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Abstract: Falsifying Global Navigation Satellite System (GNSS) data with a simulator or with a fake
receiver can have a significant economic or safety impact in many transportation applications where
Position, Velocity and Time (PVT) are used to enforce a regulation. In this context, the authentication
of the source of the PVT data (i.e., the GNSS receiver) is a requirement since data faking can become
a serious threat. Receiver fingerprinting techniques represent possible countermeasures to verify
the authenticity of a GNSS receiver and of its data. Herein, the potential of clock-derived metrics
for GNSS receiver fingerprinting is investigated, and a filter approach is implemented for feature
selection. Novel experimental results show that three intrinsic features are sufficient to identify
a receiver. Moreover, the adopted technique is time effective as data blocks of about 40 min are
sufficient to produce stable features for fingerprinting.

Keywords: fingerprinting; features; Global Navigation Satellite System (GNSS); receiver
identification; security

1. Introduction

Electronic device fingerprinting is “the process of gathering device information to generate
device-specific signatures” [1]. These signatures are then used to identify individual devices or specific
device models and introduce an additional layer of security in applications requiring data from a
trusted source. The ability to distinguish different device models is usually referred to as inter-model
identification, whereas the possibility of identifying individual devices is generally called intra-model
identification [1].

Device fingerprinting has several applications including the identification of wireless devices to
prevent the forgery of legitimate nodes in a network [2–5] and the characterization of mobile phones
to avoid counterfeiting of electronic components [6–8]. Wireless devices can be identified through
fingerprinting, and for example, illegitimate Access Points (APs) can be excluded from a wireless
network [9,10].

Similar to wireless devices in a network, GNSS receivers are used as data providers in several
applications [11–14]. In the maritime domain, vessels provide their positions to the port authorities
through the Automatic Identification System (AIS). Position is obtained using a GNSS receiver that
acts as a data provider for the AIS. GNSS data can be easily intercepted, and a genuine GNSS receiver
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can be easily replaced by a simulator. In this case, receiver fingerprinting can be used to determine the
identity of the GNSS receiver used by the AIS and detect illegitimate GNSS data transmissions.

A similar scenario is expected to occur in the road transportation sector, in the Digital Tachograph
(DT) context. The DT is an electronic device installed in commercial vehicles, above 3.5 tons in Europe,
and is used to record the driving and rest times with the ultimate goal of mitigating the risk of
accidents due to a tired driver. EU Regulation 165/2014 [13] foresees the progressive introduction
of a new generation of devices, called “smart tachographs”, which will use GNSS and Galileo for
improved security and accuracy. In this respect, there may be an economic incentive to tamper with the
tachograph and the integrated GNSS receiver. For this reason, EU regulation 165/2014 [13] mandated
the usage of the Open Service (OS) Navigation Message Authentication (NMA) that will be provided
by the Galileo system. The OS NMA is an authentication system that will enable source verification of
the Galileo navigation message. In this case, receiver fingerprinting can be adopted for multi-factor
authentication, where the physical properties of the receiver, as identified by its electronic fingerprint,
can be used to complement or augment authentication methods such as the Galileo OS NMA [15].
Other examples of multi-factor authentication for electronic devices were presented in [16,17] for
WiMax and ZigBee applications.

The data provided by the GNSS receiver integrated in a smartphone can be used for mobile
banking services [14]. Thus, there could be an economic interest to falsify the data provided by such
receivers. Also in this case, fingerprinting can be used to identify the GNSS data source.

A schematic representation of the potential GNSS receiver attacks, which could lead to forged
GNSS data, is provided in Figure 1. GNSS signal spoofing [18,19] occurs when legitimate GNSS signal
transmissions from GNSS satellites are replaced by synthetic Radio Frequency (RF) signals, generated
by a GNSS spoofer, usually located near the receiver. A second vulnerability is GNSS data faking [14],
which occurs when the data provided by the receiver itself are intercepted and replaced by false
Position, Velocity and Time (PVT) information. In both cases, misleading information is provided to
location-based applications, which rely on GNSS receivers as data sources. These types of attacks are
different with respect to the vulnerabilities considered in the Wireless Local Area Network (WLAN)
domain where devices with full-duplex capabilities are connected to a network [10]. GNSS receiver
vulnerabilities and attacks are further reviewed in [19,20]. In this paper, the data at the output of GNSS
receivers are considered. More specifically, the paper focuses on the problem of fingerprinting GNSS
receivers using the time series provided by the receiver itself at the “Data OUT” node in Figure 1.
The work assesses the feasibility of distinguishing different receiver models from experimental data.
While the approach developed can be used for improving the security of GNSS data transmission
through receiver identification, the problem of detecting attacks involving illegitimate GNSS data is
left for future work.

