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Abstract: Network densification is attracting increasing attention recently due to its ability to
improve network capacity by spatial reuse and relieve congestion by offloading. However, excessive
densification and aggressive offloading can also cause the degradation of network performance due
to problems of interference and load. In this paper, with consideration of load issues, we study the
optimal base station density that maximizes the throughput of the network. The expected link rate
and the utilization ratio of the contention-based channel are derived as the functions of base station
density using the Poisson Point Process (PPP) and Markov Chain. They reveal the rules of deployment.
Based on these results, we obtain the throughput of the network and indicate the optimal deployment
density under different network conditions. Extensive simulations are conducted to validate our
analysis and show the substantial performance gain obtained by the proposed deployment scheme.
These results can provide guidance for the network densification.
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1. Introduction

We are embracing a booming era of information technology, where all people and industries
are powered to reach their full potential. In the coming few years, smart devices of an increasingly
powerful scope will connect to wireless networks, allowing the opportunity to use extremely diverse
multimedia services. The technical reports from Ericsson and Qualcomm [1,2] predicted that the
number of devices connected to wireless networks would soar to 28 billion by 2021 and the mobile data
traffic in 2020 will be 1000 times greater than that of the 2010 baseline. These trends show a high traffic
density in the near future. To triumph over this formidable challenge, International Telecommunication
Union-Radiocommunication Sector (ITU-R) has defined Enhance Mobile Broadband (eMBB) as one
of three typical scenarios of 5G (5th generation wireless systems) [3]. According to the report from
IMT-2020 promotion group of China, the 5G network is expected to provide tens of Tbps/km2 traffic
volume density [4].

As a key solution to high traffic density, network densification is proposed to deploy ultra-dense
heterogeneous networks (HetNets) [5]. Network densification has many advantages. It improves the
area spectral efficiency by reusing the spectrum extensively over geographic areas, which effectively
deals with the spectrum shortage. Moreover, it can also offload traffic from congested macro base
stations (MaBSs) to small base stations (SmBSs). It reduces the number of users competing for
communication resources and improves the service quality. Acknowledging these advantages,
researchers are studying the multi-tier heterogeneous networks (HetNets) to implement network
densification, where different radio access technologies (RATs) working in both licensed and unlicensed
spectrums coexist.
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1.1. Motivation and Related Work

Although network densification can offer greater capacity and offload more data traffic from
existing congested networks, the growth of interference among SmBSs accelerates, particularly since
the interferers are nearer and larger in number. Interference will then become the biggest constraint to
network capacity improvement. Initially, when SmBSs are sparse, increasing the density can provide
more available channels and enhance the network capacity. Nevertheless, as the density grows, the
interference will heavily degrade the signal-to-interference-plus-noise ratio (SINR) and limits the
capacity. It brings an interesting question: is there an optimal SmBS density that maximizes the
network capacity?

However, a further issue that needs to be considered is that high SINR (or link capacity) does
not necessarily mean high throughput. If the base station is congested, its performance can also be
poor. This is why we often lose mobile connection even though it displays full signal strength on our
phones. Thus, contrary to intuition, aggressively offloading users to SmBSs is not always right and can
lead to severe performance degradation. This is particularly significant for those SmBSs working in
unlicensed bands where BSs are operating in listen before talk (LBT) mode and back off if collision
happens. In such a situation, load fulfills the same important role as SINR does, for unreasonable load
assignment eventually exhausts channel resources and aggravates the throughput. Therefore, how can
the offloading be load-aware?

Exploring these two interesting questions is the subject of this work. There is a significant amount
of research focusing on the issue of network densification. For example, Samarakoon et al. [6] and
Yunas et al. [7] explored the energy efficiency from perspectives of the joint scheduling method and
deployment strategies. Chen et al. [8] and Li et al. [9] investigated the backhaul through both theoretical
and practical solutions. Other questions in dense network, such as spectrum sharing [10,11], small cell
discovery [12], resource management [13,14], mobile caching [15], small cell boundary [16] and the
economic issues [17] of densification were also researched in the references. However, these works did
not solve the problem of interference, which is one of the biggest problems in dense networks.

Some research has noted the problem of interference. Interference management was considered
in [18,19] using cooperative bargaining game and mean-field game, respectively. Soret et al. [20]
and Gao et al. [21] proposed time-frequency domain algorithm and power allocation algorithm to
coordinate the inter-cell interference. In addition, the same question was considered by Cho et al. [22]
using a power control scheme. Nevertheless, these works have not examined the relation between
interference and densification, namely how the base station density influences the interference
and what the limit of densification is. They are the fundamental questions of interference in
ultra-dense networks. To answer the above questions, the calculation of the interference in dense
HetNets is necessary. However, it is tricky since the location of base stations in HetNets is random and
irregular. A tractable model to describe the location of irregularly deployed BSs is proposed in [23],
called Poisson point process (PPP). Based on this model, several key metrics of HetNets performance
were studied, such as coverage probability and SINR distribution [24–27]. Nevertheless, these works
have still not given the answer to the optimal base station density for maximizing the capacity of
dense network. In addition, all existing research lacks consideration about the load of small cell base
stations, especially when these BSs work in contention-based channels. Thus, none can answer the two
questions asked above.
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1.2. Contributions

The contributions of this paper are threefold:

• We have considered the user association and interference problems in Poisson random networks
and derived the expression of the expected link rate of the network as a function of SmBS
density, which has revealed both the balance between the gain and the interference brought by
densification. Based on the analytical results, we find the optimal BS density that maximizes
the capacity of the network. Our work indicates that it is not always reasonable to increase the
BS density.

