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Abstract: Smartphones are context-aware devices that provide a compelling platform for ubiquitous 
computing and assist users in accomplishing many of their routine tasks anytime and anywhere, 
such as sending and receiving emails. The nature of tasks conducted with these devices has evolved 
with the exponential increase in the sensing and computing capabilities of a smartphone. Due to the 
ease of use and convenience, many users tend to store their private data, such as personal identifiers 
and bank account details, on their smartphone. However, this sensitive data can be vulnerable if the 
device gets stolen or lost. A traditional approach for protecting this type of data on mobile devices 
is to authenticate users with mechanisms such as PINs, passwords, and fingerprint recognition. 
However, these techniques are vulnerable to user compliance and a plethora of attacks, such as 
smudge attacks. The work in this paper addresses these challenges by proposing a novel 
authentication framework, which is based on recognizing the behavioral traits of smartphone users 
using the embedded sensors of smartphone, such as Accelerometer, Gyroscope and Magnetometer. 
The proposed framework also provides a platform for carrying out multi-class smart user 
authentication, which provides different levels of access to a wide range of smartphone users. This 
work has been validated with a series of experiments, which demonstrate the effectiveness of the 
proposed framework. 

Keywords: activity recognition; behavioral biometrics; continuous sensing; micro-environment 
sensing; mobile sensing; smartphone authentication; ubiquitous computing 

 

1. Introduction 

Smartphones are ubiquitous, becoming more and more sophisticated with the advancement in 
their computing, sensing, and networking powers. Currently, 68% of the world’s population own a 
mobile phone, and by 2019 this figure is expected to be in the region of 72% [1]. Market research on 
the sale of smartphone has shown that the number of smartphones sold has surpassed the number of 
laptops sold worldwide [2]. The pervasive nature of smartphones, together with integrated sensing 
capabilities, has changed the landscape of people’s everyday life. Smartphones have become the 
guardians for most of our personal information, such as medical information (e.g., heart rate), bank 
account details, and personal credentials for different services and applications. With the increasing use 
of smartphones, users have begun to worry about the confidentiality of their data and information. As 
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smartphones are intended for quick and recurrent access, it can lead to compromised privacy of 
smartphone data and information [3]. It has now become critical to maintain the privacy of sensitive data 
and information available through these devices using non-intrusive yet viable authentication 
mechanisms. 

Unfortunately, most widely used authentication methods for smartphones including 
passwords, PINs, pattern locks, and fingerprint scans offer limited safekeeping [3], as they are 
vulnerable to many attacks including guessing [4], spoofing [5] in case of fingerprint scans, and the 
side channel attacks such as video capture attacks [6], or smudge attacks [7]. Secure passwords are 
often not considered to be appropriate for use on smartphones due to the length of time required for 
their input. Many smartphones provide PINs as alternatives to passwords. PINs have the benefit of 
being able to be entered quickly, but they provide far less safekeeping than passwords, as they may 
be guessed more quickly [3]. Pattern locks provide protection by allowing users to choose a sequence 
of points during enrollment and then repeating it during authentication. However, these pattern 
locks are exposed to side channel attacks, and the user’s fingertips often leave a distinguishing trace 
on the screen, which can indicate the pattern that was used to access the device [3]. Moreover, these 
authentication methods require a user to deal with the smartphone actively and spend a few precious 
seconds for inputting some valid pieces of information, or drawing sophisticated patterns on 
touchscreen, which has become a frustration for the millions of smartphone users worldwide. As a 
result, many people like to use fewer privacy barriers each time they decide to access their device [8], 
which is reducing the effectiveness of such authentication schemes, ultimately making them 
vulnerable to data theft. In addition, these commonly used methods for authentication fail to detect 
and recognize an adversary once he/she has passed the point of entry [9], which makes these 
approaches futile for continuous and non-intrusive passive authentication. 