A passive fingerprinting approach [2] is adopted: the methodology developed does not require
interrogating the receiver, and its logged data are directly used for device identification. The data
provided by the receiver under open-sky conditions are directly used for device identification.
Clock-related time series are considered [21]. In particular, GNSS receivers provide the so-called
clock bias and clock drift [22]. These quantities are the estimates of the receiver clock offset and drift
with respect to the GNSS time scale and characterize the behavior of the receiver’s internal oscillator.
Fingerprinting is mainly based on the availability of specific features that are difficult to counterfeit.
Clock-derived features have been extensively used to fingerprint physical electronic devices including
WiFi cards and other network components. For example, the results presented in [9] demonstrate the
possibility of identifying network-connected devices by remotely analyzing the device clock skews.
Results from the literature [4,23–25] further demonstrate the effectiveness of clock-derived fingerprints
for device identification. For this reason, clock-related time series are considered in this paper.
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Figure 1. Schematic representation of potential attacks to GNSS receivers leading to forged GNSS data.

This work extends the preliminary results presented in [21]. In particular, device fingerprinting
generally follows three steps [1]: (1) identification of relevant features, (2) extraction and modeling of
features and (3) device identification and classification. In this paper, we focus on Step (2) and provide
preliminary results with respect to Step (3). In [21], we identified a set of relevant features that were
derived from the GNSS clock time series. This aspect is only briefly reviewed in Section 3, whereas
the main focus of the paper is the selection and characterization of a subset of features that can be
effectively used for fingerprinting. In this respect, we developed a filter method [26,27] to select the
most effective features among the candidate metrics discussed in [21]. The method developed is based
on the inter- and intra-class distances, and it is better detailed in Section 5. We also investigated the data
block duration required for the computation of reliable features. The candidate metrics selected in [21]
can be computed from the clock time series considering different data segment durations. Long data
segments generally lead to more stable and reliable features. However, it is important to limit the data
segment duration for fast device identification. We show that three features are sufficient for device
identification. Moreover, these features can be reliably computed using data segments of about 40 min.
Although 40 min may seem a prohibitively long time when compared with the time requirements
for fingerprinting other electronic devices, such as WiFi cards, it is important to contextualize the
application of the proposed techniques and to take into account the technical capabilities of GNSS
devices. Telecommunication devices, such as WiFi cards, operate at rates of several Mbps. This means
that several millions of samples are collected and processed every second. These high data rates
allow fast device fingerprinting. GNSS devices output data at a very limited rate, commonly with a
frequency of 1 Hz. Thus, the time required for fingerprinting has to be scaled by the data rate. It is
also important to consider the applications where GNSS receivers are employed. In the DT example
discussed above, the truck equipped with a GNSS receiver has to be periodically (every two years)
brought to a mechanical workshop for inspection, calibration and verification. The analyses at the
workshop are significantly longer than 40 min, making the proposed approach practical. In addition
to this, it is important to emphasize that GNSS spoofing/data faking attacks require long periods of
time. Too fast or abrupt data changes in the receiver position or clock time series make the attack easily



Sensors 2017, 17, 2120 4 of 18

detectable. Therefore, the time required by the approach considered in this paper is reasonably lower
than the time required to perform the attack.

These aspects were not considered in [21] and are some of the innovative contributions of this
paper. Moreover, the experimental analysis has been significantly extended, and new data collections
were performed to further support the initial findings discussed in [21]. A new antenna location
was selected, and fingerprints were computed using the new experimental data. A good consistency
between different data collections is found: this result shows the stability of the metrics selected for
fingerprinting with respect to environmental changes.

The analysis conducted and the experimental results obtained show that the receiver model can
be effectively determined using clock-derived metrics. While inter-model identification can be easily
achieved with the methodology proposed, experimental results show that a different approach is
required for intra-model identification.

