the acquisition of HRRP sequences and Doppler signatures.
A threshold value filter and amplitude normalization were also included. A decision was made
after counting the accumulated distance. The framework of the recognition system is shown in
Figure 6.
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4. Experimental Data

Ten types of gestures were selected to acquire the experimental data set in this work. Three of the
gestures are shown in Figure 7. Due to different behavioral habits, an action may not be the same when
different people make the same gesture. Furthermore, when one person makes a gesture at a different
time or under different circumstances, there are still differences that are mainly displayed in terms of
range and speed of motion. Therefore, five individuals were chosen to complete ten gestures in order
to verify the effectiveness and robustness of the recognition scheme.

The HRRP sequences of the gestures used in this paper were acquired using a Linear Frequency
Modulated (LFM) signal. Corresponding to the three gestures shown above, HRRP sequences are
shown in Figure 7. In each of the images, several periods of continuous gesture are shown; they span
five seconds, and were collected from the same person. As we can see from Figure 8a, fingers started
at a position nearest to the radar receiver, then moved to the furthest point from the radar receiver,
and finally returned to the starting point. The HRRP sequences reflect the structure and movement of
the hand.
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Figure 7. Start, middle, and end point of a gesture: (a) G1: Swing the index finger so that it is
perpendicular to the radar line-of sight, from left to right, and then from right to left; (b) G2: Keep
fingers in the direction of the LOS, pinch the thumb and index finger; (c) G3: Keep fingers in the
direction of the LOS, pinch all fingers together and then spread them out, then pinch all the fingers
together again.
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domain to the frequency domain using FFT in the azimuth direction. The static parts were actually 
the zero frequency points in the frequency domain, according to the Doppler theory. The signal was 
translated back to the time domain after removing the zero frequency points in the frequency 
domain. Then, continuous HRRP sequences, without the static part, could be acquired using IFT in 
the range direction. The target is still when the HRRP of a target is totally removed after eliminating 
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Figure 8. HRRP sequences of three gestures: (a) G1; (b) G2; (c) G3.

The Doppler signatures of the three gestures are illustrated in Figure 9. It is shown that the
same gestures had similar Doppler signatures (similarity across each column), and different gestures
had distinct Doppler signatures (differences among each row). However, the length of the Doppler
signatures may be different. The bright area concentrated around zero frequency meant the static part
of the hand, which contributed nothing to recognition. Therefore, Pij = min(P) was set around the
zero frequency to remove the static part from our recognition scheme.
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Figure 9. Doppler signatures of three hand gestures for three samples. Three pictures in each column
represent G1, G2 and G3, respectively.

5. Experimental Data Preprocessing

It is inevitable that an individual will perform several types of gestures constantly. However,
there is a short-time pause, or a motion speed closing on zero, when a previous action was performed.
Therefore, the total time spent on a single gesture could be determined using near-zero velocity
detection in HRRP sequences.

Considering the properties of LFM radar signals, we could translate radar echoes from the time
domain to the frequency domain using FFT in the azimuth direction. The static parts were actually
the zero frequency points in the frequency domain, according to the Doppler theory. The signal was
translated back to the time domain after removing the zero frequency points in the frequency domain.
Then, continuous HRRP sequences, without the static part, could be acquired using IFT in the range
direction. The target is still when the HRRP of a target is totally removed after eliminating the zero
frequency. The flowchart for period determination is shown in Figure 10. The period acquisition,
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based on HRRP sequences, is shown in Figure 11. Moreover, the static part in HRRP sequences had a
direct influence on the accuracy rates of recognition. Therefore, data preprocessing can also improve
the recognition rates.
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6. Experimental Results

In this experiment, there were ten types of gestures used to analyze the effectiveness of the
recognition system. To verify our system, five individuals were selected to make ten gestures. Each
person repeated the same gesture 21 times. The total number of gesture signal samples was 1050.
Five samples of each gesture were chosen to be the training samples. The total number of training
samples was 50 and the remaining 1000 were set as test samples in the experiments.

The recognition rate of a single feature using the Cosine correlation coefficient is show in Table 2.

Table 2. Recognition rate of a single feature using the Cosine correlation coefficient distance.

Type G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 Average

HRRP 97 83 81 91 87 82 89 92 90 90 88.2
Doppler 95 89 82 88 88 86 92 92 91 89 89.2

The recognition rates with Euclidian distance and Cosine correlation coefficient are shown in
Tables 3 and 4, respectively.

Table 3. Recognition rate with Euclidean distance.

