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Abstract: Inertial sensors are widely used in various applications, such as human motion 

monitoring and pedestrian positioning. However, inertial sensors cannot accurately define the 

process of human movement, a limitation that causes data drift in the process of human body 

positioning, thus seriously affecting positioning accuracy and stability. The traditional pedestrian 

dead-reckoning algorithm, which is based on a single inertial measurement unit, can suppress the 

data drift, but fails to accurately calculate the number of walking steps and heading value, thus it 

cannot meet the application requirements. This study proposes an indoor dynamic positioning 

method with an error self-correcting function based on the symmetrical characteristics of human 

motion to obtain the definition basis of human motion process quickly and to solve the 

abovementioned problems. On the basis of this proposed method, an ultra-wide band (UWB) 

method is introduced. An unscented Kalman filter is applied to fuse inertial sensors and UWB data, 

inertial positioning is applied to compensation for the defects of susceptibility to UWB signal 

obstacles, and UWB positioning is used to overcome the error accumulation of inertial positioning. 

The above method can improve both the positioning accuracy and the response of the positioning 

results. Finally, this study designs an indoor positioning test system to test the static and dynamic 

performances of the proposed indoor positioning method. Results show that the positioning system 

both has high accuracy and good real-time performance. 
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1. Introduction 

In today’s fast-paced modern society, people are increasingly dependent on the convenience of 

location-based services, which are based on the precise positioning method. According to statistics, 

80–90% of human activities occur indoors; thus, without interfering on the premise of privacy, the 

indoor location information of crowds has high commercial value. 

At present, the mainstream indoor positioning technologies are ultrasound, infrared, Bluetooth, 

ZigBee, radio frequency identification technology (RFID), and WIFI [1–6]. This technologies meet the 

requirements of some indoor activities to some extent, but some shortcomings still exist, such as high 

cost and poor positioning accuracy. An inertial-sensor-based method, named pedestrian dead-

reckoning (PDR) positioning, has the advantages of low cost, small volume, and strong autonomy, 

but its inertial positioning method has poor positioning accuracy and the positioning error will 

accumulate over time. Therefore, determining how to reduce the cumulative error of the inertial 

sensors is an urgent concern. Zhuang et al. [7] used the zero velocity update (ZUPT) algorithm to 

clear the cumulative error in each step interval, and improve the accuracy of inertial navigation to a 

certain extent. The error can be controlled within 2 m. The positioning accuracy of the meter level can 
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barely meet the requirements because the conditions become more severe. Therefore, inertial 

positioning is usually combined with other positioning methods. Xin et al. [8] used various methods 

to fuse the Bluetooth tag and PDR positioning data; after experimental verification, the extended 

Kalman filter (EKF) fusion could achieve increased positioning accuracy and an average accuracy of 

less than 1 m. A disadvantage is that the cost of placement and maintenance of Bluetooth labels is 

high, and, Bluetooth positioning and PDR method can barely achieve precise positioning. Thus, 

integrating the two methods can only reach the positioning accuracy at the meter level. Ruiz et al. [9] 

proposed a new INS/RFID tightly-coupled indoor location method based on Kalman filter (KF), and 

applied ZUPT and zero angular-rate updates (ZARU) to detect pedestrian gait interval. The method 

can effectively eliminate the error drift and control the average positioning accuracy in 1.5 m. 

The combination of positioning technologies and inertial positioning can only improve the 

positioning accuracy to a very small extent because the positioning accuracy of Bluetooth and RFID 

methods is poor. Meanwhile, UWB is not sensitive to channel fading, has low transmission signal 

power spectral density, low interception capacity, and low system complexity, and can provide 

centimeter-level accuracy, but its susceptible to blocking, which causes low dynamic performance. 