• A method is proposed to analyze the throughput of the contention-based channel in random and
irregular networks. Unlike the existing literature about analysis of the contention-based channel,
which are all based on a given load, the work in this paper deals with the random load caused
by the random network. We have found the junction to introduce the Poisson point process into
the Markov chain and thus the contention-based load problems can also be solved in random
networks. Our analytical results offer the answers on how the network densification can be
load-aware in order to avoid performance degradation. Since the unlicensed bands have played
an increasingly important role, the work in this paper can apply to many cases.

• Our analytical and simulation results have provided the optimal BS density for deployment of the
dense network. After analyzing the effect of the base station power, density and the network load
on the performance of network, the optimal deployment density of the base stations are given
under different network conditions. The results can provide insights for network densification.

The rest of paper is organized as follows. The system model is detailed in Section 2. Based on
this, we analyze and derive the expected link rate and the throughput of networks in Section 3 and
Section 4, respectively. In Section 5, the simulations are conducted to verify and describe our analysis
and the strategy for network deployment. Section 6 concludes the paper.

2. System Model

We consider a two-tier heterogeneous networks consisting of the macro base stations (MaBSs)
tier (e.g., cellular network) and the small base stations (SmBSs) tier (e.g., WLAN). MaBSs operate at
licensed spectrum while SmBSs work in unlicensed bands. BSs at the same tier share the channel
according to the corresponding medium access control (MAC) protocol. We denote the transmit
powers of the MaBS (SmBS) as PM (Pm) and the path loss exponent as α. All BSs are open access.

2.1. Distribution of BSs in HetNets

Unlike the traditional network, the BSs in HetNets are deployed irregularly to meet the uneven
data demand. Thus, we can use mutually independent PPP to model the spatial locations of the MaBSs,
SmBSs and users in HetNets. Its appropriateness has been proved in [23]. PPP offers a method to
analyze the performance of HetNets in a statistical point of view. The distribution of MaBSs, SmBSs
and users are ΦM = {Mi ; i = 1, 2, 3, ...}, Φm = {mi ; i = 1, 2, 3, ...} and Φu = {ui ; i = 1, 2, 3, ...} , respectively,
with the corresponding densities λM, λm and λu. Mi , mi and ui are the location of the ith MaBSs,
SmBSs or users. With the PPP model, the two-tier HetNets is abstracted as a Voronoi tessellation with
two independent tiers, as shown in Figure 1. The stars stand for the MaBS and their cell ranges are
denoted by solid lines. The dots are SmBSs and dashed lines indicate their cell ranges. In such HetNets,
each user falls in an overlapping zone of an MaBS and an SmBS, and chooses the BS with strongest
long-term received signal strength to connect.
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Figure 1. The spatial locations and coverage of macro base stations (MaBSs) and small base
stations (SmBSs).

2.2. Channel Access Mode of the MaBS Tier

In HetNets, since MaBSs and SmBSs operate at licensed and unlicensed bands, respectively, their
channel-sharing modes are also different. For MaBS, we assume the resources (e.g., Long-Term Evolution
(LTE) resource blocks) are allocated proportionally among the users. Therefore, a user’s rate is

Rui =
WM

NM
log

(
1 + SINRui

)
. (1)

WM is the bandwidth of the MaBS tier and NM is the number of users that are served by a MaBS.
Doing summation, we get the throughput of a MaBS as

SM =
1

NM

NM∑
ui=1

WM log
(
1 + SINRui

)
. (2)

It demonstrates that the throughput of a MaBS depends on the SINR distribution of MaBS users.
Since both MaBSs and users are distributed in PPP, with the method of Theorem 1 in [23], it can be
proved that SINR distribution of the users in MaBS network only depends on the path loss exponent
and deployment density of MaBSs. For the practical network, the path loss exponent and density of
MaBS are normally determined and fixed so the throughput of the MaBS network does not depend on
network densification. On the other hand, since SmBS density is much larger than MaBS density, the
areal throughputs of SmBS and MaBS are not in the same order of magnitude. The areal throughput
of SmBS is far more than MaBS’s and the areal throughput of MaBS is not notable in overall network
performance. Thus, to improve the network throughput, we should focus on improvement of the SmBS
network. Actually, in a general case where the base stations of both tiers can be deployed freely, the
densities of MaBS and SmBS interact. The variety of MaBS density can directly influence the optimal
SmBS density. Since the rate of MaBS is related to the MaBS density, we should calculate the rate of
MaBS to derive the total throughput after MaBS density is determined according to the optimal SmBS
density. However, when we focus on this paper, some specific assumptions are set in the system model.
First, according to the practical network, the MaBSs have been already deployed and the density is
fixed. We can only add new SmBSs into the network and can only control SmBS density. Since MaBS
density is fixed and due to Theorem 1 of [23], the SINR distribution of MaBS is steady and the average
rate of MaBS is also relative steady. It does not impact the rate of MaBS when we optimize the SmBS
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density. Second, MaBSs and SmBSs operate at different spectrums. It means that these two tiers do not
have mutual interference. Thus, the newly added SmBSs do not degrade the MaBS’s’ SINR. With these
specific conditions, it is different from the general case. It allows us just to optimize deployment of
SmBS in the HetNets.