Type G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

G1 97 0 1 0 0 0 1 0 0 1
G2 0 84 5 0 0 1 1 2 0 7
G3 0 4 82 0 3 2 1 3 1 4
G4 0 0 1 93 1 1 0 0 1 3
G5 0 5 1 0 86 3 5 0 0 0
G6 0 0 1 7 4 83 0 3 0 2
G7 0 0 0 3 0 0 95 1 1 0
G8 0 2 2 0 0 0 0 93 0 3
G9 0 1 0 5 0 0 0 1 93 0
G10 4 0 0 0 3 0 5 0 1 87
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Table 4. Recognition rate with Cosine correlation coefficient distance.

Type G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

G1 98 0 1 0 0 0 1 0 0 0
G2 0 90 0 1 3 0 0 1 1 4
G3 2 1 87 0 2 6 0 1 1 0
G4 2 0 0 92 1 0 1 0 1 3
G5 0 4 1 0 91 0 2 0 1 1
G6 1 1 1 0 1 87 1 2 1 5
G7 0 1 0 2 0 1 94 0 0 2
G8 0 0 2 2 0 2 1 93 0 0
G9 0 0 0 1 3 0 0 3 92 1
G10 5 0 1 0 0 1 2 0 0 91

HRRP sequences of continuous time can precisely capture changes by the target, as well as
the movement characteristics. The Doppler feature can, not only reflect movement, but can also
eliminate the influence of the static and useless part of the hand. The two signatures can be viewed as
complementary features in the recognition system. As we can see from Table 2, the recognition rate of
HRRP was 88.2%, and the recognition rate of the Doppler feature was 89.2%. The total recognition
rate of using both HRRP and the Doppler feature was 91.5%, which is better than that of a single
feature. The experimental results prove that both HRRP and Doppler provide useful information.
A classification method based on both HRRP and Doppler has a lot of potential. The recognition system
has been proved to be effective using both HRRP sequences and Doppler signatures. The recognition
rate with the Cosine correlation coefficient (91.5%) was higher than that of the Euclidian distance
(89.3%), which means that the Cosine correlation coefficient was a more effective measure in our
recognition scheme. The total classification rate can reach 91.5%. The experimental results indicate
that our recognition system, in the terahertz regime, has the ability to achieve a good performance.

We built another dataset of four gestures, according to the Soli Project [37], as shown in Figure 12.
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Figure 12. Start, middle, and end points of four gestures. (a) Virtual Button; (b) Virtual Slider; (c)
Horizonal Swipe; (d) Vertical Swipe.

Five individuals are selected to make the four gestures. Each one repeats the same gesture for
100 times at various locations within a 10-m range of the sensor (compared with the 30-cm range of
Soli). The total number of gesture samples is 2000. 250 samples of each gesture are chosen to be the
training samples. The total number of training samples is 1000 and the remaining 1000 ones are set
as the test samples in the experiment. The recognition rate of Soli project and our system is shown
in Table 5.

Table 5. Recognition rate comparison.

Soli Project Our System

Recognition rate (%) 92.10 96.70
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This experimental result proves the contribution of the high resolution of our terahertz radar
system, as well as the effectiveness of our method.

7. Conclusions

A novel system for hand-gesture recognition in the terahertz regime was proposed in this paper.
In our recognition system, multi-modal signals, including HRRP sequences and Doppler signatures,
were used for gesture recognition. A benchmark data set was created to evaluate the recognition
system. The DTW algorithm was improved and was applied to the classification system in the terahertz
regime. We have demonstrated the effectiveness of this recognition system.
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7. Gałka, J.; Mąsior, M.; Zaborski, M.; Barczewska, K. Inertial motion sensing glove for sign language gesture
acquisition and recognition. IEEE Sens. J. 2016, 16, 6310–6316. [CrossRef]

8. Bhattacharjee, S.; Booske, J.H.; Kory, C.L.; Van Der Weide, D.W.; Limbach, S.; Gallagher, S.; Welter, J.D.;
Lopez, M.R.; Gilgenbach, R.M.; Ives, R.L.; et al. Folded waveguide traveling-wave tube sources for terahertz
radiation. IEEE Trans. Plasma Sci. 2004, 32, 1002–1014. [CrossRef]

9. Federici, J.F.; Schulkin, B.; Huang, F.; Gary, D.; Barat, R.; Oliveira, F.; Zimdars, D. THz imaging and sensing
for security applications—Explosives, weapons and drugs. Semicond. Sci. Technol. 2005, 20, S266. [CrossRef]

10. Molchanov, P.; Gupta, S.; Kim, K.; Pulli, K. Short-range FMCW monopulse radar for hand-gesture sensing.
In Proceedings of the 2015 IEEE Radar Conference (RadarCon), Arlington, VA, USA, 10–15 May 2015;
IEEE: Piscataway, NJ, USA, 2015; pp. 1491–1496.