Pittet et al. [10] used EKF to fuse UWB/PDR data. However, EKF could not achieve good results, and 

even cause the filtering divergence of the nonlinear system. In addition, the KF could not correct the 

heading error, thereby increasing the heading error with time. Zihajehzadeh et al. [11] used two 

cascaded Kalman filter to fuse the UWB/IMU data and reduce the heading errors to a certain extent, 

but the heading angle needed 20 s to be converged; thus, the method failed to meet the dynamic 

response requirements. He et al. [12] used distance data from the UWB module placed on the mobile 

node to correct the positioning error of dead reckoning (DR) and were able to achieve an average 

positioning accuracy of 0.2646 m. 

The aforementioned studies show that the combined positioning method of UWB/PDR can 

obtain high positioning accuracy and meet the requirements of most indoor environments. However, 

the above method neglects the dynamic performance of indoor positioning system. 

Given the increasingly important role of indoor positioning plays in virtual reality (VR) and 

robots, dynamic performance has become an indispensable in evaluating a qualified indoor 

positioning system. Dynamic positioning accuracy will directly affect the user’s gaming experience, 

especially in VR theme parks and other indoor positioning applications. In a complex indoor 

environment, the independent UWB positioning can barely obtain continuous ranging information, 

and the autonomy and real-time performance of inertial sensors can favorably improve the dynamic 

performance of the integrated positioning system. However, the traditional PDR algorithm based on 

a single IMU cannot provide accurate positioning data. Hence, integrating UWB/PDR data directly 

failed to achieve the ideal static and dynamic positioning accuracy. 

Inertial sensing is widely used in human motion monitoring and location positioning of various 

applications. However, because inertial sensors cannot accurately define the process of human 

movement, data drift occurs in the human positioning process, which seriously affects positioning 

accuracy and stability. At present, many scholars have adopted various methods based on inertial 

sensing to improve the performance of human motion. Although the static performance of 

positioning data can be improved, but the dynamic performance of positioning results still fails to 

meet the application requirements. 

Present studies have neglected the following rules: in the process of human body movement, in 

order to maintain body balance, the movements of symmetrical parts have a certain degree of 

similarity and symmetry. Moreover, throughout the movement, a certain regularity exists between 

the movement of symmetrical joint bones and the movement of joint bones is similar; only a certain 

phase difference occurs in time. These rules can be used to accurately define the process of human 

motion and improve the traditional PDR algorithm. 

2. Positioning Strategy of Distributed Inertial Sensors 

PDR algorithm is a pedestrian trajectory estimation method based on inertial sensors. The 

traditional PDR algorithm takes the data of single-foot inertial sensor as the input and completes the 
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pedestrian calculation through the steps of step detection, step length calculation, and heading 

calculation. However, the data acquisition and calculation process of a single foot causes a large error 

and lacks a review mechanism. The improved PDR algorithm proposed in this study is a positioning 

method based on the inertial data of the right and left feet. To verify the feasibility of the method, the 

output inertial data of the pedestrian's feet are analyzed, and the action characteristics of the human 

body are obtained before improving the traditional method. 

2.1. Analysis of Human Body Movement 

The motion of the human body presents periodicity during walking, which can be seen through 

observation. A complete gait cycle starts at the point when the heel of one foot hits the floor and ends 

at the point when the heel of the same foot hits the floor again. During this period, the lower limb 

experiences both stationary and swinging phases. The swing phase can be divided into three stages, 

namely, toe-off (TO), mid-stance (MS) and the heelstrike (HS). Thus, a complete gait cycle can be 

divided into four processes, namely, TO, MS, HS and foot flat (FF). 

The movements of the lower limbs are usually symmetrical. Two inertial sensors are placed on 

both feet in order to verify the symmetry of the lower limb. The angular velocity curve of the Y-axis 

can reflect the gait cycle and the symmetry of the feet when walking by analyzing triaxial acceleration 

and angular velocity data. 

In Figure 1, the periodic characteristic of the angular velocity curve of the Y-axis is more obvious, 

the output curve is smooth, and the features are easy to be extract. Figure 2 shows that the gait cycle 

of the left and right feet alternates with each other, and the still period of the left (right) foot 

corresponds to the swing period of the right (left) foot. These characteristics provide the possibility 

of implementing the PDR algorithm and improving dynamic performance. 