2.3. Channel Access Mode of the SmBS Tier

SmBSs operate in unlicensed bands where the bandwidth is Wm. We assume that they work in
LBT mode. A slotted non-persistent carrier sense multiple access (CSMA) protocol is adopted in the
SmBS tier for channel sharing. Since the fairness of the resource allocation is not the primary question
we concern in network deployment and is beyond the scope of this paper, we assume that all user
devices in the SmBS tier are the same and the rate is the average ergodic rate in the small cell. All SmBS
users have the same priority, contention window size and scheduling tag. Thus, the channel can be
allocated fairly by the protocol. For ease of analysis, we include the acknowledgement (ACK) packet
in transmission data. a is the ratio of channel propagation time to packet transmission time. It depicts
the channel state of the SmBS tier in Figure 2. The channel propagation time and transmission time are
normalized as a and 1.

Channel state:

What devices sense:

Figure 2. Channel state in a non-persistent carrier sense multiple access (CSMA) network.

In the SmBS tier, users firstly sense the channel and then send packets only when the channel is
sensed idle. If a collision occurs, the packets will be retransmitted according to K-Exponent back off
algorithm. For this algorithm, a backlogged packet transfers to state i after its ith collision and will
be scheduled to retransmit with an exponent probability qi , where i = 1, 2, . . . K , 0 < q < 1, and K is
the end state. The contention-based channel shared among the SmBS and its users can be regarded
as a multi-queue single-server traffic model. The data of all devices (SmBS and users) are Geo/G/1
queues with a Poisson arrival process. Thus, the fresh and retransmission packets from all devices
form a Poisson stream in the channel. We assume the average arrival rate of a device is λdata and
denote the total arrival rate as G. Since the SmBSs are far enough from each other given their low
transmit power, the received power from devices in other small cells is lower than the channel sensing
threshold. Therefore, we do not consider the inter-cell contention.

The channel has three states, namely ‘idle’, ‘successful transmission’ and ‘collision’. We denote
the limiting probability of them as πidle, πsuc and πcol, respectively. πidle is e−aG , indicating that there
is no channel access attempt in duration a. πsuc is aGe−aG since the transmission is successful when
there is only one device sending data. Therefore, πcol is 1 − e−aG − aGe−aG . The duration of these three
state are, respectively, tidle = a, tsuc = 1 + a and tcol = 1 + a.

Among the three states, the channel is utilized only in the successful transmission state. Otherwise,
the channel is either idle or backing off. Thus, the channel is productive only in a portion of time.
Let fm be the portion of the time that there is a successful transmission in the channel and the expected
link rate of the channel is R. Therefore, the throughput of an SmBS is

Sm = R · fm. (3)
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To analyze and maximize the throughput of SmBS, we need to solve two problems:

1. the expected link rate R;
2. the productive fraction of time fm.

By controlling the parameters that influence R and fm, the maximization of Sm can be realized.

3. The Expected Link Rate of the SmBS Tier

In this section, we derive the expected ergodic link rate of the SmBS tier and analyze what and how
factors of deployment influence the link rate. For the SmBS network that is dense and irregular, there
are two important questions in the analysis of link rate. They are the user association and interference
distribution in the SmBS tier. User association determines the distance between the user and its serving
BS, and the amount of data that can be offloaded to the SmBS tier. Interference distribution plays the
key role in SINR.

3.1. Distribution of the Distance from a User to Its Serving BS in the SmBS Tier

Without loss of generality, we assume a user is at the origin. In the SmBS tier, since the transmit
power in the same tier is identical, the SmBS closest to the user offers the strongest received power so
the user will associate with it. Rm denotes the distance between them. Its distribution can be obtained
from the following lemma.

Lemma 1. The probability distribution function (PDF) of the distance from the user to its serving SmBS is

fRm (r) = 2πλmr exp(−πλmr2). (4)

Proof of Lemma 1. The result can be proofed by modifying the proof of Lemma 3 of [24]. �

Equation (4) indicates that Rm is more likely to be small as the density λm increases. This is
because users can find and connect to an SmBS more easily when the SmBS network becomes denser.

3.2. Probability of a User Connecting to the SmBS Tier

Since a user chooses a BS to connect depending on the strongest received power, the condition
that a user is associated with the SmBS tier is BPmR−αm > PMR−αM , where B is the bias of the SmBS tier
and RM is the distance from the user to the nearest MaBS. Thus, the probability that a user is associated
with the SmBS tier can be obtained as follows.