The remainder of this paper is organized as follows: Section 2 provides a general overview of the
system developed for GNSS receiver fingerprinting. Section 3 describes the candidate metrics selected
for receiver fingerprinting, and Section 4 introduces the experimental setup adopted for data collection
and receiver characterization. The filter method for feature selection is described in Section 5, and
experimental results are provided in Section 6. Conclusions are drawn in Section 7.

2. System Overview

A comprehensive description of the overall procedure used for the characterization and
fingerprinting of the different GNSS receivers is provided in this section. The complete system
model is illustrated in Figure 2 and is comprised of the following steps:

• Collection of raw GNSS measurements: The GNSS receivers under test are connected to an
antenna in static conditions. We have considered three different locations ranging from the
rooftop of a high building under clear-sky conditions to a partially-obstructed environment. The
experimental setup, which was used for gathering raw GNSS observables, is better described
in Section 4. The data collected include pseudoranges, carrier-phases and Doppler shifts. The
clock-related features used for fingerprinting are directly obtained by the observables collected.

• Evaluation of clock-derived time series: The raw observables collected during the previous step
are used to estimate the clock biases and drifts of the receivers under tests. Normalized frequency
error time series are then derived from the clock drifts and the clock biases.

• Computation of a redundant set of candidate features: Once the normalized frequency error time
series are obtained, a large set of clock-related candidate features is computed. These metrics are
derived from the computation of the Allan Deviation (ADEV), Time Interval Error (TIE) and the
correlation of the normalized frequency errors. A detailed description of the candidate features is
provided in Section 3.

• Feature selection: Finally, receiver fingerprints are determined using a filter approach, which
consists of choosing the most representative features from the redundant set. The filter procedure
adopted in this work is presented in Section 5.

As better detailed in [21], the clock-related metrics considered here can be computed from either
the clock bias and clock drift time series. Clock bias time series are computed from pseudoranges [22]
and represent the time differences between the local time, generated by the receiver internal clock,
and the GNSS time scale, which is usually steered to a Universal Time Coordinated (UTC) realization.
Clock drift time series are obtained from Doppler measurements and are estimates of the mismatch
between the frequency generated by the receiver local clock and the frequency associated with the
GNSS time scale. The clock drift can be considered as the first order derivative of the clock bias, and
thus, when clock bias time series are available, it can also be estimated through time differentiation.
It is noted that, although of a different nature, Doppler measurements are considered more accurate
then pseudoranges [22]. Thus, clock drift computed from Doppler observations are less noisy than
their counterpart obtained through the time differentiation of the clock bias.
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Most time-related metrics are computed from the so-called “normalized frequency error” [28,29],
which is a normalized version of the clock drift. In particular, the estimated clock drift is normalized
by the GNSS center frequency, in this case fL1 = 1575.42 MHz. By taking into account the relationship
between the clock bias and clock drift, it is possible to express the normalized receiver frequency
error as:

fe[n] =
dtr[n]− dtr[n− 1]

Ts
, (1)

where dtr[n] is the clock bias, n is the time index and Ts is the sampling time of the measurements.
The features considered in this paper are computed from fe[n].

GNSS 
Receiver

(PV)T
Computation

Raw 
Measurements

Metrics 
Computation

Clock-derived 
time series

Redundant set of
features (candidate
features)Feature 

Selection 
(filtering)

Receiver
Fingerprint

Figure 2. Approach adopted for the determination of the receiver fingerprints.

From the discussion reported above, it emerges that fe[n] can be estimated either from the clock
bias or from the clock drift. Moreover, different approaches can be used for the computation of the
clock bias and drift time series. In [21], three approaches were considered for the evaluation of the
clock bias and three methods for the evaluation of the clock drift. In particular, the clock bias can be
evaluated using a:

• standard approach, where the user position is assumed unknown, and pseudoranges are used to
determine the user location and clock bias with a Weighted Least Squares (WLS) approach;

• ‘timing’ approach, where the user position is known, and pseudoranges are used to compute the
clock bias only; this approach is generally adopted by GNSS timing receivers;

• constrained solution [30], where constrains are used to model the time evolution of the
user position.