 

Figure 1. Angular velocity of both feet (1 frame = 0.017 s). 

 

Figure 2. Gait cycle of both feet (1 frame = 0.017 s). 
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The traditional PDR algorithm is based on the output data of a single-foot inertial sensor. 

However, the reliability of single-foot data is low, leading to a large deviation in the pedestrian 

position estimation. Step detection method based on one foot is not accurate and lacks an inspection 

mechanism, especially in the step detection of PDR algorithm, thus affecting the final positioning 

results. Figure 2 shows that the symmetry of the human lower limb in motion can favorably provide 

the precision of step detection. The data in the figure and daily experience show that feet cannot be 

in a swing state at the same time during walking; when one foot is in the swing phase, the other foot 

must be in a quiescent period to maintain the stability of the body's center of gravity. This 

phenomenon indicates that the body is in the stationary state when two feet are stationary at the same 

time. According to the above characteristics, this study improves the step detection and heading 

estimation methods in traditional PDR algorithm by proposing a step detection method based on 

limb symmetry and a dynamic threshold and a heading estimation method based on angular velocity 

threshold. These methods can improve the precision of step detection and heading calculation and 

finally improve the positioning accuracy and dynamic performance of the PDR algorithm. 

2.2. Improved PDR Indoor Positioning Algorithm 

INS and PDR algorithm are two commonly used methods in navigation [13]. The advantages of 

the PDR algorithm is that it reduces the error brought by the integral in the step length estimation 

and does not need to integrate the acceleration. PDR algorithm consists of three steps: step detection, 

step length calculation and heading detection. The previous position of the pedestrian can be used to 

calculat the current position: 
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respectively represent the current position and the previous position 

coordinates, respectively; l  is the step length, and   represents the heading value. The improved 

PDR algorithm proposed in this study is shown in Figure 3: 

 

Figure 3. Improved PDR algorithm. 
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detection method, this study proposes a new step detection method based on human motion 

characteristics and dynamic threshold to improve the accuracy of step detection. The inertial data in 

the process of walking show that the angular velocity of the left and right feet presents a certain 

periodicity and symmetry, and the features of angular velocity curves around the Y-axis is 

particularly evident. Therefore, to increase the accuracy of step detection, the traditional step 

detection method is improved based on the characteristics of the angular velocity of the Y-axis. 

 

Figure 4. Acceleration of both feet. (1 frame = 0.017 s). 

Figure 5 shows the change in angular velocity amplitude of the Y-axis. Step detection threshold 

should be constantly changing and continuous because walking is continuous. At the same time, the 

threshold of the current gait range is set according to the amplitude of the angular velocity curve of 

the previous three steps. The dynamic threshold can be calculated using Equations (2)–(4). In 

Equation (4), peakv  is the mean magnitude of the angular velocity of the previous three steps, and 
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ith  represents the angular velocity threshold of the current step, and 
1ith 
 is the angular velocity 

threshold of i + 1 step. In Equation (3), l  represents the ratio of peakv  and the peak value of the 

angular velocity of i step. Equation (4) is the updating algorithm of the dynamic threshold, and AV = 

4 rad/s represents the angular velocity. To eliminate the slight disturbance in the walking process, 
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Figure 5. Amplitude variation of angular velocity in walking (1 frame = 0.017 s). 

Table 1 compares the proposed PDR algorithm’s step detection method and the traditional step 

detection method. In actual use, the result of the step detection method based on a single foot is bound 

to be erroneously estimated. In the proposed step detection method, the walking steps of the left and 

right feet are calculated initially by the step detection method based on dynamic threshold, and then 

the checking mechanism is introduced to judge the state of the other foot according to the motion 

state of one foot. This method can improve the precision of step detection and reduce the PDR 

positioning error to a certain extent. 