Lemma 2. A user connected to the SmBS tier with the probability Am which is

Am =
λm

ĈλM + λm
, (5)

where Ĉ =
(

PM
BPm

) 2
α .

Proof of Lemma 2. See Appendix A. �

Since the fairness of resource allocation is not the main topic of this paper, we assume B = 1 unless
explicitly stated. B = 1 means that users have no preference to select any certain tier. We will discuss
the problem of fairness in Section 4.4, where B can take other values.

Equation (5) indicates that SmBS density and the transmit power of SmBS have the influence on
network association. Users are more likely associated with the SmBS tier when SmBS network gets
denser and its transmit power becomes stronger.
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3.3. Interference Distribution in the SmBS Tier

In the SmBS tier, recall that the user chooses an SmBS offering the strongest received power to
connect, thus all other SmBSs interfere the user. The interference can be described as

I =
∑

i∈Φm/b0

Pmr−αi , (6)

where b0 is the serving SmBS of the user and ri is the distance from ith SmBS to the user.

Lemma 3. The PDF of the interference (when α = 4) in the SmBS tier is

f I (I) =
e−

π3Pmλm2
4I πλmP1/2

m

2I3/2
. (7)

Proof of Lemma 3. See Appendix B. �

With the interference distribution, we can further derive the expected value of the link rate.

3.4. The Expected Link Rate of the SmBS Tier

With the Equations (4), (5) and (7), we can get the expected link rate of the SmBS tier based on the
Shannon formula. The expression of the expected link rate of the SmBS tier is

R = Am

∞∫
η

∞∫
η

f I (I) Wm log
(
1 +

Pmr−α

I + σ2

)
fRm (r) drdI, (8)

where η → 0. σ2 is the power of noise. Considering the propagation environment where the small
cells are deployed, according to [28], we assume α = 4. Thus, we have

R = π2Wm
λ3

mP1/2
m

ĈλM + λm

∞∫
η

∞∫
η

e−
π3Pmλ2

m
4I

I3/2
r exp(−πλmr2) log

(
1 +

Pmr−4

I + σ2

)
drdI. (9)

It is observed that the link rate is the function of SmBS density. Thus, by selecting the reasonable
deployment density, the link rate can be optimized.

4. Throughput of MAC Layer in SmBS Tier

Since SmBSs are working in LBT mode, the factors that influence the network performance are
not only link rate but also the load of an SmBS. Aggressively offloading data to the SmBS tier is not
reasonable since heavy load incurs frequent collision and backoff, and degrades the utilization of the
channel. Thus, it is necessary to work out load-aware offloading strategies to make full use of the
channel and maximize the throughput.

4.1. Fraction of Time for a Productive Channel.

Described in the system model, the state transition diagram of a packet in the SmBS channel is
depicted in Figure 3 (and more detailed state transition analysis can also be found in [29]). There are
three states for each packet. Depending on the collision times i, we use Si (sensing), Wi (waiting) and
Ti (transmission) to denote the states, where i = 0, 1, 2, . . . K . We assume ε to be the probability that the
channel is sensed idle and p is the successful probability of transmission. Considering a packet in state
i, it transfers from Si to Wi if the channel is sensed busy. We assume the time of Wi is equal to packet
transmission time. When the channel is detected as idle, the packet will transfer from Si to Ti with the
probability qi . If it is successfully sent, a new packet will begin again at the initial state S0. Otherwise,
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it goes to Si+1 and continues to sense the channel. The channel is sensed idle if there is no transmission.
Thus, its probability is

ε =
aπidle + aπsuc + aπcol

aπidle + (1 + a) (πsuc + πcol)
=

a
1 + a − e−aG

. (10)

The packet transmission is successful only if all other devices do not send data in the duration of
a at the beginning of each busy period of the channel. Thus, it has p = e−aG .

0S 1S iS KS

0W

0T 1T iT KT

1W iW KW

p

1 p

1 q 1 iq 1 Kqp p p

q 1 p
iq 1 p Kq

1 p

11 11 11 11

Figure 3. State transition diagram of a packet in the SmBS channel.

We denote si , wi and ti as the limiting probability of Si , Wi and Ti . With the Markov chain in
Figure 3, we can derive the following results:

s0 = w0 + pt0 + pt1 + · · · + ptK
w0 = (1 − ε) s0, t0 = εs0;
when i = 1, 2, . . . , K − 1



si = ε
(
1 − qi

)
si + wi + (1 − p) ti−1

wi = (1 − ε) si , ti = εqisi ;
sK = ε

(
1 − qK

)
sK + wK + (1 − p) tK−1 + (1 − p) tK

wK = (1 − ε) sK , tK = εqK sK .