Continuous and passive authentication aims to address these challenges by offering a way to 
use behavioral biometrics for authenticating a smartphone user continuously [9]. Behavioral 
biometrics based authentication scheme targets to learn the characteristics of the user behavior that 
does not change over a period of time, such as gait patterns [10], hand movements and waving 
patterns [11], voice [12], signature [13], and touchscreen interactions [14,15]. These characteristics are 
then used to implicitly authenticate a smartphone user to prevent unauthorized access to the device. 
This type of authentication works passively in the background and monitors the interactions between 
a user and the device to make a decision about the authenticity of the user who is trying to use the 
device [9]. The user authentication decision is taken on the basis of distinctive features identified from 
the user’s behavior. Recent research has been exploiting smartphone inertial sensors for developing 
fast and secure authentication schemes based on behavioral biometrics [16–18]. A vector 
representation of the axes of smartphone inertial sensors is shown in Figure 1. 

 
Figure 1. Smartphone inertial sensors are sensitive to the orientation of the smartphone. The 
accelerometer measures acceleration, the gyroscope measures rotation, and the magnetometer 
measures the magnetic field strength along the x, y, and z axes. 
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The research on behavioral biometrics is challenging because of the difficulty of collecting data 
from a practical and legal point of view [18]. Existing research has found issues with data collection 
procedures due to inadequate amount and diversity of data, poor representation and description of 
real world events, and crucial self-consciousness of the members participating for performing 
different activities. In addition, other challenges associated with the development of a continuous 
authentication system for smartphones are as follows: 

 Orientation sensitivity of smartphone inertial sensors, i.e., the readings of these sensors change 
by changing the orientation of the smartphone, as shown in Figure 1. 

 Effectively learning activity and motion patterns from noisy sensors data. 
 Incorporating real-time sensors data into a biometric authentication setup on a smartphone, 

which is limited in terms of memory and processing power. 
 Lack of “negative” samples for efficient testing of an authentication model. 

Keeping all these issues and challenges in view, the problem of continuous and passive 
authentication of a smartphone user is addressed in this study. A novel Intelligent Authentication 
(IntelliAuth) scheme is proposed for smartphone user authentication, which is based on physical 
activity recognition and micro-environment sensing. The activity recognition component is based on 
recognizing behavioral patterns from a series of activities performed by the user, while micro-
environment sensing is based on recognizing elements within proximity of the surrounding area of 
the mobile phone [19] For the purpose of user authentication, six Activities of Daily Living (ADLs) 
are considered in this study: walking, sitting, standing, running, walking upstairs, and walking 
downstairs. Three smartphone sensors, i.e., accelerometer, gyroscope, and magnetometer, are used 
for capturing data of different smartphone users while performing these activities. As the position of 
a smartphone on the user’s body may vary while performing any activity in real time, therefore, five 
different positions are chosen for placing the smartphone on the user’s body while performing one 
of the six defined activities. These body positions include right wrist, right upper arm, left thigh, right 
thigh, and waist position towards right leg. A smartphone is supposed to be placed by the user in 
one of these body positions while performing an activity in real time. 

For validation, an existing dataset for physical activity recognition [20,21] is utilized. The data 
are pre-processed, and several features are extracted from time and frequency domains. The extracted 
features are then classified into six different activities performed by three different classes of 
smartphone users. Three different user classes selected in this study are authenticated, 
supplementary, and impostor. Each user class symbolizes a smartphone user having a different level 
of access to smartphone data. Four different classification algorithms, i.e., Support Vector Machine 
(SVM), Bayesian Network/Bayes Net (BN), Decision tress (DT), and K-Nearest Neighbors (K-NN), 
are employed for activity classification. A probabilistic scoring model, based on activity recognition, 
is used to classify a smartphone user for the purpose of authentication. 

The primary contributions of this research work are: 

1. A novel and multi-class smartphone user authentication scheme, based on activity recognition, 
is presented for different types of users that may access a smartphone. 

2. Micro-environment sensing is combined with physical activity recognition to eliminate false 
positives arising due to the position sensitivity of smartphone inertial sensors, resulting in better 
user authentication. 

3. A novel probabilistic scoring model, based on activity recognition, is presented for smartphone 
user classification. 

The rest of the paper is structured as follows: Section 2 presents a brief description of the related 
work. Section 3 provides a detailed description of the IntelliAuth framework for user authentication. 
Section 4 explains the methodology used in this research work for activity recognition and smartphone 
user authentication. In Section 5, a detailed analysis of the results is presented and discussed. Section 6 
concludes the research findings, and provides recommendations for future work. 