Similarly, the clock drift can be computed using a:

• standard approach, where Doppler measurements are used to estimate the user velocity and the
clock drift; also in this case, a WLS approach is adopted;

• ‘timing’ approach, where, similar to the previous case, the user position and velocity are assumed
known and constant; thus, Doppler observations are used to estimate only the clock drift;
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• constrained solution [30], where constrains are used to model the time evolution of the user
position and velocity.

A more detailed description of these approaches can be found in [21].
The normalized frequency error generated using the aforementioned six approaches is plotted in

Figure 3 for a u-blox M8T receiver.

Figure 3. Normalized frequency error time series using Doppler-derived and pseudorange-derived
processing strategies.

From the figure, it emerges that all six time series exhibit the same behavior, and only marginal
differences can be noted. The time series obtained by using the estimated clock bias with an unknown
position (labeled “pseudorange - std” in Figure 3) is the noisiest, and thus, Doppler-derived time
series should be preferred. Furthermore, findings provided in [21] show that the normalized frequency
error obtained from Doppler measurements provides features more stable to environmental changes.
For this reason, only Doppler-derived time series are considered in the following. Although no
significant differences were observed among Doppler-derived time series, we considered the “timing”
approach where position and velocity are fixed.

3. Candidate Metrics

Several clock-related metrics, widely used in the literature to characterize the behavior of a clock,
have been considered in [21] as candidate metrics for fingerprinting. In this section, we provide a short
summary of the candidate metrics identified in [21]. These metrics are classified as ADEV-, TIE- and
correlation-based metrics. The ADEV is a measure of frequency stability in clocks and oscillators [29].
The ADEV is defined as in [28]:

σA(τ) =

√√√√ 1
2(Nτ − 1)

Nτ−1

∑
i=1

(
f̃e,K[i]− f̃e,K[i− 1]

)2 (2)

where τ is the averaging time and is an integer multiple of the of the sampling time:

τ = KTs
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with K an integer value. The time series, f̃e,K[·], in (2) is a filtered and down-sampled version of the
normalized frequency error (1) and is expressed as:

f̃e,K[i] =
1
K

K−1

∑
n=0

fe[iK− n]. (3)

Furthermore, the value Nτ in (2) is the number of frequency error samples available after the
filtering and down-sampling processes. The ADEV is a function of the averaging time, τ, and
therefore, it cannot be directly used for fingerprinting. However, summary statistics of the ADEV can
constitute useful metrics for the fingerprinting process. It was shown in [21] that, for small values
of τ (short-term behavior), the ADEV provides more significant information for identifying different
receiver clocks. Thus, the ADEV values at τ = 1 s and τ = 30 s are considered as candidate metrics
for fingerprinting. In addition, the slope between these two ADEV values, the minimum value of the
ADEV curve and the averaging time corresponding to the minimum ADEV have also been investigated
as candidate metrics.

As opposed to the ADEV, which computes the average variations of the normalized frequency
errors, TIE-related metrics describe the total phase variation of the frequency errors [28,31]. The TIE is
a function dependent on two parameters, the sampling time and the lag K, and can be expressed as:

TIE(n, K) = TE[n]− TE[n− K], (4)

where TE[n] is the time error function:

TE[n] =
n

∑
i=0

fe[i]Ts. (5)

Two functions, the Root Mean Square TIE (RMS-TIE) and the Maximum TIE (MTIE), can be
derived directly from the TIE expression in (4). Also in this case, summary statistics can be selected
to model their behavior as a function of K, the lag introduced in (4). Similar to the ADEV case, the
RMS-TIE and the MTIE functions evaluated at τ = KTs = 1 s and τ = KTs = 30 s are considered as
candidate metrics. In addition, the slopes of RMS-TIE and of the MTIE were selected for evaluation.
More detailed information regarding the selection of these metrics can be found in [21].

Correlation

Normalized frequency error

Allan Deviation

Max TIE RMS TIEADEV(1) ADEV(30)

ADEV
slope

ADEV
min

min

Corr(20)Corr(60)

RMS(1) RMS(30)

RMS
slope

Max(1) Max(30)

Max
slope

TIE

Figure 4. Metrics analyzed for the definition of a fingerprint for GNSS receivers. ADEV, Allan Deviation;
TIE, Time Interval Error.
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Finally, the correlation function of the normalized frequency error was also analyzed as a source
of fingerprinting metrics [23]. The mathematical expression of the normalized correlation function is
given by:

R(τ) =
1

σ2
f (N − K)

N−1

∑
n=K

(
fe[n]− f̄e

) (
fe[n− K]− f̄e

)
(6)

where f̄e and σ2
f are the sample mean and variance of the normalized frequency error [21]. N is the

total number of samples used for the computation of the correlation function. Two correlation values,
at τ = 20 s and τ = 60 s, were considered as metrics for fingerprinting. A summary of the metrics
considered in this paper is provided in Figure 4.