(11)

For network stability, let p + q > 1, so all states in Markov Chain are positive recurrent.
Combining (11) and the duration of the three states tTi = 1, tWi = 1 and tSi = a, the time-average
probability of the states is expressed by

when i = 0, 1, . . . , K − 1



s̃i = ap
(
p + q − 1

)
(1 − p)i/

(
qiD

)
t̃i = εp

(
p + q − 1

)
(1 − p)i/D

w̃i = (1 − ε) p
(
p + q − 1

)
(1 − p)i/

(
qiD

)
s̃K = a

(
p + q − 1

)
(1 − p)K/

(
qK D

)
t̃K = ε

(
p + q − 1

)
(1 − p)K/D

w̃K = (1 − ε)
(
p + q − 1

)
(1 − p)K/

(
qK D

)
,

(12)

where D = (1 + a − ε)
[
pq −

(
1 − q

)
(1 − p)K+1/qK

]
+ ε

(
p + q − 1

)
.

Lemma 4. The fraction of time that there is a successful transmission in the channel is

fm =
aGe−aG

1 + a − e−aG
. (13)

Proof of Lemma 4. The result can be proofed using the method of Theorem 1 in [29]. �

It is observed that the successful-transmission time fraction fm depends on the channel load G. It
can be understood intuitively since the channel load (also the load of an SmBS) has a direct impact
on channel collision in LBT mode. Excessive load will lead to frequent collisions and backoff, and
degrade the utilization of the channel. Thus, we need to analyze the channel load G.
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4.2. Analysis of the Channel Load

To obtain the channel load, we need to analyze the average number of users that connect to an
SmBS. Based on the aforementioned analysis of user association, it has the following results.

Lemma 5. The average load of an SmBS is obtained by

G =
λuλdata

ĈλM + λm
, (14)

where Ĉ =
(

PM
BPm

) 2
α .

Proof of Lemma 5. See Appendix C. �

Lemma 5 gives the insight for channel load control. Besides some objective parameters, the load
of the SmBS depends on its density λm. As the density of the SmBS increases, there are more SmBSs
and their average load decreases.

4.3. Throughput Analysis of an SmBS Cell

Combining Equations (13) and (14), we then get the throughput of the SmBS as follows:

fm =
aλuλdatae

−
aλuλdata
ĈλM+λm(

ĈλM + λm
) (

1 + a − e
−

aλuλdata
ĈλM+λm

) . (15)

According to Equation (3), the throughput of an SmBS can be given as

Sm =
2π2WmaP1/2

m λuλdatae
−

aλuλdata
ĈλM+λm λ3

m(
ĈλM + λm

)2
(
1 + a − e

−
aλuλdata
ĈλM+λm

) κ(λm), (16)

where κ(λm) =
∞∫
η

∞∫
η

e−
π3Pmλ2

m
4I

2I3/2 r exp(−πλmr2) log
(
1 + Pmr−4

I+σ2

)
drdI.

From Equation (16), it is observed that Sm is a function of SmBS density λm. It means that we
can maximize the throughput Sm via controlling λm. Since it does not have a simple form for κ(λm),
for fast calculation of the optimal SmBS density λm, we propose a fitting function to approach κ(λm),
which is shown in Appendix D.

It is worth noting that some objective parameters that indicate the condition of network, such as
the power of SmBS Pm and the user density λu, also have influence on Sm. Thus, Sm should also be
analyzed under different network conditions. We will do it in Section 5.

4.4. The Fairness of the Tier Association

Fairness of resource allocation is an important problem in practical networks. Because ensuring
user-level fairness would involve specific scheduling strategies and make the analysis intractable,
we discuss a simple tier-level fairness strategy in this paper. The network in this paper is a two-tier
network, so the fairness of the connection to different tiers is also an interesting question. In the
HetNets, the rates of MaBS and SmBS tiers may differ and the user may have different user experience
when connecting to different tiers. Thus, the fairness problem is to let the users have the same average
rate no matter which tier they connect to. This is equivalent to requiring both tiers to have the same
effective areal throughput (total throughput divided by effective cell area). A technology called Cell
Range Expansion (CRE) [30,31] has been proposed to control the fairness of the association. CRE



Sensors 2017, 17, 2077 10 of 19

makes the user association biased by adding an association bias. To be more specific, within the two
available tiers for a user to associate, the index of the chosen tier is

index = arg max
M,m

(
PMR−αM , BPmR−αm

)
, (17)

where B is the bias of the SmBS tier. With the association bias, it effectively expands (B > 1) the
effective coverage area of SmBSs when they have a larger rate than MaBSs, or decreases (B < 1) the
effective coverage area of SmBSs when they have less rate than MaBSs.

For the fairness of the users associated with both tiers, their average rates should be same. Thus,
we have

SMQareaλM

(1 − Am) Qarea
=

SmQareaλm

AmQarea
, (18)

where Qarea is the total area of the HetNets and SM is the throughput of MaBS. The left side of the
equation can be deduced using the method in Theorem 2 of [24]. Based on Equation (18), we can obtain
an equation of B. By solving it using search algorithms, we can get the association bias B. Since the
fairness of allocation is not the main topic of this paper, the detailed research of the fairness and its
algorithms will be presented in our future work.

With the bias B, the users will have the same rate no matter to which tier they associate. Hence,
fairness between the two tiers is guaranteed. However, CRE technology is only a suboptimum solution
for network throughput [31]. Deployers of the HetNets need to choose CRE or the optimal solution by
deciding what is most suitable with their demand.