Table 1. Results of step detection. 
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2.2.2. Establishment of the Model of Step Length and Frequency 

In the DR motion model, the accuracy of step length calculation will directly affect the final 

accuracy of the positioning result. At present, numerous common step length models are divided 

into linear [16] and nonlinear [17] step length calculation models. The method based on step length 

and frequency model is used to calculate real-time step length. Step length is proportional to the pace 

during the walking process, as shown in Equations (5) and (6), where, ( )WFS i  is the step length of 

step i , ( )WF i  represents the step frequency of step i , ( )WFv i  is the step frequency noise, and 

a  and b  are the linear coefficients. The relationship between step length and step frequency can 

be determined when a  and b  are known: 
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a  and b  can be calculated by the undetermined coefficient method. Firstly, the walking steps and 

time of the experimenter will be recorded. Second, the average step length will be calculated using 

walking distance and step number, and step frequency will be calculated by the step number and 

walking time. Finally, a  and b  values can be calculated using the least squares method, as 

follows: 
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2.2.3. Heading Detection  

In the proposed PDR algorithm, the heading value is mainly calculated by magnetometer and 

gyroscope. In Figure 6a, the magnetometer output will determine the initial heading, and the change 

in direction will be determined by the gyroscope. The earth is a bipolar magnet. It has a component 

that always points to the magnetic north direction, and the projection of this component in three axes, 

as measured by magnetometer, can determine the direction of the carrier. The change in angle is 

determined by integrating the angular velocity values, as shown in Figure 6b. 
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Figure 6. Geomagnetic vector component and angular velocity integration. 

To eliminate the noise caused by the movement of the leg jitter, the angular velocity threshold 

is set in the heading detection to determine whether the heading has changed effectively. In Figure 7, 

when the current angular velocity is greater than the threshold, the course is assumed to have 

changed, and the current heading is calculated by adding the previous course with the integral of the 

angular velocity. When the current angular velocity is less than the threshold, then the heading has 

not changed effectively, and the previous heading will be still used. 
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Figure 7. Flow chart of heading calculation. 

3. Data Fusion Strategy of Dynamic Pedestrian Positioning 

Although the improved PDR method proposed in this study is more accurate than the traditional 

PDR algorithm in positioning results, it can still be difficult to utilize in the application requirements 

of some indoor environments because of the existence of cumulative error. The positioning accuracy 

of the UWB positioning method is relatively high, but its signal propagation is vulnerable to occlusion, 

and it cannot guarantee the continuous and stable positioning accuracy, causing its poor dynamic 

performance. The proper combination of the two methods can ensure high positioning accuracy and 

improve dynamic performance. 

The position data of pedestrians are obtained by calculating using acceleration and angular 

velocity information obtained from inertial sensors through the PDR algorithm. Distance information 

is obtained by calculating the corresponding output data of the UWB module using time-of-flight 

(TOF) method. The location accuracy and dynamic performance of the indoor positioning system can 

be improved by fusing the two methods using the UKF filter. 

The indoor positioning system designed in this work consists of a hardware terminal and a 

navigation unit. The hardware includes the UWB sensors and IMU (Figure 8). The navigation unit of 

the PC estimates the position of the pedestrian by fusing the location data of UWB and the location 

and attitude calculated by IMU, thus plotting the pedestrian trajectory. 

 

Figure 8. Structure diagram of the positioning system. 
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right foot obtains the pedestrian motion information through the built-in accelerometer, gyroscope 

and magnetometer. Then, the improved PDR algorithm is used to obtain the real-time position and 

travel trajectory of the pedestrian. The UWB positioning tag placed on the shoulder of a pedestrian 

calculates the distance between the positioning tag and the base station by measuring TOF data 

between them. On this basis, using UKF [18,19] is used to fuse the position information calculated by 

IMU and the pseudorange information measured by the UWB tag, so as to realize the accurate real-

time indoor positioning of pedestrians. 

 

Figure 9. Data fusion strategy. 

