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Abstract: This paper considers the complex-valued mixing matrix estimation and direction-of-arrival
(DOA) estimation of synchronous orthogonal frequency hopping (FH) signals in the underdetermined
blind source separation (UBSS). A novel mixing matrix estimation algorithm is proposed by detecting
single source points (SSPs) where only one source contributes its power. Firstly, the proposed
algorithm distinguishes the SSPs by the comparison of the normalized coefficients of time frequency
(TF) points, which is more effective than existing detection algorithms. Then, mixing matrix
of FH signals can be estimated by the hierarchical clustering method. To sort synchronous
orthogonal FH signals, a modified subspace projection method is presented to obtain the DOAs
of FH. One superiority of this paper is that the estimation accuracy of the mixing matrix can
be significantly improved by the proposed SSPs detection criteria. Another superiority of this
paper is that synchronous orthogonal FH signals can be sorted in underdetermined condition.
The experimental results demonstrate the efficiency of the two proposed algorithms.

Keywords: underdetermined blind source separation; frequency hopping sgnals; direction-of-arrival;
mixing matrix estimation

1. Introduction

Frequency hopping (FH) signals have been widely used in wireless communications and radar
systems due to their low probability of detection and interception [1–5]. To obtain useful information
in communication reconnaissance field, it is an important task to sort multiple FH signals. Hop timing,
frequency, and direction of arrival (DOA) are three important physical quantities for sorting FH signals.
DOA is a vital parameter in radar and wireless communication applications [6–14]. Many methods
for estimating FH parameters have been reported [15–18]. However, the methods in [15–18] can only
estimate asynchronous FH signal parameters under overdetermined condition, in which the number
of sensors is more than that of signals. To sort synchronous FH signals in underdetermined situation,
in which the number of sensors is less than that of signals, Fu and Sha used underdetermined blind
source separation (UBSS) method [19,20] based on time frequency (TF) analysis. In general, in UBSS
situation, the major steps to sort synchronous FH signals are estimating mixing matrix and calculating
DOAs [19,20]. Sha ignored the frequency effect on mixing matrix, so the results were not useful in
practice. Fu modified time frequency ratio of mixtures algorithm to estimate frequencies and mixing
matrix, and then DOA was obtained to sort synchronous FH signals. However, the mixing matrix
estimation in Fu’s method is not satisfactory, which leads to low estimation accuracy of DOA. Many
other alternative methods are introduced, such as [21,22].

Many algorithms have been reported to deal with the UBSS problem; sparse component analysis
(SCA) is an efficient method [21,22]. Based on SCA, UBSS can obtain favorable results by utilizing
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the sparsity of signals [21,23]. Short time Fourier transformation (STFT) and wavelet transform (WT)
are usually utilized to describe sparse signal in TF domain [22,24–26]. Many single source point
(SSP) detection methods have been proposed to improve the accuracy of mixing matrix estimation.
The single source points refer to those TF vectors with only one source contribution. A time frequency
ratio of mixtures (TFROM) method was proposed in [27] by calculating the ratio values to estimate
mixing matrix at each TF point. This method requires that only one source is active at TF points so that
the imaginary parts of the STFT coefficients are equal to zero. If more sources are active, the coefficients
have complex values. A new method to detect SSP was introduced in [28], which calculated absolute
directions of real parts and imaginary parts of TF coefficients. If the absolute directions of TF points
were the same, these points were considered as SSPs. Similar methods were proposed in [29,30]. In [29],
the mixing matrix estimation method was improved by Kernel K-hyperline clustering technology.
Sun improved the absolute directions methods in [25] by ignoring low-energy points in TF domain.
Xie modified the SSPs detection method in [31], which utilized the assumption that the trace of
Wigner–Ville distribution (WVD) was equal to its unique nonzero eigenvalue. The methods based
on detecting auto term TF points were adopted in [32–34] to estimate mixing matrix with the same
assumption in [31]. However, these SSP detection methods [27–31] and the auto term TF point detection
methods [32–34] are only suitable for real value mixing matrix. Since the mixing matrix of FH signals is
complex-valued, some methods that deal with complex-valued mixing matrix estimation are discussed.
Li and Nie considered the complex-valued mixing matrix estimation problem in [35,36] based on
SSPs detection. Li introduced that the normalizations of coefficients of the Vandermonde mixing
matrix were equal to one and the corresponding mixing coefficients could be calculated by utilizing a
matrix inverse operation, so the mixing matrix estimation could be estimated by k-means clustering
algorithm [35]. A similar theorem was introduced based on the inherent property of the Vandermonde
mixing matrix in [36]. Although complex-valued mixing matrix estimation methods are developed,
the performance is not satisfactory. An improved SSPs detection method is proposed in this paper.
To recover sources, the methods in [37–39] based on subspace projection assumed that the number
of active sources at any TF point was no more than the number of sensors, thus sources could be
calculated by inverse STFT. Practically, in the subspace projection method, since these methods do not
consider the effect of the residual sources, a threshold value is chosen to calculate the residual power
in this paper.