5. Numerical Results and Discussion

The density of SmBS is a key parameter of the network densification. With the analysis, it is
observed that SmBS density not only influences the link rate of the heterogeneous network but
also impacts the utilization of the channel. In this section, we will first reveal the effect of SmBS
density on the link rate and the channel efficiency of the small cell network via simulation. Then,
the relation between SmBS density and the throughput of the SmBS will be described under different
network conditions. With these results, the insights for the deployment of the heterogeneous network
can be obtained.

In the simulation, we divide the region into meshes of which the area is 300 m × 300 m. We take
the mesh as the unit area in the simulation. Since the area of a mesh is just the coverage of the
MaBS in metropolis [32], we place one MaBS in each mesh. MaBS configurations are set based
on [32]. The transmit power of MaBS is 20 W. We assume omnidirectional antennas and large-scale
channel fading with path loss exponent value of 4 are invoked in both tiers of HetNets [28]. We set
the bandwidth of the SmBS tier as 10 MHz and the additive noise is 10−6 W (the power density is
−100 dBm/Hz). The results are obtained as follows.

5.1. Effect of SmBS Density on the Link Rate

We conduct the Monte Carlo simulation to verify the analytical results and draw the simulation
and theoretical results. The theoretical results are generated using Equation (9). As Figure 4 shows,
the results match well. The figure shows the effect of λm on the expected link rate of the SmBS tier.
As SmBS density increases, there are three phases for the link rate. In the first phase, the link rate
increases with SmBS density, but the speed of growth gradually decreases. In this phase, when there
are denser SmBSs, more data traffic can be offloaded to the SmBS tier. Meanwhile, denser SmBSs
largely shorten the distance from a user to its associated SmBS, which offers better signal quality.
Though it can also incur more interference, the gain outperforms the cost in this phase. However, since
the interference accelerates, the increase speed of the link rate slows down. The second phase is the
peak of the link rate, where the gain equals the interference cost. The horizontal axis of the peak point
is the optimal SmBS density for the link rate. Then, in the third phase, the interference accelerates at a
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greater rate as SmBSs become denser and overwhelms the gain that densification brings. It indicates
that superfluous BSs can degrade the network performance instead of gain. The curve fitting result is
also provided in Figure 4, and it indicates that the fitting results matches the theoretical results well.
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Figure 4. Comparison between the theoretical result and Monte Carlo simulation. Pm/PM = 0.001.

With Equation (9), Figure 5 shows the effect of SmBS density on the link rate under different
SmBS transmit powers. There is always an optimal SmBS density when SmBS transmit power varies.
However, the transmit power indeed has a significant influence on SmBS deployment. As SmBS
transmit power increases, the link rate increases and decreases faster, and the optimal density also
decreases. The reason why the link rate increases faster is that SmBS with stronger transmit power
offers better signal quality. However, when SmBS is of high density, stronger transmit power also
accelerates interference at a faster rate, which degrades the link rate sharply. It is also observed that
the SmBS with lower transmit power has higher optimal deployment density. It is consistent with
intuition that we can deploy more BSs if we reduce the transmit power. Although denser SmBSs
cannot enhance the maximum rate of each link, they can offer more SmBSs to suffer the network load,
which contributes to the network performance. We will talk about the load in the next section.
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Figure 5. The effect of SmBS density on the link rate under different SmBS transmit powers.
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5.2. Effect of SmBS Density on the Channel Efficiency

Figure 6 indicates how the SmBS density influences the channel efficiency, which is described by
the fraction of time for successful transmission. The user density demonstrates the load of the network,
for example busy or idle. The results are generated by (15). For different user densities, there are
optimal SmBS densities maximizing the channel efficiency. When SmBSs are sparse, the average load
of them will be high, which can lead to frequent collision in the channel and degrading the performance.
As we deploy more SmBSs, the performance will improve. However, if there are too many SmBSs,
the performance will decrease again due to the low utilization of the channel. It can also be observed
that the optimal SmBS density increases with the user density. This is because more SmBSs are needed
to suffer the heavy load of network. However, note that always increasing the SmBS density in busy
networks is not correct, since excessive SmBSs result in huge interference. We will consider the balance
later in this paper.
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Figure 6. The effect of SmBS density on the channel efficiency under different user densities.
Pm/PM = 0.001.

5.3. The Areal Throughput of HetNets and the Optimal Deployment Scheme

As aforementioned, it is not only the link rate but also the channel efficiency that has impact on
the throughput of SmBS. Unlike existing literature, we analyze and simulate the impact of both of them,
which gives many insights for densification deployment. With the parameter settings mentioned at
the beginning of this section, we simulate a two-tier HetNet consisting of MaBSs and SmBSs. The term
of total HetNets throughput (the sum of the throughput of all MaBSs and SmBSs) and the term of
total HetNet areal throughput that is obtained by dividing the total HetNets throughput by the total
HetNets area are selected to indicate the performance of the network.