11. Bell, M.R.; Grubbs, R.A. JEM modeling and measurement for radar target identification. IEEE Trans. Aerosp.
Electron. Syst. 1993, 29, 73–87. [CrossRef]

12. Yang, J.; Yin, J. On Target Recognition and Classification by a Polarimetric Radar. IEICE Commun. Soc.
Glob. Newsl. 2017, 41, 2.

13. Shu, C.; Xue, F.; Zhang, S.; Huang, P.; Ji, J. Micro-motion Recognition of Spatial Cone Target Based on ISAR
Image Sequences. J. Aerosp. Technol. Manag. 2016, 8, 152–162. [CrossRef]

14. Mao, C.; Liang, J. HRRP recognition in radar sensor network. Ad Hoc Netw. 2017, 58, 171–178. [CrossRef]
15. Zhang, Y.; Fang, N. Synthetic Aperture Radar Image Recognition Using Contour Features. In DEStech

Transactions on Engineering and Technology Research, 2016 (MCEMIC); DEStech Publications, Inc.: Lancaster,
PA, USA, 2016.

http://dx.doi.org/10.1038/nmat708
http://www.ncbi.nlm.nih.gov/pubmed/12618844
http://dx.doi.org/10.1109/7.489504
http://dx.doi.org/10.1109/JSEN.2014.2342495
http://dx.doi.org/10.1109/TTHZ.2015.2504791
http://dx.doi.org/10.1109/TSMCC.2007.893280
http://dx.doi.org/10.1109/JSEN.2016.2583542
http://dx.doi.org/10.1109/TPS.2004.828886
http://dx.doi.org/10.1088/0268-1242/20/7/018
http://dx.doi.org/10.1109/7.249114
http://dx.doi.org/10.5028/jatm.v8i2.603
http://dx.doi.org/10.1016/j.adhoc.2016.09.001


Sensors 2018, 18, 10 15 of 15

16. Feng, B.; Chen, B.; Liu, H. Radar HRRP target recognition with deep networks. Pattern Recognit. 2017,
61, 379–393. [CrossRef]

17. Du, L.; Wang, P.; Liu, H.; Pan, M.; Chen, F.; Bao, Z. Bayesian spatiotemporal multitask learning for radar
HRRP target recognition. IEEE Trans. Signal Process. 2011, 59, 3182–3196. [CrossRef]

18. Li, J.; Phung, S.L.; Tivive, F.H.C.; Bouzerdoum, A. Automatic classification of human motions using Doppler
radar. In Proceedings of the 2012 International Joint Conference on Neural Networks (IJCNN), Brisbane,
Australia, 10–15 June 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1–6.

19. Cheng, H.; Dai, Z.; Liu, Z.; Zhao, Y. An image-to-class dynamic time warping approach for both 3D static
and trajectory hand gesture recognition. Pattern Recognit. 2016, 55, 137–147. [CrossRef]

20. Zhou, Y.; Jiang, G.; Lin, Y. A novel finger and hand pose estimation technique for real-time hand gesture
recognition. Pattern Recognit. 2016, 49, 102–114. [CrossRef]

21. Gu, B.; Sheng, V.S. A robust regularization path algorithm for support vector classification. IEEE Trans.
Neural Netw. Learn. Syst. 2017, 28, 1241–1248. [CrossRef] [PubMed]

22. Gu, B.; Sun, X.; Sheng, V.S. Structural minimax probability machine. IEEE Trans. Neural Netw. Learn. Syst.
2017, 28, 1646–1656. [CrossRef] [PubMed]

23. Gu, B.; Sheng, V.S.; Tay, K.Y.; Romano, W.; Li, S. Incremental support vector learning for ordinal regression.
IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 1403–1416. [CrossRef] [PubMed]

24. Ko, M.H.; West, G.; Venkatesh, S.; Kumar, M. Using dynamic time warping for online temporal fusion in
multisensor systems. Inf. Fusion 2008, 9, 370–388. [CrossRef]

25. Hsu, Y.L.; Chu, C.L.; Tsai, Y.J.; Wang, J.S. An inertial pen with dynamic time warping recognizer for
handwriting and gesture recognition. IEEE Sens. J. 2015, 15, 154–163.