2. Related Work 



Sensors 2017, 17, 2043 4 of 28 

 

As computing and sensing capabilities have advanced in smartphones, researchers have started 
to utilize more types of sensory data from these devices for a wide range of purposes. Mobile sensing 
data have been exploited for crowdsourcing [22], context awareness [23,24], and activity recognition 
[25]. Existing work shows that utilization of multiple on-body sensors placed at different positions 
(i.e., waist, knees, arms, and ankles) can determine the physical activities performed by a user [26–28]. 
In [29] and [30], data pre-processing and feature extraction algorithms were applied for activity 
recognition using an accelerometer. In [31], the authors detected complex human activities such as 
smoking, eating, drinking, etc. by utilizing smartphone sensors along with wrist-mounted motion 
sensors. Activity recognition has been utilized for different purposes, such as human behavior 
modeling [32,33] and health monitoring [34]. The authors of [35] applied activity recognition 
techniques for detecting bad habits in a person by combining smartphone sensors with wrist-worn 
smartwatch sensors. 

In a few recent years, the research on smartphone user authentication has seen determined work, 
and many solutions have been proposed for the authentication of smartphone users. A 
comprehensive review of the state of the art for smartphone user authentication is provided in [9], 
which lays emphasis on seven different behavioral biometric approaches for user authentication. 
These approaches include gait, touchscreen interaction, hand waving, keystroke pattern, voice, 
signature, and behavioral profiling. Zheng et al. [15] utilized accelerometer, gyroscope, and 
touchscreen sensor for non-intrusive authentication of a smartphone user by analyzing how a user 
touches the phone. Different features such as acceleration, pressure, size of touch area, and passage 
of time were collected using experimental data on both four-digit and eight-digit PINs by employing 
tap behaviors to verify passcodes of different participants. The authors used one-class classifier [36] 
based on the notion of nearest neighbor distance for user recognition. Trojahn and Ortmeier [37] 
proposed a scheme that combined keystroke and handwriting analysis on smartphones for the 
purpose of user authentication. During data recording, the authors asked different subjects to type a 
sentence or a password for a specific number of times. For evaluating their approach, the authors 
chose different machine learning algorithms including Decision Tree [38], Bayes Net [39], and MLP 
[40]. The authors in [18] proposed a scheme for on-device authentication of smartphone users by 
learning their motion patterns based on two essential components: time-based feature extraction 
using deep neural networks, and classification via a probabilistic reproductive model. Table 1 
provides further existing work related to behavioral authentication of smartphone users by providing 
a comparison among different studies on the basis of the approach used for behavioral biometrics, 
classification algorithms, and the set of features employed for user authentication. The problems and 
limitations of different behavioral biometric approaches that have been used in the existing studies 
for smartphone user authentication are described in Table 2. 

Table 1. A comparison of different studies of behavioral authentication of smartphone users. 

Study 
Behavioral Biometrics

Approach 
Classifier Feature Set 

Yang et al. [11], 2013 
Hand waving using linear 

accelerometer 
- 

Sampling interval, acceleration 
along x, y and z axes 

Shrestha et al. [41], 
2015 

Hand wavingusing ambient 
light sensor 

SVM [42] 
Timestamps, light intensity, hand 

wave gesture duration 

Draffin et al. [8], 2014 Keystroke biometrics 
Neural Network 

Classifier [43] 
Location pressed on key, length of 

press, size of touched area, drift 

Feng et al. [44], 2013 Keystroke biometrics 
Decision Tree [38],  

Bayes Net [39] 
Random Forest [45], 

- 

Frank et al. [14], 2013 Touchscreen interactions SVM [42], K-NN [46],  - 
Shahzad et al. [47], 

2012 
Touchscreen interactions - - 

Derawi et al. [48], 
2010 

Gait biometrics using 
smartphone sensors 

DTW [49] 
Time interpolation, Average cycle 

length 
Mantyjarvi et al. [50], 

2005 
Gait biometrics using 

accelerometer 
- 

Acceleration along x, y and z axes, 
10 bin FFT histograms 
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Clarke and Mekala et 
al. [51], 2007 

Dynamic signatures by 
typing words 

- - 

Sae-Bae [52], 2014  
Line signature drawn with 

fingertip 
DTW [49],  - 

Kunz et al. [53], 2011 
Speaker verification during 

ongoing phone call 
HMMs [54] - 

Das et al. [55], 2008  
Speaker’s identification based 

on speech dynamics 
DTW [49] - 

Kambourakis et al. 
[56], 2014 

Behavioral profiling 
MLP [40], Random 

Forest [45], K-NN [46]  
Hold time, inter-time, speed, 

distance 

Table 2. Limitations of behavioral biometric approaches for smartphone user authentication. 