Figure 7a shows the total HetNets throughput. The network area in the simulation is 9 km2,
where 100 MaBSs are deployed in this area. We have simulated the performance of HetNets under
different user densities and SmBS densities. The simulation results show the sum throughput of all
MaBSs and SmBSs in this simulation area. With these results and dividing the total HetNets throughput
by the total HetNets area, we can obtain the total HetNets areal throughput.

Figure 7b illustrates the impact of SmBS density on the total HetNets areal throughput. As the figure
shows, deploying more SmBSs can offer greater total areal throughput since it provides more access and
reduces resource competition. However, always increasing SmBS density is not correct due to interstation
interference. We can find that the optimal deployment density of SmBS always exists under different
network load conditions that are described by the user density. In addition, as the user density varies,
we can observe that higher user density needs higher SmBS density, which is consistent with the intuition.
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Figure 7. The impact of SmBS density on HetNets throughput. Network area = 9 km2, Pm = 60 mW.

Figure 8 has compared the performance of the optimal deployment and other suboptimal ones.
The optimal deployment is implemented by selecting the optimal SmBS density under different
network conditions of user density. We take λm = 550/km2, λm = 4400/km2 and λm= 8800/km2 as
examples of the suboptimal deployment, which indicate low density, medium density and relative
high density. When the SmBSs are of low density, HetNets performance deteriorates rapidly as the
user density increases because such few SmBSs cannot afford too many users. When the SmBSs are of
higher density, they perform better than those of lower density do in the crowded network but act
more poorly in the light-loaded network, since denser SmBSs have greater capability to offer service to
massive users, and, meanwhile, they can also incur heavy interference. With the comparison, we find
that the optimal deployment scheme outperforms other ones and achieves the best performance under
any user density.
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Figure 8. Comparison between the optimal densification deployment and suboptimal ones.
Pm = 60 mW.
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5.4. The Throughput of an SmBS and the Optimal Deployment Scheme

Although the areal throughput of HetNets can indicate the performance of the networks, there is
another metric for optimization, which is the throughput of each SmBS. This metric focuses on the
efficiency of the SmBS and aims to deploy the base stations in a cost-effective way. This metric also
attracts attention of some telecom operators. Thus, we also investigate the throughput of an SmBS and
find the optimal density ratio of SmBSs and MaBSs.

With Equation (16), Figure 9 illustrates the impact of SmBS density on the throughput of an
SmBS. From the picture, there is always an optimal SmBS density under different user densities.
As the user density increases, more SmBSs are needed to avoid overload. In the network that is
not too busy, i.e., λu/λM = 300 or λu/λM = 700, denser SmBSs can offload more data traffic, so the
maximum throughput increases with the user density. However, in busy network, i.e., λu/λM = 2000
or λu/λM = 5000, since the optimal SmBSs densities are already very dense, higher SmBS density
can lead to greater interference that degrades the link rate and further reduces the throughput of an
SmBS, so the maximum throughput of an SmBS decreases with the user density in such situation.
Nevertheless, as depicted in Figure 9, when λu/λM = 700, the optimal SmBS density is 150λM, and if it
increases to λu/λM = 5000, the SmBS density should also be enhanced to 400λM in order to achieve
the maximum throughput of an SmBS. It indicates that network densification is reasonable.
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Figure 9. The impact of SmBS density on the throughput of an SmBS. Pm/PM = 0.003.

Figure 10 has compared the performance of the optimal deployment and other suboptimal ones.
The optimal deployment is implemented by selecting the optimal SmBS density under different
network conditions of user density. We take λm/λM = 10, λm/λM = 200 and λm/λM = 400 as
examples of the suboptimal deployment, which indicate low density, medium density and relative
high density. As the figure shows, our deployment scheme outperforms other ones and achieves the
best performance of an SmBS under any user density.
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Figure 10. Effect of the optimal deployment on the throughput of an SmBS. Pm/PM = 0.003.

6. Conclusions

In this paper, we present a tractable method to analyze the heterogeneous network (HetNets)
densification and provide the optimal deployment strategy that maximizes the network throughput.
The expected link rate is deduced by considering both association and interference problems in
heterogeneous networks. Then, we solve the contention-based load problem in a random network
by introducing the Poisson point process to the Markov chain. Based on this, by considering both
physical and MAC layers, the throughput of the small base stations is derived. The analytical result
indicates the relation among the network performance, base station density, transmit power and user
density; meanwhile, it offers a method to calculate the optimal base station density that maximizes the
performance. Simulations are conducted to verify and illustrate the analysis. Our work can provide
insights for network densification and guidance for network deployment.
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Appendix A

Proof of Lemma 2. A user connects to the SmBS tier when BPmR−αm > PMR−αM , where B is the bias of
the SmBS tier. Thus, we have

Am = P
{
BPmR−αm > PMR−αM

}
=

∫
r>0

P



RM >

(
PM

BPm

) 1
α

r

︸                       ︷︷                       ︸

A

fRm (r) dr . (A1)
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Since RM is a random variable and follows the Poisson point process, Equation (A1) can be
derived as