Firstly, a new criterion is proposed to identify SSPs to improve mixing matrix estimation
performance. Secondly, another improved source recovery method is introduced to estimate
frequencies according to subspace projection. With the greatly improved estimations of mixing
matrix and frequencies, the DOA of each piece of FH signals can be calculated. Finally, synchronous
orthogonal FH signals can be sorted in underdetermined condition.

This paper is organized as follows. In Section 2, the FH signal model is introduced. The proposed
methods are introduced in Section 3. In Section 4, the analysis and the performance of the proposed
algorithms are provided and conclusions are given in Section 5.

2. The Problem Formulation

2.1. The Signal Model

Let us consider N FH signals impinging on a uniform linear array (ULA) with M antennas.
The model is shown in Figure 1.
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Figure 1. The geometry of ULA with M antennas.

The nth FH signal is written as

sn(t) = bnej(2π fn(t)t+ϕn(t)), 0 < t ≤ T, (1)

where bn is the nth signal amplitude, and fn(t) is the FH hopping instantaneous frequency. Phase
ϕn(t) is affected by frequency and modulation. T is the observation time. To avoid interference of
irrelevant aspects, the amplitude and the phase can be ignored in this paper. The delay time cannot
be ignored when signals impinge on different antennas. The propagation time-delay from the mth
antenna to the first antenna of the nth source can be formulated as follow according to Figure 1,

τm,n =
1
c
(m− 1)d cos θn, m = 1, . . . , M, n = 1, . . . , N, (2)

where c denotes the speed of light, d denotes the element space and θn denotes the nth direction of
arrival (DOA). Therefore, the mth received signals can be written as

xm(t) =
N
∑

n=1
sn(t− τm,n) + vm(t)

=
N
∑

n=1
sn(t)e−j2π fn(t)τm,n , m = 1, . . . , M,

(3)

where vm(t) is the noise. The vector formulation of (3) is

x(t) = A(t)s(t) + v(t), 0 < t ≤ T, (4)

where x(t) = [x1(t), . . . , xM(t)]T , s(t) = [s1(t), . . . , sN(t)]
T , and v(t) = [v1(t), . . . , vM(t)]T . Assume

that the FH signals are not hopping in delay time, thus, according to (1) and (2), the transmission
coefficient matrix A(t) is written as

A(t) =


ejΩ1,1(t) ejΩ1,2(t) · · · ejΩ1,N(t)

ejΩ2,1(t) ejΩ2,2(t) · · · ejΩ2,N(t)

...
...

. . .
...

ejΩM,1(t) ejΩM,2(t) · · · ejΩM,N(t)

 , (5)

where Ωm,n(t) = −2π fn(t)τm,n. Obviously, according to (2), A(t) is a Vandermonde matrix. The data
model in (4) is the same with blind source separation, so A(t) is the mixing matrix. The mixing matrix
of FH signals changes with hopping frequencies and it is not easy to be estimated. In this paper, firstly
the hop timings are obtained by other methods [40,41]. Then, the mixing matrix is constant in hop
duration. The data model can be written in the kth hop duration

x(t) = As(t) + v(t) =
N

∑
n=1

ansn(t), tk−1 < t ≤ tk, (6)
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where an is the nth column of the mixing matrix. To identify FH signal slices, more parameters need to
be estimated, such as DOAs and frequencies, which are included in the mixing matrix. Thus, the major
task is to estimate the mixing matrix.

2.2. The UBSS Assumptions

Under UBSS condition, the number of sensors is less than the number of sources. Similar to
other UBSS methods [19,20], the following two assumptions should be satisfied. First, any M × M
sub-matrix of A is full rank so that all sources can be recovered. This assumption is easily satisfied
due to the Vandermonde structure of mixing matrix. Second, suppose that only one source is active
at some points in TF domain. FH signal is sparse in time-frequency domain. Single-source-points
detection method is effective to deal with sparse signals. The method in [42] assumes that only
one source is active at each time-frequency point. The algorithm in [27] requires that there exists
at least one time-frequency point of single-source-occupancy for each source. The algorithms in
References [35,36,43] assume that there exist some points in the TF domain where only a single source
is active and such points must exist for each source. Therefore, the second assumption is reasonable.
If the frequency hopping signal does not collide, this assumption is valid.