3.2. Error Model of PDR/UWB Combined Positioning 

The error model of the combined positioning system proposed in this work is a 15-dimensional 
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4.1. Comparison of Positioning Results between Improved PDR and Traditional PDR 

Figure 10 shows the comparison of localization results between the traditional PDR and the 

improved PDR algorithm in this paper. The test site is a laboratory 11.7 m long and 7.5 m wide. The 

black curve in the figure represents the walking trajectory, which is a rectangle 8.5 m long and 4.5 m 

wide. The blue curve represents the traditional PDR trajectory, and the red curve is the predictive 

trajectory of the improved PDR algorithm proposed in this work. The positioning accuracy of this 

method is improved by 20% compared with the traditional PDR algorithm, an improvement that can 

provide the positioning accuracy of approximately 51.25 cm, as shown in Table 2. 

 

Figure 10. Location results of traditional PDR and improved PDR. 

Table 2. Error analysis of PDR and improved PDR. 

 Improved PDR PDR 

Maximum error/m 0.95 1.23 

Average error/m 0.51 0.93 

Minimum error/m 0.32 0.35 
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Figure 11. Node arrangement and experimental site. 

Table 3. Node arrangement. 

Number Hardware Module 

1 UWB Tab 

2 IMU(R) 

3 IMU(L) 

 

Figure 12. Outlet of UWB sensors. 

In Figure 13, the blue dotted line represents the actual walking trajectory of the pedestrian in the 

experiment, and the black circle indicates the location data computed by UWB positioning, and the 

red fork represents the location data calculated by PDR. Based on the data shown in the figure, UWB 

positioning can provide higher positioning accuracy compared with PDR positioning. However, an 

obvious delay in the position calculation of UWB and a signal loss at the same time are observed, 

which cannot provide continuous positioning results. PDR positioning can provide continuous 

positioning data, but the accuracy cannot meet the requirements of indoor positioning. 

3
2

1
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Figure 13. Trajectories of UWB and improved PDR. 

In Figure 14, the solution trajectory after UKF fusion is represented by green points with a 

positioning accuracy of 10–15 cm. At the same time, it can be seen that the dynamic performance is 

greatly improved compared with the single UWB. The specific dynamic verification is introduced in 

the next section. 

 

Figure 14. Positioning trajectory through UKF filter. 

The error analysis of the three methods is shown in Table 4: 

Table 4. Error analysis of three methods. 

 Improved PDR UWB UWB/Improved PDR 

Maximum error/m 0.95 0.54 0.33 

Average error/m 0.51 0.23 0.13 

Minimum error/m 0.32 0.12 0.02 

As shown in Table 4, the results of static verification show that the proposed method can 

effectively improve the positioning accuracy under static positioning with an average positioning 

error of 0.13 m. 

To verify the high accuracy performance of the proposed method under static positioning, 

experiments have been designed to compare the positioning results of the proposed method and the 

latest localization methods. In [20], the author proposed an approach based on support vector 

-4 -3 -2 -1 0 1 2 3 4 5 6
-7

-6

-5

-4

-3

-2

-1

0
Route

UWB

Improved PDR

Route

UWB

Improved PDR

North/m

E
as

t/
m

-4 -3 -2 -1 0 1 2 3 4 5 6
-7

-6

-5

-4

-3

-2

-1

0
Route

UWB

Improved PDR

Route

UWB

Improved PDR

North/m

E
as

t/
m

UKF



Sensors 2017, 17, 2065 13 of 20 

 

regression to estimate the received signal strength at non-site-surveyed positions of the environment. 

The proposed method could be used to improve the resolution of fingerprint-based indoor WiFi 

localization systems without increasing the site survey effort. In [21], a new Wi-Fi based indoor 

localization technique is proposed that achieves significantly improvement of indoor positioning 

accuracy with the help of Li-Fi assisted coefficient calibration. The proposed technique leverages 

indoor existing Li-Fi lighting and Wi-Fi infrastructure, and results in a cost-effective and user-

convenient indoor accurate localization framework. In this work, experimental study and 

measurements are conducted to verify the performance of the proposed idea. Experimental results in 

this work demonstrate an accuracy improvement of 80% compared with existing WiFi based 

positioning systems. 