4. Experimental Setup

Three data collections were performed in different scenarios in order to evaluate the environmental
impact on the metrics used for fingerprinting. The first measurement campaign was conducted using
a geodetic antenna located on the rooftop of the European Microwave Signature Laboratory (EMSL) at
the Joint Research Centre (JRC) premises in Ispra, Italy. This laboratory building is one of the highest
on the JRC campus, and no obstacles are present in the vicinity of the antenna. Hence, this first data
collection was conducted under clear-sky conditions. The location of the antenna for this scenario is
shown in Figure 5a.

rooftop 

antenna

a) b)

c) d)

Figure 5. Location of the antennas used for the data collections and laboratory testing setup.
(a) Clear-sky scenario used for the first data collection. (b) Antenna surrounded by buildings and trees
used for the second scenario. (c) Antenna partially surrounded by trees used for the third scenario.
(d) Laboratory setup used for collecting and logging GNSS data.

The second data collection was carried out using an antenna mounted on the rooftop of an
office building within the JRC premises. In this scenario, the office building is surrounded by taller
constructions and by high trees, generating a disturbed received signal environment due to multipath
and fading effects.
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The final measurement campaign was conducted by fixing an antenna on the rooftop of another
building on the JRC campus. Furthermore, this scenario is characterized by good signal conditions.
Snapshots of the antenna locations for these three measurement campaigns are provided in Figure 5.

A simple laboratory setup was implemented for the three data collections. The GNSS receivers
under test were all connected to the same antenna by means of an RF splitter. Dedicated software
tools for each receiver model were used for logging and collecting the raw GNSS observables,
i.e., pseudoranges and Doppler shifts with a 1 Hz data rate. The GNSS receivers continuously collected
data for several days for each data collection. A snapshot of the laboratory testing setup is illustrated
in Figure 5d.

Several models of GNSS receivers were used, including professional multi-constellation and
mass-market receivers. In order to have the same operational conditions among receivers, only Global
Positioning System (GPS) measurements were used since not all of the models offer multi-constellation
capabilities. The list of the GNSS receivers that were used for each data collection, including the
model’s name and the number of receivers of the same model, is provided in Table 1. A total of five
u-blox M8T mass-market receivers were considered: among them, one was updated using the latest
firmware provided by the manufacturer. This update was performed in order to investigate the impact
of firmware changes on fingerprinting within the same receiver model.

Table 1. List of the receivers used in the three data collections. The number of receivers used for each
model is provided between brackets.

Test 1 Test 2 Test 3

u-blox M8T (4) u-blox M8T (4) u-blox M8T (3)
u-blox M8T Galileo (1) u-blox M8T Galileo (1) u-blox M8T Galileo (1)

u-blox LEA-6T (1) u-blox LEA-6T (1) u-blox LEA-6T (2)
PolarRx (2) PolarRx (1) PolarRx (1)
AsteRx (1) AsteRx (1) u-blox LEA-5T (1)

u-blox LEA-5T (1)

5. Data Segmentation and Feature Selection

In Section 3, a set of candidate metrics was presented. These metrics are highly correlated and,
in some cases, convey similar information. This fact clearly emerges from Figure 6, which provides a
matrix of scatter plots where features are plotted in pairs. In particular, the most correlated candidate
features are considered in Figure 6. A clear linear dependence emerges between RMS-TIE(1) and
RMS-TIE(30) and between the MTIE(1) and MTIE(30). A dependence between two metrics indicates
that only one should be selected for fingerprinting: the second feature does not add any additional
information. In this respect, only one RMS-TIE and only one MTIE metric should be considered.
Although a strict linear dependence cannot be identified between RMS-TIE and MTIE, Figure 6 clearly
shows that an increase of one metric is reflected by an increase of the other.