3. The Proposed Algorithms

In this section, firstly, the proposed SSPs detection algorithm is introduced to estimate mixing
matrix. Secondly, the improved subspace projection algorithm is proposed to recover sources.

3.1. Single Source Detection

For simplicity, STFT is applied on both side of (6) without noise term. The mixtures in TF domain
can be written as

X(t, f ) = AS(t, f ) =
N

∑
n=1

anSn(t, f ), (7)

where X(t, f ) = [X1(t, f ), . . . , XM(t, f )]T are STFT coefficients of received signals, and
S(t, f ) = [S1(t, f ), . . . , SN(t, f )]T are the STFT coefficients of sources.

Since the methods in [35,36] treat a large number of multi-source points as single-source points,
the estimation results of mixing matrix are not satisfactory. Therefore, a new theorem is proposed to
detect the single source points in TF domain.

Theorem 1. At any TF point (ta, fa) , if only one source sn(t) contributes its power, the following condition
is required:

M−1

∑
p=1

M

∑
q=p+1

∣∣∣∣∣
∣∣Xq(ta, fa)

∣∣∣∣Xp(ta, fa)
∣∣ − 1

∣∣∣∣∣ < ε, (8)

where 0 < ε� 1. ε is an empirical value and it depends on the signal ratio to noise (SNR). The effect of ε on
estimation accuracy is discussed in Section 4.

Proof. The proof is given in Appendix A.

3.2. The Mixing Matrix Estimation

After detecting all SSPs, the mixing matrix can be estimated by clustering methods. Suppose
that Gn is a TF region which contains all SSPs of sn(t). If the second row of the mixing matrix can be
obtained, the mixing matrix is obviously calculated based on the Vandermonde structure. According
to (7),

X2(ta, fa)

X1(ta, fa)
=

a2,nSn(ta, fa)

a1,nSn(ta, fa)
, (ta, fa) ∈ Gn, (9)
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where ai,n represents the ith row of the nth column of mixing matrix. Because the first row elements of
Vandermonde matrix are equal to one, the following result can be obtained

a2,n =
X2(ta, fa)

X1(ta, fa)
, (ta, fa) ∈ Gn. (10)

To improve the mixing matrix estimation accuracy, based on (5) and (9), Ω2,n which corresponds
to the SSP (ta, fa) ∈ Gn, is represented as

Ω2,n =

 arctan Im{a2,n}
Re{a2,n}

+ π if Re{a2,n} < 0 and Im{a2,n}
Re{a2,n}

< 0

arctan Im{a2,n}
Re{a2,n}

others
. (11)

Cluster Ω2,n into N different classes. The proposed algorithm utilizes the hierarchical clustering
technique to estimate clustering centers

{
Ω̂2,n, n = 1, . . . , N

}
. Although it may not be the best

clustering algorithm, the clustering method will be studied in the future work.
Therefore, the mixing matrix estimation is calculated by

â2,n = exp
(

jΩ̂2,n
)

n = 1, . . . , N

Â =


1 · · · 1

â2,1 · · · â2,N
...

. . .
...

âM−1
2,1 · · · âM−1

2,N

 (12)

3.3. FH Signals Recovery

An improved subspace projection method is proposed which is inspired by the method in [38].
The method in [38] assumed that there were no more than M active sources at each TF point.
It calculated the minimum value of the product of the orthogonal projection matrix of mixing matrix
and the TF domain mixtures to identify the sources. However, this method did not consider the effect
of redundant signals. That is why the number of active sources at each TF point is always estimated as
M. To improve the accuracy of the recovered FH signals, the proposed method in this paper sets a
threshold to solve this problem. Suppose that there exist l (l ≤ M) FH signals at each TF point and l
is a variable number. The corresponding mixing matrix column vectors are denoted by [ak1 , . . . , akl

],
where, {k1, . . . , kl} ∈ {1, . . . , N}, k1 < k2 < · · · < kl . The l FH signals can be identified by

[ak1 , . . . , akl
] = arg min

l
{‖QlX(t, f )‖2 < ε0‖X(t, f )‖2}

Ŝl(t, f ) =
(
AH

l Al
)−1AlX(t, f )

, (13)

where Ql = I − Al
(
AH

l Al
)−1Al , and Al =

[
ak1 , . . . ., akl

]
. ε0 is a small value and it is relative to

redundant weak signals. The recovered FH sources in time domain can be estimated by inverse STFT.
The frequencies

{
f̂n, n = 1, · · · , N

}
can be calculated by fast Fourier transformation (FFT).