As shown in Figure 15, the method in the current work has better static positioning performance 

than methods in [20,21]. Table 5 further proves the validity of the proposed method. In addition, 

Figure 15 confirms that the method has better dynamic performance. 

 

Figure 15. Comparison of positioning results between the proposed method and methods in [20,21]. 

Table 5. Error analysis of three methods. 

 Method in [21] Method in [20] UWB/Improved PDR 

Maximum error/m 1.78 0.72 0.35 

Average error/m 1.24 0.46 0.15 

Minimum error/m 0.22 0.13 0.05 

4.3. Dynamic Verification 

The dynamic positioning verification platform verifies the accuracy and real-time performance 

of the indoor localization method. Therefore, the reference system must be able to accurately locate 

the monitoring points and give reference results quickly. The positioning reference system used in 

this work is based on the principle of capacitive touch induction. The maximum dynamic positioning 

error is 6 cm, and the dynamic response time is approximately 16 ms, which can meet the 

requirements of the positioning reference system. 

4.3.1. Design of the Verification Platform 

The indoor positioning dynamic reference system used in this work is based on the principle of 

capacitive touch induction, Figure 16 shows a capacitive touch panel, where the middle green round 

is copper, which can be called a “key”. These buttons lead to a wire attached to the MCU, which 

detects whether the button is “pressed” by a wire. Figure 16 shows the capacitance sensing module 



Sensors 2017, 17, 2065 14 of 20 

 

designed in this work. The module is mainly composed of a capacitance induction chip MPR121 and 

a master chip STM32F103C8T6, and the capacitor induction chip and MCU communicate by IIC. Each 

capacitive sensing module contains six capacitive sensing chips, each spaced at 6 cm. To apply the 

capacitive sensing module to pedestrian location detection, the circular copper strip is designed as a 

long strip shape. In the walking process, when the foot touches the capacitor module, the 

corresponding capacitance sensing chip will react immediately and output in real-time the pedestrian 

position. The low cost and fast response of the MPR121 chip provide the precondition of the validity 

of the positioning reference system. 

 

Figure 16. Capacitance induction principle. 

Figure 17 shows the capacitive sensing module: 

 

Figure 17. Hardware of capacitor module. 

In the test, the capacitive sensing module is arranged in a grid format, and each module is 

connected by a CAN bus (Figure 18). Each capacitor chip has its own number and marks the 

coordinates of each chip. When the pedestrian walks in the area, the reference system can quickly 

locate the coordinates of the pedestrian. When the pedestrian passes through the capacitance 

induction module, the capacitance sensing chip quickly senses the foot action, and calculates the 

location of the pedestrian according to the positioning algorithm. The distance between each 

capacitor sensing chip determines the positioning accuracy of the positioning reference system. In 

this work, a spacing of 6 cm is selected, and the positioning accuracy can meet the precision 

requirements of the positioning reference system. At the same time, the module keeps the clock 

synchronized with the indoor positioning system, and the dynamic coordinates calculated by the 

capacitance induction module and the proposed indoor positioning are compared to verify the 

performance of the dynamic positioning method. 
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Figure 18. Outlet of capacitor module. 

Figure 19 shows the actual use of the capacitor module in the experiment. The capacitance 

sensing chip quickly senses the foot action, and the navigation unit of the PC shows the walking 

trajectory. 

 

Figure 19. Outlet of capacitor module. 

4.3.2. Calculating the Dynamic Response Performance of the Dynamic Positioning Reference System 

To verify the real-time performance of this method, the performance of dynamic response, which 

is also an index, should not be ignored by the location verification system. The dynamic response 

time of the reference system based on the principle of capacitive touch induction is mainly composed 

of four parts: ① Chip induction time, ② IIC communication time, ③ Algorithm running time, ④ 

CAN bus communication time, all of which are expressed in the following formula: 

D R I A Ct t t t t     (12) 