These considerations have motivated the selection procedure described below. The dependence
between metrics was further analyzed in [21], and thus, it is not further considered here.

The measurements obtained using the experimental setup described in Section 4 led to long time
series where more than 60 h of consecutive data were collected. While it is possible to compute the
metrics described in Section 3 using the whole datasets, it is important to determine the minimum
duration of the time series such that reliable features can be evaluated. In this way, the required
analysis time can be reduced. Thus, the overall procedure depicted in Figure 7 was adopted. The
goal of the procedure was two-fold: to establish the duration of the time series for reliable feature
evaluation and to select the most effective features for fingerprinting.
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Figure 6. Scatter plots between four candidate metrics considered for receiver fingerprinting.
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Figure 7. Procedure adopted for data segmentation and for feature selection.

In the procedure described in Figure 7, a data duration is at first selected. The clock-derived time
series described in Section 2 are then divided into data segments of the duration selected. The data
segments are used to compute several realizations of the features described in Section 3, which in turn
are used for feature selection.

Several approaches can be adopted for feature selection [26,27]. According to [27], these
approaches can be classified as:

• filter methods: Different feature subsets are considered, and for each subset, a score function is
evaluated. The score function is used to rank the different subsets. The subset with the highest
score is then selected for fingerprinting

• wrapper approaches: These methods require a classifier. Similar to filter approaches, different
features subsets are considered, and the classifier is used to score the different subsets. The subset
leading to the highest classification performance is selected for fingerprinting

• embedded methods: In this case, feature selection is integrated with the classifier, which
determines the best subset of features during the training phase.

Filter methods are usually less computationally demanding than the other approaches and are
not tied to a specific classifier. The use of a score function can also be easily adapted to determine the
length of the data segments for feature computation. This is the approach used here and depicted
in Figure 7: for a fixed data length, the different subsets are considered, and the score function is
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evaluated. The length of the data segments is determined according to the maximum value achieved
by the score function with respect to the different subsets.

The score function adopted here is a function of the inter- and intra- class distances. A geometric
interpretation of such distances is provided in Figure 8: the inter-class distance quantifies the spread of
a class, while the intra-class distance describes separation between two classes.

In order to compute these quantities, it is at first necessary to normalize the feature vector.
In particular, let us denote:

xi,j =



x0
i,j

x1
i,j
...

xk
i,j
...


(7)

the j-th realization of a feature vector for a receiver belonging to class i. The superscript k is used to
identify the different components of the feature vector. These components are the candidate metrics
described in Section 3. Each realization, which is indexed by j, is obtained using one of the data
segments described above. The components of (7) are heterogeneous in nature, i.e., they assume values
in very different ranges, and thus, a normalization is required to make the different features contribute
in a similar way to the evaluation of the intra- and inter-class distances. The normalized feature vector:

x̄i,j =



x̄0
i,j

x̄1
i,j
...

x̄k
i,j
...


(8)

is obtained by applying the following normalization to the individual vector components:

x̄k
i,j =

xk
i,j −minl,h(xk

l,h)

maxl,h(xk
l,h)−minl,h(xk

l,h)
. (9)

In the equations above, the overline notation denotes normalized quantities. The minimum
and maximum in (9) are computed considering all feature realizations and all classes. An additional
interpretation of (9) will be provided after introducing the notion of intra- and inter-class distances.

For a subset of features, F , the intra-class distance is defined as:

dc,i(F ) =

√√√√ 1
Nc,i − 1

Nc,i−1

∑
j=0

∑
k∈F

(
x̄k

i,j − µ̄k
i

)2
(10)

where Nc,i is the number of feature realizations for the i-th class/receiver type and µ̄k
i is the mean

feature vector for the i-th class. In Figure 8, µ̄k
i is the centroid of the class.

The inter-class distance characterizes the separation between two classes, and it is defined as:

di,j(F ) =
√

∑
k∈F

(
µ̄k

i − µ̄k
j

)2
. (11)
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Figure 8. Geometric interpretation of the score function adopted for feature selection.