3.4. DOA Estimation and Splicing of FH Signals

For synchronous FH signals, hopping times of FH signals are the same. To splice FH signals,
DOAs are required. According to the mixing matrix in (5), DOAs of FH signals in kth hop duration
can be estimated by

θ̂n = arccos
−Ω̂2,nc
2π f̂nd

. (14)
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DOAs do not change in a short time. If the DOAs of segments are approximately equal, these
segments belong to the same FH signal. Therefore, comparing the DOAs between hop durations is an
effective way to splice FH signals. The decision criterion is

∣∣DOAi −DOAj
∣∣ H1
>

<
H0

r, (15)

where DOAi and DOAj represent different segments, stands for the hypothesis of “not the same FH
signals segments”, H0 stands for “the same FH signals segments” and r is a judgment threshold.
The value of r will be described in Section 4.3.

In Summary, the proposed algorithm is given in Algorithm 1.

Algorithm 1 The proposed algorithm

Input: The received signals
Step 1: Segment the received signals based on the known or estimated hop timings.
Step 2: In one hop duration, calculate the STFT X(t, f ) = {X1(t, f ), . . . , XM(t, f )} of the received signals.

For each TF point (ta, fa), calculate
M−1
∑

p=1

M
∑

q=p+1

∣∣∣∣ |Xq(ta , fa)|
|Xp(ta , fa)| − 1

∣∣∣∣ and utilize Theorem (8) to

detect signal-source-points.
Step 3: Calculate X1(ta , fa)

X1(ta , fa)
for all SSPs. Based on (11), Ω2,n can be obtained and Ω̂2,n is calculated via

clustering method.
Step 4: Calculate the mixing matrix by (12).
Step 5: Estimate Ŝ(t, f ) by (13), and calculate the inverse STFT to obtain FH signals. The frequency{

f̂ , n = 1, . . . , N
}

can be calculated by FFT.

Step 6: Calculate DOAs
{

θ̂n, n = 1, . . . , N
}

by (14).
Step 7: In another hop duration, repeat Step 2 to Step 6.
Step 8: Compare the DOAs in different hop durations. The recovered FH signals can be spliced according
to (15).
Output:

{
θ̂n, n = 1, . . . , N

}
,
{

f̂n, n = 1, . . . , N
}

and recovered FH signals.

4. Simulations

In this section, numerical results are given to demonstrate the effectiveness of the proposed
algorithms. In all experiments, M = 4. Suppose sample size L = 256 and N = 5. The synchronous FH
signals parameters are shown in Table 1. In this section, the thresholds ε, ε0 and r are set to 0.2, 0.1 and
2, respectively. The influence of thresholds on the estimation performance is discussed later.

Table 1. The Synchronous FH signals parameters.

Signals Frequency (MHz) DOA(◦)

Signal 1 27, 33 100
Signal 2 38, 44 50
Signal 3 55, 61 80
Signal 4 46, 52 30
Signal 5 60, 66 10

Hop timings can be estimated by the methods in [40,41]. This parameter is ignored in Table 1.
In the following simulations, the SNR is written as

SNR = 10 log10(
‖s(t)‖2

2
Nσ2 ). (16)
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Following [44], the performance of parameter estimation can be measured by Root mean square
error (RMSE) which is defined as

RMSE =

√√√√√ N
∑

n=1
(ηn − η̂n)

2

N
, (17)

where ηn is the nth original parameter, and η̂n is the nth estimation value.

4.1. Mixing Matrix Estimation

The performance of the mixing matrix estimation is demonstrated by mean square error (MSE)
which is defined as

MSE = 10 log10

(
‖A− Â‖2

2
N

)
. (18)

A small MSE indicates superior quality. In addition, the columns of the estimated mixing matrix
are normalized and the uncertainty of the columns is removed.

First, the underdetermined situation where M = 4 and N = 5 is considered. This experiment does
1000 Monte Carlo tests. Figure 2 illustrates the MSE performance of the proposed method comparing
with Li’s method in [35] and Nie’s method in [36] with SNR increasing. It can be seen that the proposed
method can obtain higher accuracy than other algorithms. Since the methods of Li and Nie treat a
large number of multi-source points as single-source points, the estimation results of mixing matrix
are not satisfactory.