Behavioral Biometric 
Approach 

Limitations 

Hand waving Patterns 
and Gestures 

 Requires a user to interact with the device actively and make a specific hand waving 
gesture for authentication 

 User may generate some random hand waving gestures un-intentionally 
 Validates a user only when a hand waving gesture is made 
 Failure in identifying an impostor who accesses the phone while it is unlocked 
 Multiple users may have the same hand waving patterns 

Keystroke Dynamics 

 Requires active interaction of the user with the device keyboard for authentication 
 Validates a user only when something is typed using the device keyboard 
 Learning the keystroke patterns for a new user takes a lot of time 
 Person’s typing behavior changes considerably throughout a day with different states of 

mind such as excited, tired, etc. 
 Switching keyboards may change the typing patterns 
 Disruptions during typing may significantly influence the typing patterns 

Touchscreen 
Interactions 

 Requires active interaction of the user with the touchscreen for authentication 
 Holding a smartphone in hands with different orientations vary the way of the user’s 

interactions with the touchscreen 
 User’s activity while interacting with touchscreen, such as walking, sitting, standing etc., 

effects the way of touching the device screen 

Handwriting and 
Signatures 

 Requires a user to interact with the device actively to input signatures 
 Only feasible for entry point authentication 
 People may not sign in a steady way all the times 

Voice 
 Unwanted noises in the user’s surroundings, such as traffic noise, noise of a crowd of 

people talking etc., greatly affect the recognition and identification of the user’s voice 

Gait Patterns 
 Wearing an outfit, such as a trench coat or a footwear, may change a person’s walking style 
 Dependency of gait patterns on the position of motion sensors on the human body 

Behavioral Profiling 
 User’s behavioral patterns change with the user’s mood and state of mind while interacting 

with different services and applications using touchscreen and keystroke 

A few researchers [11,14,57] have concentrated on learning some specific activities for 
smartphone authentication—for example, picking up a smartphone from the table, unlocking the 
home screen using a slide pattern, dialing a specific number from the keypad, making a hand waving 
gesture, or making a call. However, these activities are specifically related to a smartphone and not 
proficient to use for continuous authentication. The reason is that these activities authenticate a user 
only when he/she performs one of these activities in a specific pattern. Once a user has been 
authenticated, there will be no other way to monitor the user unless s/he performs one of these 
specific activities again. It is possible that a smartphone may get stolen by an impostor while it is 
unlocked. In that case, the authentication model will not be able to know that the smartphone is 
possessed by an impostor until and unless a mismatching pattern is detected related to a specific 
activity. Also, there can be instances where a smartphone may get snatched while a person is talking 
on the phone. In such cases, this type of authentication model will fail to correctly identify a 
smartphone user continuously. 

In this study, the problems and limitations of the existing approaches for smartphone user 
authentication have been analyzed, and an effective solution has been provided for passive and 
continuous authentication of smartphone users. The proposed scheme combines micro-environment 



Sensors 2017, 17, 2043 6 of 28 

 

sensing with physical activity recognition for authenticating smartphone users, incorporating context 
awareness. 

3. IntelliAuth Framework 

The basic purpose of a smartphone authentication scheme is to differentiate between an 
authorized smartphone owner and unauthorized individuals. This type of authentication relates to a 
binary-class user classification problem where a person who is the legitimate user of a smartphone is 
classified as authenticated, whereas all other persons are classified as non-authenticated. This limits 
the access of a smartphone to only a single authenticated user. However, in practice, it is seen that a 
smartphone is not only limited for use of a single person only. A smartphone owner may share his/her 
smartphone with a spouse, close friends, relatives, or colleagues for a variety of tasks, such as making 
a phone call, sending a text message, playing a game, watching a video clip, or even doing something 
auxiliary. However, the authorized user does not want any private information in the smartphone to 
be compromised, leaked, or stolen. A smartphone owner may want to allow a certain group of people 
to access only a few portions of his private data on the smartphone by retaining a different level of 
access to his/her smartphone data for different persons. Given this, any smartphone authentication 
framework, based on behavioral biometrics, will give rise to a lot of issues as the authentication 
framework will not be able to authenticate any person other than the original owner (authenticated 
user), and may not permit him/her to use that device at all. 