Am =

∫
r>0

exp *.
,
−πλM

(
PM

BPm

) 2
α

r2+/
-

fRm (r) dr . (A2)

Then, combining Equation (4) with (A2), we have

Am = 2πλm

∫
r>0

r exp *.
,
−πλM

(
PM

BPm

) 2
α

r2+/
-

exp(−πλmr2)dr =
λm

ĈλM + λm
, (A3)

where Ĉ =
(

PM
BPm

) 2
α . This is the result in Equation (5). �

Appendix B

Proof of Lemma 3. The typical user at the origin O receives the interference from other SmBSs in a
circle. Defining the interference in this circle with radius z as I, we have

I = Pm

∑
mi ∈Φm∩b(O,z)

`(‖ r ‖), (A4)

where b (O, z) is the circle and `(r) = r−α is the pass loss function. The lemma can be deduced using
the method in [33]. We define the characteristic function of I as

FI (ω) ∆= E
(
e jωI

)
. (A5)

Given that there are k points in b(O, z), these points are distributed on the disk with radial density,
which is given by [33]

fR (r) =



2r
z2 , 0 ≤ r ≤ z,
0, otherwise.

(A6)

When there are exactly k SmBSs in b(O, z), then

E
(
e jωI |Φm (b(O, z)) = k

)
=

*..
,

z∫
0

2r
z2 exp ( jωPm`(r)) dr

+//
-

k

. (A7)

According to the properties of PPP, the unconditional characteristic function of the interference
can be derived as

FI (ω) =
∞∑
k=0

exp(−λmπz2)(λmπz2)k

k !
×

*..
,

z∫
0

2r
z2 exp ( jωPm`(r)) dr

+//
-

k

. (A8)

With the Taylor expansion of the sum, it has

FI (ω) = exp
*..
,
λmπz2 *..

,
−1 +

z∫
0

2r
z2 exp ( jωPm`(r)) dr

+//
-

+//
-

. (A9)
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Assuming `−1(x) as the inverse function of `(r), and substituting r → `−1(x), z → ∞, we enlarge
the area to infinity:

lim
z→∞

z2 *..
,
−1 +

z∫
0

2r
z2 exp ( jωPm`(r)) dr

+//
-
=

∞∫
0

(
`−1(x)

)2
jωPm exp ( jωPmx) dx. (A10)

Combining Equations (A9) and (A10), it has

FI (ω) = exp
*..
,

jπλmωPm

∞∫
0

(
`−1(x)

)2
ejωPmxdx

+//
-

. (A11)

Substituting `(r) = x = r−α to Equation (A11), then we have

FI (ω) = exp
*..
,

jλmπωPm

∞∫
0

x−
2
α ejωPmxdx

+//
-

. (A12)

Considering the complex environment of propagation, we assume α = 4 [28]. Due to I = Pmx,
we get

f I (I) =
e−

π3Pmλm2
4I πλmP1/2

m

2I3/2
. (A13)

This result is consistent with the result in [34]. �

Appendix C

Proof of Lemma 5. Without loss of generality, we consider a unit area of the network. Based on the
expression of Am in Lemma 2, the mean load of an SmBS is

G =
λuλdata Am

λm
=

λuλdata

ĈλM + λm
, (A14)

which gives the result in Lemma 5. �

Appendix D

Since κ(λm) is the infinite double integral of a transcendental function, it does not have a simple
form for fast calculation. We perform curve fitting to approach κ(λm) and thus get the empirical
formula. Observing the data of κ(λm), we choose the fitting function as

κfit = C1λ
C2
m −C3λ

C4
m , (A15)

where C1, C2, C3 and C4 are the functions of Pm. Then, we conduct polynomial fitting to get the
functions of C1, C2, C3 and C4. Since the maximum power of SmBS (e.g., WLAN) is limited by local
regulations, the power range of SmBS that we consider in curve fitting is Pm ∈ [0.001PM, 0.006PM].
The order of polynomial is carefully selected to avoid both underfitting and overfitting. The results are
achieved via MATLAB (R2016b, MathWorks Inc., Natick, MA, USA) and given as follows:

C1 = − 8.5658232 × 1014P6
m+1.7940284 × 1013P5

m − 1.4773754 × 1011P4
m + 6.2145778 × 108P3

m

− 1.3725986 × 106P2
m + 1.2067786 × 103Pm + 1.1487479,

(A16)

C2 = −5.9245046 × 106P3
m + 7.9721220 × 104P2

m − 2.6894727 × 102Pm − 1.7117077, (A17)
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C3 = 5.1151868 × 1014P6
m − 9.2334191 × 1012P5

m+6.0667929 × 1010P4
m − 1.8492164 × 108P3

m

+ 2.6211819 × 105P2
m − 1.3845104 × 102Pm − 0.003196,

(A18)

C4 = − 2.6498472 × 1015P6
m + 6.4364873 × 1013P5

m − 6.1989791 × 1011P4
m + 3.0240235 × 109P3

m

− 7.8793336 × 106P2
m + 1.0192004 × 104Pm − 5.7462256.

(A19)

The goodness of fit is 92.42–99.78% in the range of Pm.
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