Figure 3a shows the scatter diagrams of real parts and imaginary parts of {a2,n, n = 1, · · · , N}
which are calculated by (10) when SNR = 15 dB. Figure 3a shows N clusters clearly. However, it is
hard to identify clusters from Figure 3b,c, which are calculated by Nie’s and Li’s methods, respectively.
Each cluster represents a2,n, n = 1, . . . , N. Because the proposed method detects fewer error points
than the other two methods, the proposed method works very well.Sensors 2017, 17, 2074 8 of 20 

 

0 5 10 15 20 25 30 35 40
SNR(dB)

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

M
S

E
(d

B
)

Li's method

Nie's method

proposed method

 
Figure 2. The MSE comparisons of different methods. 

-2 0 2
The real part 

(a)

-1

0

1

T
he

 im
ag

in
ar

y 
pa

rt

-2 0 2
The real part

(b)

-2

0

2

T
he

 im
ag

in
ar

y 
pa

rt

-2 0 2
The real part 

(c)

-2

0

2

T
he

 im
ag

in
ar

y 
pa

rt

 
Figure 3. The scatter diagram of   2 , , 1, ,na n N  for SNR 15 dB : (a) the scatters of the proposed 

method; (b) the scatters of Nie’s method; and (c) the scatters of Li’s method. 

   2, , 1, ,n n N  calculated by (11) are shown in Figure 4a when SNR 15 dB . The 

amplitudes represent the values of    2, , 1, ,n n N . Since the proposed method has eliminated 

many unreliable SSPs, the    2, , 1, ,n n N  in Figure 4a clearly show N  straight lines, which 

represent the clusters. Although, Nie’s method and Li’s method can also show straight lines in 
Figure 4b,c, respectively, many disturbing points that lead to the bad results of the mixing matrix 
exist. 

Figure 2. The MSE comparisons of different methods.



Sensors 2017, 17, 2074 8 of 20

Sensors 2017, 17, 2074 8 of 20 

 

0 5 10 15 20 25 30 35 40
SNR(dB)

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

M
S

E
(d

B
)

Li's method

Nie's method

proposed method

 
Figure 2. The MSE comparisons of different methods. 

-2 0 2
The real part 

(a)

-1

0

1

T
he

 im
ag

in
ar

y 
pa

rt

-2 0 2
The real part

(b)

-2

0

2

T
he

 im
ag

in
ar

y 
pa

rt
-2 0 2

The real part 
(c)

-2

0

2
T

he
 im

ag
in

ar
y 

pa
rt

 
Figure 3. The scatter diagram of   2 , , 1, ,na n N  for SNR 15 dB : (a) the scatters of the proposed 

method; (b) the scatters of Nie’s method; and (c) the scatters of Li’s method. 

   2, , 1, ,n n N  calculated by (11) are shown in Figure 4a when SNR 15 dB . The 

amplitudes represent the values of    2, , 1, ,n n N . Since the proposed method has eliminated 

many unreliable SSPs, the    2, , 1, ,n n N  in Figure 4a clearly show N  straight lines, which 

represent the clusters. Although, Nie’s method and Li’s method can also show straight lines in 
Figure 4b,c, respectively, many disturbing points that lead to the bad results of the mixing matrix 
exist. 

Figure 3. The scatter diagram of {a2,n, n = 1, · · · , N} for SNR = 15 dB: (a) the scatters of the proposed
method; (b) the scatters of Nie’s method; and (c) the scatters of Li’s method.