In order to address the major challenges associated with the authentication of multiple 
smartphone users, the IntelliAuth framework classifies the smartphone users into three different 
classes: authenticated, supplementary, and impostor. This user classification is performed on the 
basis of activity recognition using a probabilistic scoring model. Being classified as authenticated user 
means that the user is the owner of the device and permitted to access all the data and information 
on the device. However, being classified as impostor means that the user is a fraud and should not 
be allowed to use that device at all. If the user authentication model finds a user as supplementary, 
it means that the user will gain only a restricted access to the smartphone as set by the owner of the 
device, i.e., the authenticated user. In short, the proposed framework assigns three different levels of 
access privileges, i.e., full-level access, restricted access, and zero-level access, to authenticated, 
supplementary, and impostor users of a smartphone, respectively. 

The proposed framework utilizes a combination of three smartphone motion sensors, i.e., an 
accelerometer, a gyroscope, and a magnetometer, as a source of input data for activity recognition 
and user authentication. The use of a combination of the data from all three sensors is expected to 
improve the performance and accuracy of the user authentication process. Previously, in [20,21], it 
has been shown that the recognition accuracies of different activities can be significantly improved 
when multiple motion sensor data are combined, which is even more effective in the case of 
smartphones that are carried in different body positions. However, when there is less certainty 
surrounding smartphone positioning, a magnetometer used in a combination with an accelerometer 
and a gyroscope provides better accuracy for activity recognition. The study concluded that a 
magnetometer can be used in a combination with an accelerometer and a gyroscope to provide a 
supporting role for activity recognition. As the proposed framework for smartphone user 
authentication identifies a smartphone user by recognizing his/her activity pattern, a combination of 
these three sensors has been utilized in this study for the purpose of user authentication. 

3.1. Recognition of ADLs for Smartphone User Authentication 

Activity recognition is the building block in this research work, which is employed for user 
authentication. The proposed scheme primarily focuses on authenticating smartphone users by 
learning and recognizing their behavioral traits while using smartphone. For this purpose, six 
Activities of Daily Living (ADLs) are selected in this study. These activities include: walking, sitting, 
standing, running, walking upstairs, and walking downstairs. The motion patterns of these activities 
are learned for different classes of users. Generally, people perform these activities for multiple times 
on a daily basis, whether intentionally or not. Hence, a smartphone user whether authenticated, 
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supplementary, or impostor, is likely to perform these activities in his/her routine life frequently. The 
proposed scheme authenticates a smartphone user on the basis of these activity patterns by 
continuously collecting and processing small chunks of sensors data in real time. The system 
recognizes the activity performed by the user from the collected chunk of data, and classifies the user 
as authenticated, supplementary, or impostor. If it finds the user to be authenticated, it permits the 
user to unlock the phone using a default option and access all the data and information on the 
smartphone. In the case of an impostor user, the system will not permit the user to unlock the phone 
at all. The system keeps on validating the user repetitively after a small interval of time, for example, 
five seconds, and takes no further action until a different class of user is identified. If an impostor 
user gets the smartphone while it is unlocked, the framework will identify the user within the five-
second interval based on the selected activities, and the phone will be locked again. Hence, the ADLs 
mentioned above assist in providing better continuous and non-intrusive user authentication as these 
activities are based on tasks that are not only specific to the purpose of authentication but are 
performed by all smartphone users in general. 