26. Plouffe, G.; Cretu, A.M. Static and dynamic hand gesture recognition in depth data using dynamic time
warping. IEEE Trans. Instrum. Meas. 2016, 65, 305–316. [CrossRef]

27. Barczewska, K.; Drozd, A. Comparison of methods for hand gesture recognition based on Dynamic Time
Warping algorithm. In Proceedings of the 2013 Federated Conference on Computer Science and Information
Systems (FedCSIS), Kraków, Poland, 8–11 September 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 207–210.

28. Pei, B.; Bao, Z. Multi-aspect radar target recognition method based on scattering centers and HMMs classifiers.
IEEE Trans. Aerosp. Electron. Syst. 2005, 41, 1067–1074.

29. Zhao, T.; Dong, C.Z.; Ren, H.M.; Yin, H.C. The Radar Echo Simulation of Moving Targets Based on HRRP.
In Proceedings of the 2013 IEEE International Conference on Green Computing and Communications
(GreenCom), and IEEE Internet of Things (iThings/CPSCom), and IEEE Cyber, Physical and Social
Computing, Beijing, China, 20–23 August 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1580–1583.

30. Ai, X.F.; Li, Y.Z.; Zhao, F.; Xiao, S.P. Feature extraction of precession targets using multi-aspect observed
HRRP sequences. Dianzi Yu Xinxi Xuebao (J. Electron. Inf. Technol.) 2011, 33, 2846–2851.

31. Otero, M. Application of a continuous wave radar for human gait recognition. Proc. SPIE 2005, 5809, 538–548.
32. Chen, V.C. Analysis of radar micro-Doppler with time-frequency transform. In Proceedings of the Tenth

IEEE Workshop on Statistical Signal and Array Processing, Pocono Manor, PA, USA, 14–16 August 2000;
IEEE: Piscataway, NJ, USA, 2000; pp. 463–466.

33. Bauschke, H.H.; Borwein, J.M. On the convergence of von Neumann's alternating projection algorithm for
two sets. Set-Valued Anal. 1993, 1, 185–212. [CrossRef]

34. Kailath, T.; Roy, R.H., III. ESPRIT–estimation of signal parameters via rotational invariance techniques.
Opt. Eng. 1990, 29, 296–313. [CrossRef]

35. Dai, D.H.; Wang, X.S.; Chang, Y.L.; Yang, J.H.; Xiao, S.P. Fully-polarized scattering center extraction
and parameter estimation: P-SPRIT algorithm. In Proceedings of the International Conference on Radar,
2006 (CIE ’06), Shanghai, China, 16–19 October 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 1–4.

36. Kim, K.T.; Kim, H.T. One-dimensional scattering centre extraction for efficient radar target classification.
IEE Proc. Radar Sonar Navig. 1999, 146, 147–158. [CrossRef]

37. Lien, J.; Gillian, N.; Karagozler, M.E.; Amihood, P.; Schwesig, C.; Olson, E.; Raja, H.; Poupyrev, I. Soli:
Ubiquitous gesture sensing with millimeter wave radar. ACM Trans. Graph. 2016, 35, 142. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.patcog.2016.08.012
http://dx.doi.org/10.1109/TSP.2011.2141664
http://dx.doi.org/10.1016/j.patcog.2016.01.011
http://dx.doi.org/10.1016/j.patcog.2015.07.014
http://dx.doi.org/10.1109/TNNLS.2016.2527796
http://www.ncbi.nlm.nih.gov/pubmed/26929067
http://dx.doi.org/10.1109/TNNLS.2016.2544779
http://www.ncbi.nlm.nih.gov/pubmed/27101618
http://dx.doi.org/10.1109/TNNLS.2014.2342533
http://www.ncbi.nlm.nih.gov/pubmed/25134094
http://dx.doi.org/10.1016/j.inffus.2006.08.002
http://dx.doi.org/10.1109/TIM.2015.2498560
http://dx.doi.org/10.1007/BF01027691
http://dx.doi.org/10.1117/12.55606
http://dx.doi.org/10.1049/ip-rsn:19990321
http://dx.doi.org/10.1145/2897824.2925953
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Radar System and Multi-Modal Signals 
	Radar System 
	HRRP Sequences 
	Doppler Signatures 

	Gesture Recognition Scheme 
	Feature Extraction of HRRP Sequences 
	Classification Method 
	Recognition Scheme Overview 

	Experimental Data 
	Experimental Data Preprocessing 
	Experimental Results 
	Conclusions 
	References