{Ω2,n, n = 1, · · · , N} calculated by (11) are shown in Figure 4a when SNR = 15 dB. The
amplitudes represent the values of {Ω2,n, n = 1, · · · , N}. Since the proposed method has eliminated
many unreliable SSPs, the {Ω2,n, n = 1, · · · , N} in Figure 4a clearly show N straight lines, which
represent the clusters. Although, Nie’s method and Li’s method can also show straight lines in
Figure 4b,c, respectively, many disturbing points that lead to the bad results of the mixing matrix exist.
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To analyze the complexity of these methods, CPU time is calculated. Our simulations are
performed in MATLAB R2009a using an Inter Core I3-2100 +310 GHz processor. The operating
system is Microsoft Windows XP and the memory is 2 GB. The average CPU time (s) for Monte Carlo
tests against SNR levels is shown in Figure 5. The proposed method utilizes all mixtures in TF domain
to detect SSPs, while Nie’s method just uses two mixtures. That is why the proposed method cost
more time than Nie’s method. Because the numbers of SSPs are different in different SNR, the cost
time of proposed method is not the same. The cost time of the proposed method is increasing with the
number of SSPs.
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Second, to analyze the source number effect on MSE performance, the underdetermined situation
where M = 4 and N = 6 is considered. The comparison of the MSE for M = 4 and N = 6 is shown in
Figure 6. It demonstrates that the performance of the proposed method is also better than the others
when the source number increases to six. Comparing with Figure 2, it can be seen that the proposed
method gets large MSE when N = 6. In other words, the performance becomes bad when the number
of sources increases. Therefore, the number of FH signals cannot be much larger than that of antennas.
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Third, the influence of threshold ε on the MSE of mixing matrix is discussed. When ε is too
small, not enough single-source-points exist to be used for estimating mixing matrix in low SNR.
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This will lead to wrong results. When ε is too large, many more multi-source points exist to be used for
estimating mixing matrix. This will also lead to wrong results. The effect of ε is shown in Figure 7.
When ε = 0.1, the performance is bad in low SNR. When ε is greater than 0.3, the results are not
credible. Through the above analysis, it is reasonable to set ε = 0.2.
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The effect of sample size on the performance of mixing matrix is discussed in this part. Figure 8
shows that, when L = 256, more accuracy can be obtained than L = 128 if ε = 0.1. However, if ε is
chosen too large, the accuracy is worse than L = 128. Thus, in the case of large sample size, such as
L = 256, a small threshold ε should be chosen, which leads to higher accuracy.Sensors 2017, 17, 2074 11 of 20 
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Fourth, the influence of hop timing error on the MSE of mixing matrix is discussed. Figure 9
shows the impact of different hop timing errors on different sample sizes. When sample size is L = 128,
the performance of mixing matrix estimation becomes bad when hop timing error is greater than
30 samples. When sample size is L = 192, the performance of mixing matrix estimation becomes bad
when hop timing error is greater than 60 samples. When sample size is L = 256, the performance of
mixing matrix estimation is not bad even if hop timing error is greater than 100 samples. Thus, the
greater the radio of the hop timing error to sample size is, the worse the result is. According to the
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existing hop timing estimation algorithms in [40,41], the hop timing can be estimated correctly in a
certain range of error. Hop timing error is not very restricted to the proposed method.
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4.2. FH Signals Recovery

The recovery performance is quantified by source to interference ratio (SIR), which is defined as
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and can improve recovered signal performance. 
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(19)

where ŝn(t) is the nth recovered signal. A large SIR indicates superior quality.
First, Figure 10 compares the recovery performance between the improved subspace projection

method and the method in [38]. These two methods utilize the mixing matrix that is estimated by
the proposed SSPs detection method. It can be seen that the improved subspace projection method
performs better than the method in [38].
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Second, according to estimated mixing matrices that are obtained by the three methods, the
improved subspace projection method is used to recover signals, and the performance is shown in
Figure 11. It can be known that the higher the estimation accuracy of the mixing matrix is, the better
the recovered performance is. This also proves that the proposed SSPs detection method is effective
and can improve recovered signal performance.
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Third, frequencies can be estimated by FFT operator when the signals are obtained by the proposed
recovery method in time domain. Figure 12 shows the comparison between the true and the estimated
frequencies with SNR increasing. The square represents the estimated frequency and the straight line
represents the true frequency. Figure 13 shows the RMSE of frequency estimation. Even when SNR is
equal to 0 dB, the proposed methods can estimate the frequencies accurately.
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Figure 15. The waveforms and FFT results when SNR = 0 dB and ε0 = 0.5.

4.3. DOA Estimation and Splicing FH Signals

The DOAs estimation can be obtained by (14) using the estimated mixing matrix and the frequency
which are obtained by the proposed methods. Figure 16 shows the comparison of the true DOA and
the estimated DOA with SNR increasing. The square represents the estimated value of DOA and the
straight line means the true value of DOA. Figure 17 shows the RMSE of DOA estimation. It can be
seen that the estimated DOAs are almost the same as the true ones when SNR is higher than 10 dB.
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To sort FH signals, DOAs of different hop durations are estimated. Table 2 lists the RMSE
performance of two hop durations when SNR is changing. Comparing the data in Table 2 with the
data in Table 1, the DOA estimation is close to the true value when SNR is increasing. It can be seen
that the RMSE of DOA estimation remains less than 1◦ when SNR is higher than 15 dB. In addition, the
proposed algorithms can successfully sort synchronous orthogonal FH signals in the underdetermined
case. The correlation of mixing matrix columns is related to the product of DOA and frequency. Under
the assumption that any M×M sub-matrix of mixing matrix has full rank, the mixing matrix can be
estimated even if DOA of FH signals are the same. Therefore, r can be selected based on the RMES of
DOA estimation. r should be two times larger than that of RMSE of DOA estimation. According to
Figure 17, the threshold r in (15) can be set to 2◦ so that different hops can be spliced.