The proposed scheme validates and identifies a smartphone user based on the activity patterns 
for which the user authentication model is trained. For this purpose, the authentication model is 
trained to learn and recognize the motion patterns of the selected activities when performed by the 
users in a normal pattern as they tend to do usually. In real time, if an activity is performed by a user 
in a hefty random sequence or an abnormal pattern, whether intentionally or unintentionally, the 
authentication model is unlikely to be able to identify that smartphone user correctly. The key reason 
for failing to recognize the smartphone user is that the model is not trained to account for abnormal 
activity patterns of a user. Moreover, a random activity pattern of an authenticated user might be 
similar to the activity pattern of an impostor user. In that case, if the system is trained to adapt itself 
to the random activity patterns of an authenticated user, then the system may falsely accept an 
impostor as an authenticated user, thus erring towards the safety. However, besides offline training 
of the authentication model, the proposed framework allows the collection of sufficient amount of 
new training data for a user in real time. Thus, the model can be trained corresponding to the different 
motion patterns of the same activity performed by the same user. Training data can be collected for 
a new user as well, and a class label can be assigned to that user. The authentication model can then 
quickly learn the activity patterns for the new user from the collected data and adapt itself to the new 
user. In this way, the proposed framework also provides adaptive behavioral authentication. 

3.2. Micro-Environment Sensing for Activity Recognition 

A smartphone is not typically placed or kept at a single position only. A smartphone user may 
keep his/her phone at different body positions with different orientations while performing the same 
or different activity. The data collected from the smartphone inertial sensors is sensitive to the 
placement and orientation of the smartphone on the human body. The axes of the smartphone inertial 
sensors change their directions according to the orientation of the smartphone as shown in Figure 1. 
Hence, the readings of these inertial sensors also vary. In our daily life, we come across several people 
who keep the smartphone in their jeans while performing many activities, whether in the left jeans 
pocket or the right jeans pocket. A few people hang the smartphone by a clip attached at their belt at 
waist height, while others may keep the smartphone in a chest pocket or side pocket. Some people 
keep the smartphone in their hands most of the time while doing anything. A few people keep the 
smartphone at the upper arm position while doing activities like walking and running. Some females 
tend to keep their smartphone inside a purse or a small pouch hanging from their arm, normally at 
waist height. If a user changes the position or orientation of the smartphone on his/her body while 
performing an activity in real time, the readings of the smartphone inertial sensors will be different. 
Hence, the activity pattern will change. Thus, the authentication scheme will not be able to correctly 
identify the smartphone user on the basis of his/her activity pattern. This is one of the main challenges 
in creating an efficient scheme for smartphone user authentication based on activity recognition. The 
proposed scheme for smartphone user authentication addresses the issue of position sensitivity of 
the smartphone by incorporating micro-environment sensing [19], i.e., being aware of the close 
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surroundings of the smartphone, with activity recognition for improved user authentication. For this 
purpose, five different body positions are selected in this study for placing a smartphone on the 
human body while performing an activity. These body positions are considered as the close 
surroundings of the smartphone, and include the left thigh, right thigh, waist, upper arm, and wrist 
position. The motion patterns of all selected activities are learned, corresponding to all user classes 
for these five positions of the smartphone on the human body. The user authentication model is 
trained to sense the position of the smartphone on the human body along with the activity being 
performed and the user who is performing that activity. 

The positions of left and right thigh conform to the left and right jeans pockets on the front side, 
respectively, where a smartphone can be placed. The waist position relates to a belt clip above the 
right leg that can be used to hang a smartphone, or it may relate to the side pocket on the right side 
of a uniform. The wrist position is used to point out the presence of a smartphone in the hands, 
specifically in the right hand for this study. The upper arm position corresponds to an external phone 
holder attached to the right bicep, or may relate to a right side chest pocket. In [20,21], the authors 
also focused on these five body positions for placing a smartphone on the human body to recognize 
different activities. 

4. Methodology of Research 

The proposed methodology for smartphone user authentication consists of five steps: data 
acquisition, data pre-processing, feature extraction, activity recognition, and user authentication. 
Figure 2 shows the proposed methodology with different steps. The detailed explanation related to 
each step is explained in the following sections. 

 
Figure 2. Proposed methodology for smartphone user authentication. 