In the formula, 𝑡𝐷  represents the dynamic response time; 𝑡𝑅  represents the chip induction 

time, which is 16 ms; 𝑡𝐼 represents the IIC communication time, approximately 4 μs; At  represents 

the algorithm running time, approximately 10 ns; and 𝑡𝐶   represents the CAN bus communication 

time, approximately 4 μs . The dynamic response time of the reference system is approximately 

16 ms calculated by the formula. 
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4.4. Verification Result 

In daily activities, the speed of the human body is constantly changing. Therefore, the dynamic 

positioning performance under different moving speeds needs to be analyzed to verify the dynamic 

performance of the positioning method. The dynamic verification test was carried out in three groups, 

and the results were compared with a pedestrian under normal walking speed, jogging and fast 

running speeds. The speed of movement was 1, 2 and 3 m/s in the straight line movement. 

(1) Dynamic verification under walking speed (1 m/s): 

Figure 20 presents the comparison of the real-time position between the combined positioning 

system proposed and the reference system when the walking speed is 1 m/s. In the left figure, the X 

and Y axes represent the position of the pedestrian, and the Z axis represents the time. As shown in 

the diagram, under the normal walking speed, the integrated navigation system can continuously 

and stably output the pedestrian position, and has excellent dynamic performance and high 

positioning accuracy. 

 

Figure 20. Results for dynamic tracking of position (1 m/s). 

To verify the positioning accuracy of the method, the positioning error of the integrated 

positioning method and the improved PDR method are compared under the dynamic positioning, as 

shown in Figure 21:  

 

Figure 21. Location error curve. (1 m/s). 

As shown in the diagram, the positioning error of the single PDR method will diverge with time, 

and the positioning accuracy of the combined method is stable owing to the correction of UWB. 

(2) Dynamic verification under jogging speed (2 m/s) 
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As shown in Figure 22, the method used in this work still has good dynamic performance under 

the motion of 2 m/s, and the positioning accuracy is slightly inferior to the positioning accuracy at 

walking speed. The error curve is shown in Figure 23: 

 

Figure 22. Results for the dynamic tracking of position (2 m/s). 

 

Figure 23. Location error curve (2 m/s). 

(3) Dynamic verification under running speed (3 m/s): 

As shown in Figure 24, the dynamic performance of the method can meet the requirements of 

the human body in the running situation, but, the positioning accuracy is lower than that when 

walking and jogging, as shown in Figure 25. 

 

Figure 24. Results for the dynamic tracking of position (3 m/s). 
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Figure 25. Location error curve (3 m/s). 

The average error analysis of the integrated positioning system and the modified PDR dynamic 

verification test is shown in Table 6: 

Table 6. Error analysis of dynamic experiment. 

Speed/(m/s) Average Error of UKF/(m) Average Error of Improved PDR/(m) 

1 0.129706 0.504338 

2 0.155324 0.597811 

3 0.195338 0.80149 

The experimental results show that the designed indoor positioning system can meet the 

dynamic performance of the human body at normal speed, but the positioning accuracy is different 

at different speeds. The location error increases gradually with the increase of speed, but the error 

will not diverge over time because of the error correction of UWB. 

5. Conclusions 

In this work, an integrated positioning method of UWB and an improved PDR is proposed, and 

the advantages and disadvantages of UWB and PDR are analyzed respectively. According to the 

symmetry of the human body in motion, the traditional PDR algorithm is improved, and the location 

data of two methods are fused to achieve complementary advantages, to meet the positioning 

requirements in complex indoor environments. As UWB cannot complete the positioning task when 

the signal is blocked, PDR is used to make up for these defects. At the same time, UWB can effectively 

eliminate the accumulated position, velocity and attitude error of the PDR algorithm. The 

experimental results show that the positioning error of this method is reduced by 74.5% and 43.5% 

compared to that of PDR and UWB respectively. The average accuracy of the proposed method can 

reach 10–15 cm under both dynamic and static conditions. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

UWB: ultra-wide band 

UKF: unscented Kalman filter 

PDR: pedestrian dead reckoning 

IMU: inertial components 

ZUPT: zero-velocity update  
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