Table 2. The RMSE performance of the proposed algorithms.

SNR = 15 dB SNR = 25 dB SNR = 30 dB SNR = 40 dB

Hop duration 1
Estimation
DOAs (◦)

99.4272 99.7098 99.9485 99.8157
50.6795 50.4218 50.5310 50.5380
80.1626 80.0028 79.9600 79.9867
30.3958 30.5444 30.6250 30.5645
11.6847 12.0813 11.9910 11.8942

RMSE 0.8741 0.9890 0.9634 0.9197

Hop duration 2
Estimation
DOAs (◦)

99.9952 99.9788 100.0327 100.0226
49.8621 49.9086 49.8987 49.8865
79.6136 80.0633 49.8987 49.8865
31.7015 31.2438 30.9527 31.0309
10.3528 9.6034 9.1250 9.2847

RMSE 0.7985 0.5860 0.5805 0.5626

5. Conclusions

This paper proposes a novel method to detect SSPs in TF domain and also an improved subspace
projection method is proposed to recover signals. The synchronous FH sorting problem is solved in
UBSS situation. The proposed SSPs detection method improves the complex-valued mixing matrix
estimation accuracy. In this paper, DOAs and frequencies are also estimated by the improved subspace
projection method. The RMSE of DOA estimation based on the proposed methods is less than 1◦

when SNR is higher than 15 dB in the underdetermined case. The task of sorting FH signals has been
completed by the proposed methods. We will try to improve DOA estimation accuracy in low SNR in
the future work.
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Notation

AT , A−1, AH the transpose, inverse and conjugate transpose of A,
respectively.

‖A‖ l2 norm of matrix A
|a| the absolute value of a
Re{a} the real part of a
Im{a} the imaginary part of a

Appendix A

This part shows the proof of theorem.
Suppose (ta, fa) is an SSP of sn(t), the (7) can be written as

X(ta, fa) = anSn(ta, fa) . (A1)

At the (ta, fa) TF point, the STFT of mth mixture is

Xm(ta, fa) = am,nSn(ta, fa) , (A2)

where am,n is the coefficient of mixing matrix. Expand the real and the imaginary part of (A2)

Re{Xm(ta, fa)}+ jIm{Xm(ta, fa)}
= (Re{am,n}+ jIm{am,n})(Re{Sn(ta, fa)}+ jIm{Sn(ta, fa)}).

(A3)

Then, it can be obtained that

Re{Xm(ta, fa)} = Re{am,n}Re{Sn(ta, fa)} − Im{am,n}Im{Sn(ta, fa)}
Im{Xm(ta, fa)} = Im{am,n}Re{Sn(ta, fa)}+ Re{am,n}Im{Sn(ta, fa)}.

(A4)

Calculate the square of Re{Xm(ta, fa)} and Im{Xm(ta, fa)}, and the following formulation can
be obtained

Re{Xm(ta, fa)}2 + Im{Xm(ta, fa)}2

=
[
Re{am,n}2 + Im{am,n}2

]
Re{Sn(ta, fa)}2 +

[
Re{am,n}2 + Im{am,n}2

]
Im{Sn(ta, fa)}2.

(A5)

Based on the structure of mixing matrix in (5), Re{am,n}2 + Im{am,n}2 = 1. Then, (A5) is written as

Re{Xm(ta, fa)}2 + Im{Xm(ta, fa)}2 = Re{Sn(ta, fa)}2 + Im{Sn(ta, fa)}2 . (A6)

Due to the arbitrary m, the equation as follows is obtained at the (ta, fa) point

Re
{

Xp(ta, fa)
}2

+ Im
{

Xp(ta, fa)
}2

= Re
{

Xq(ta, fa)
}2

+ Im
{

Xq(ta, fa)
}2 (A7)

and it is equal to ∣∣Xp(ta, fa)
∣∣ = ∣∣Xq(ta, fa)

∣∣ . (A8)
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It indicates that, if (ta, fa) is an SSP, the mixtures are the same absolute value in TF domain. If there
is no noise, the (A8) can be rewritten as