The subsetF is used to select the features to be used in the computation of the distances. Moreover,
all of the quantities in (10) and (11) are computed using normalized values (9). In this respect, both (10)
and (11) can be interpreted as Mahalanobis distances, where each component is weighted by:

wk =
1[

maxl,h(xk
l,h)−minl,h(xk

l,h)
]2 . (12)

The difference, maxl,h(xk
l,h)−minl,h(xk

l,h), is the range of the k-th feature and can be interpreted as
a scaled estimate of the feature standard deviation. In this way, (10) can be, for example, rewritten as:

dc,i(F ) =

√√√√ 1
Nc,i − 1

Nc,i−1

∑
j=0

∑
k∈F

wi

(
xk

i,j − µk
i

)2
(13)

where non-normalized features are now used. Using (11) and (10), it is finally possible to evaluate the
score associated with subset F :

G(F ) =
mini 6=j di,j(F )
maxi dc,i(F )

. (14)

The score for subset F is the ratio between the smallest inter-class distance and the largest
intra-class distance. In this way, the maximization of G(F ) corresponds to the selection of the feature
subset that maximizes the separation between classes.

Score function (14) has been computed considering subsets of Three components. Moreover,
data segments with durations ranging from 20 (1200 samples) to 120 min (7200 samples) have been
considered. For each duration, the maximum with respect to the feature subsets has been determined.
The maximum score values are reported in Figure 9 as a function of the data segment duration.
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Figure 9. Maximum score function values as a function of the data segment duration.

From the figure, it emerges that data segments with durations above 40 lead to a score above
six. This indicates that features computed with these data durations lead to effective fingerprints for
receiver identification. Well-separated classes are obtained, and the minimum inter-class distance is
six-times larger than the largest class spread. In the following sections, data segments of duration
equal to 60 min (3600 samples) are considered.

6. Experimental Results

The data collected according to the experimental setup described in Section 4 have been used to
test the approach detailed above. In particular, three aspects have been investigated:

• the stability of the features with respect to environmental changes: in this respect, features
obtained from the three antenna locations have been compared;

• the score associated with the different feature subsets for a fixed data segment duration of 1 h
(3600 samples);

• the clustering of the different receiver classes when a limited number of features is used for
fingerprinting.

The stability of the candidate features to environmental changes is analyzed in Figure 10 where
two receivers are considered as an example. The estimated feature values of two GNSS receiver
models, namely u-blox M8T and u-blox LEA6T receiver types, were computed for the three data
collections described in Section 4. In order to allow a better graphical representation, features have
been normalized according to (9). In this way, all feature components are in the [0, 1] range and can
thus be better plotted in the same figure. For the two receivers and for each candidate metric, three bar
plots are provided corresponding to the three different measurement scenarios. Given a data collection,
each bar represents the average value of the normalized feature realization.
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Figure 10. Comparison among features for two different receivers and for the three data collections
described in Section 4. For each receiver and for each feature, three bars of the same color are displayed.
Each bar corresponds to a different data collection. The feature values have been normalized in the
[0, 1] range. MTIE, Maximum TIE.

Results in Figure 10 show that the two receiver models can be easily distinguished from each other
by considering most of the normalized feature values. In particular, the average values for the features
ADEV(1), ADEV(30), ADEV slope, τmin, Root Mean Square (RMS)-TIE(1), RMS-TIE(30), MTIE(1) and
MTIE(30) show significant differences depending on the selected receiver model.

Figure 10 also shows the consistency of the feature values between different data collections.
Most of the features selected have a very consistent behavior in the three cases considered and for each
receiver type. This demonstrates the robustness of the features with respect to environmental changes.
Similar results were obtained when considering other receivers.

The score associated with the different subsets is analyzed in Figure 11, where subsets of three
elements are considered. The subset size was set to three as no significant improvement, in terms of
score, was observed when further increasing the dimensionality of the feature vector. When three
elements are considered, there are 286 possible subsets from 13 features. These subsets are enumerated
by the ‘subset index’ in the abscissa of Figure 11. The first 78 subsets include the ADEV(1) and show,
overall, scores higher than the other subsets. In this respect, the ADEV(1) is the most discriminating
feature from the set considered.

As already mentioned in Section 5, a maximum score higher than six is achieved. This indicates a
good separation between the different receiver classes.

Finally, the receiver classes, as represented by their corresponding feature vectors, are shown
in Figure 12. The feature vectors depicted in Figure 12 are made of the three components leading
to the highest score in Figure 11. The features selected are all based on the ADEV: the ADEV(1),
the ADEV(30) and the averaging time, τmin, corresponding to the minimum ADEV. This result seems
to imply that ADEV summary statistics are the most effective for device classification. This result also
suggests that other ADEV-derived statistics should be investigated for fingerprinting.

The different receiver classes can be easily recognized from the figure, confirming the fact that
three features are sufficient to identify a receiver. It is worth noting that receivers of different models,
but from the same manufacturers have similar characteristics. For example, the PolaRx and AsteRx
receivers from Septentrio are well localized in the ADEV(1)-ADEV(30) plane. However, a significant
variability is observed with respect to the metric τmin.
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Figure 11. Score results evaluated as a function of the subset index. Subsets of three elements are
considered. The analysis is limited to features computed from the clock drift obtained assuming a
known location. The data segment duration is of 1 h.

Figure 12 also shows the fact that individual devices are indistinguishable in the feature space
considered in Figure 12. This confirms the preliminary result derived in [21] that only inter-model
identification is possible with the approach described in this paper.

The separation of the different classes has been further investigated through the implementation
of a Gaussian Naive Bayes Classifier (NBC) [32]. It is noted that the detailed analysis of classification
performance and the development of specific classification approaches for GNSS receiver identification
is outside the scope of this paper. In this respect, the NBC has been implemented only to support the
results already presented, confirming the possibility of identifying different receiver types. The NBC
has been selected, as it is one of the simplest classification approaches whose implementation depends
on a very limited number of parameters. Future developments may investigate the performance of
other machine learning classification algorithms.

The data shown in Figure 12 have been used for training and testing the classifier. Several
experiments were conducted where, for each round, feature vectors were randomly partitioned into
two disjoint sets. About 10% of the fingerprints (i.e., 120 feature vectors) were adopted for training
while the remaining data were used to test the capabilities of the NBC. During the training phase, the
data were used along with the known class labels to estimate the means and variances of the different
transition probabilities used by the NBC. During the test phase, the classifier assigned to each receiver
a class label from its feature vector. The three features considered above were provided to the classifier.
The predicted class labels were then compared with the corresponding known class labels and the
classification performance was analyzed. This type of experiment was repeated several times with
different random partitions between training and testing datasets. Results were averaged over the
different random partitions.

Using this approach, the results shown in Figure 13 were obtained. The figure shows the confusion
matrix obtained using the NBC for receiver classification. The values on the diagonal of the matrix are
the probabilities of correctly classifying a receiver from its fingerprint. Figure 13 shows that, with the
exception of the case of the u-blox LEA6T receiver, correct classification rates are around or above 90%.

These results are in agreement with the findings presented in Figure 12: the classes are well
separated, and a classification algorithm can easily identify them. The u-blox LEA6T receiver is the
device with the most scattered fingerprints. Moreover, a certain overlapping with the fingerprints of
the u-blox M8T devices can be observed in Figure 12. This fact justifies the lower success rate reported
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in Figure 13. This rate is however close to 80%, and the ambiguity is with respect to a device from the
same manufacturer.
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Figure 12. Receiver clustering based on the three features selected from Figure 11. The different receiver
types can be easily identified.

The overall accuracy (i.e., the average of the diagonal elements of the confusion matrix) obtained
with the NBC is 91.4%, which is considered a very positive success rate. These results further support
the possibility of correctly identifying GNSS receivers from their clock-based fingerprint.
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Figure 13. Confusion matrix obtained using a Naive Bayes Classifier (NBC) for receiver classification.

7. Conclusions

This paper describes the results obtained for fingerprinting GNSS devices using clock-based
metrics. Features were selected using a data segmentation and filter approach. Feature subsets were
considered, and a score was assigned to each subset. The subset with the highest score was selected
for fingerprinting. The filter method implemented was also used to select the data segment duration
for the computation of the features. From the analysis, it emerges that a fingerprint of three elements
is sufficient for identifying the receivers. Moreover, 40 min of data (2400 samples) are sufficient to
compute reliable features. Different time series were considered, and it was shown that features should
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be computed using time series extracted from the receiver clock drift. Clock drift time series are
less noisy and provide more reliable results. The experimental analysis conducted considering three
different environments shows the stability of the metrics selected and the effectiveness of the approach
in determining the receiver model.
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