M−1

∑
p=1

M

∑
q=p+1

∣∣∣∣∣
∣∣Xq(ta, fa)

∣∣∣∣Xp(ta, fa)
∣∣ − 1

∣∣∣∣∣ = 0. (A9)

Consider the noise effect and relax the condition, a threshold ε is introduced. Then, (A9) can be
written as

M−1

∑
p=1

M

∑
q=p+1

∣∣∣∣∣
∣∣Xq(ta, fa)

∣∣∣∣Xp(ta, fa)
∣∣ − 1

∣∣∣∣∣ < ε, (A10)

where 0 < ε � 1. Assume that at (ta, fa) two sources, si(t) and sj(t), are active. Then (7) can be
written as

X(ta, fa) = aiSi(ta, fa) + ajSj(ta, fa). (A11)

At the TF point (ta, fa), the STFT of mth mixture is

Xm(ta, fa) = am,iSi(ta, fa) + am,jSj(ta, fa) . (A12)

Then,

Re{Xm(ta, fa)} = Re{am,i}Re{Si(ta, fa)} − Im{am,i}Im{Si(ta, fa)}
+Re

{
am,j
}

Re
{

Sj(ta, fa)
}
− Im

{
am,j
}

Im
{

Sj(ta, fa)
}

,
Im{Xm(ta, fa)} = Im{am,i}Re{Si(ta, fa)}+ Re{am,i}Im{Si(ta, fa)}

+Im
{

am,j
}

Re
{

Sj(ta, fa)
}
+ Re

{
am,j
}

Im
{

Sj(ta, fa)
}

.

Since Re{am,i}2 + Im{am,i}2 = 1 and Re
{

am,j
}2

+ Im
{

am,j
}2

= 1, then

Re{Xm(ta, fa)}2 + Im{Xm(ta, fa)}2

= Re{Si(ta, fa)}2 + Im{Si(ta, fa)}2 + Re
{

Sj(ta, fa)
}2

+ Im
{

Sj(ta, fa)
}2

+2Re{Si(ta, fa)}Re
{

Sj(ta, fa)
}(

Im{am,i}Im
{

am,j
}
+ Re{am,i}Re

{
am,j
})

+2Im{Si(ta, fa)}Im
{

Sj(ta, fa)
}(

Re{am,i}Re
{

am,j
}
+ Im{am,i}Im

{
am,j
})

+2Re{Si(ta, fa)}Im
{

Sj(ta, fa)
}(

Im{am,i}Re
{

am,j
}
− Re{am,i}Im

{
am,j
})

+2Im{Si(ta, fa)}Re
{

Sj(ta, fa)
}(

Re{am,i}Im
{

am,j
}
− Im{am,i}Re

{
am,j
})

.

(A13)

Due to the Vandermonde structure of the mixing matrix, the first row coefficient of the mixing
matrix a1,n is satisfied with Re{a1,n} = 1, Im{a1,n} = 0, then,

Re{X1(ta, fa)} = Re{Si(ta, fa)}+ Re
{

Sj(ta, fa)
}

Im{X1(ta, fa)} = Im{Si(ta, fa)}+ Im
{

Sj(ta, fa)
}

.

Calculate the square of Re{X1(ta, fa)} and Im{X1(ta, fa)}, which is shown as follows:

Re{X1(ta, fa)}2 + Im{X1(ta, fa)}2

= Re{Si(ta, fa)}2 + Re
{

Sj(ta, fa)
}2

+ Im{Si(ta, fa)}2 + Im
{

Sj(ta, fa)
}2

+2Re{Si(ta, fa)}Re
{

Sj(ta, fa)
}
+ 2Im{Si(ta, fa)}Im

{
Sj(ta, fa)

}
.

(A14)

Assume that (A8) also holds true for MSPs; comparing (A14) and (A13), the following is obtained

Im{am,i}Im
{

am,j
}
+ Re{am,i}Re

{
am,j
}
= 1

Im{am,i}Re
{

am,j
}
− Re{am,i}Im

{
am,j
}
= 0.

(A15)
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Utilizing the properties Re{am,i}2 + Im{am,i}2 = 1 and Re
{

am,j
}2

+ Im
{

am,j
}2

= 1, (A15) is
equivalent to the following

Re{am,i} = Re
{

am,j
}

Im{am,i} = Im
{

am,j
}

.
(A16)

The condition in (A16) is hash in practice. Therefore, MSPs cannot satisfy (A10).
The proof is completed.
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