4.1. Data Acquisition 

The implementation of the proposed scheme for smartphone user authentication is based on a 
supervised machine learning approach. For carrying out experiments according to the proposed 
scheme, an existing dataset for physical activity recognition [20,21] was used. The data of 10 
participants were collected for six different physical activities: walking, sitting, standing, running, 
walking upstairs, and walking downstairs. During data collection experiments, all participants 
performed every activity for three minutes. All participants were male, aged between 25 and 30. The 
experiments for data collection were conducted in one of the university buildings. For the purpose of 
walking and running activities, the corridor of a department was used, whereas for sitting and 
standing activities, university offices were used. A five-floor building was used for walking upstairs 
and downstairs activities. Every participant was equipped with five Samsung Galaxy S-II (i9100) 
smartphones at five different positions, including left and right jeans pockets, right upper arm, right 
wrist, and the waist position near the right leg. The smartphones were kept in portrait orientation for 
all body positions except the waist position, where the smartphone was held in a landscape 
orientation using a belt clip. The data were collected at a rate of 50 Hz from the smartphone inertial 
sensors. This sampling rate was selected to efficiently distinguish human physical activities in the 
later part of the experiment. Three sensors’ data were extracted from the dataset for this study, 
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including an accelerometer, a gyroscope, and a magnetometer. The data collected from these sensors 
was in the form a , a , a , g , g , g , b , b , b ∈ ℝ , where ‘a’ represents the acceleration in meters per 
second square (m s⁄ ), ‘g’ represent the angular rotation measured by the gyroscope in radians per 
second (rad/s), and ‘b’ represents the magnet field strength measured by the magnetometer in micro 
tesla (µT), along the x-axis, y-axis, and z-axis. 

4.2. Data Pre-Processing 

The data recorded from the smartphone inertial sensors include unwanted noise generated from 
the participants and the sensors themselves. It was essential to eliminate the unwanted noise from 
the data before any further processing. Data pre-processing was employed to mitigate the unwanted 
noise from the sensors data and divide the data into small segments for better feature extraction. Data 
pre-processing was done in two steps. 

4.2.1. Noise Removal 

For the purpose of noise removal, an average smoothing filter discussed in [25] was applied on 
each data sample value along every axis. The filter replaced each raw data sample value by the average 
value of its two adjacent data samples to reduce noise such as an abrupt spike that might have been 
generated because of phone suddenly falling to the ground. The average smoothing filter also 
eliminated the noise generated because of the vibrant motion of the participants during data recording. 

4.2.2. Data Segmentation 

The orientation sensitivity of the smartphone inertial sensors influences the performance of 
activity recognition algorithms because the readings of these sensors are influenced by changing the 
orientation of the smartphone [58]. Most related studies assumed a fixed orientation of the 
smartphone while assessing different classification algorithms [59]. To address the issue of 
orientation sensitivity, a fourth dimension, i.e., magnitude of the sensor, was added to the existing 
three dimensions of each sensor. This was done because of the fact that the magnitude is not sensitive 
to the orientation. The magnitude of the sensor was calculated as given in Equation (1): = + + , (1) 

where , , and  represent the x-axis, y-axis, and z-axis, respectively. 
After adding magnitude, each sensor’s data was comprised of four dimensions: ( , , , ). 

For better feature extraction and classifier training, it was necessary to divide the sensor data along 
each axis into small segments. A fixed-size window segmentation scheme was employed for this 
purpose because of its low computational complexity and most common use in activity recognition 
algorithms [25]. The size of the segmentation window was an important issue to analyze during data 
segmentation as the final accuracy of recognition was reliant on the window size. For this purpose, 
existing studies on physical activity recognition were analyzed, which showed that a time interval of 
nearly 5 s is sufficient to identify and recognize a physical activity [20,59]. Therefore, a fixed-width 
slicing window of 5 s in time (250 samples with 50 Hz sampling rate), with no overlap between the 
samples, was selected for dividing the raw data obtained from every sensor (along each axis) into 
small chunks of 5 s. 

4.3. Feature Extraction 

In any data mining scheme, it is critical to extract correct features for efficient recognition 
performance. This research places an emphasis on the recognition of six different physical activities 
performed by a user while keeping the smartphone at five different body positions. For this purpose, 
12 different features were extracted from both time and frequency domains. Table 3 shows the set of 
features extracted for the recognition of activities of daily living selected in this study. These features 
have been selected because of their efficient performance in the state of the art for activity recognition 
using smartphone sensors. The existing studies [20,21,25,58–60] have discussed the excellent 
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performance of these features in activity recognition experiments. A key reason of using more time 
domain features is their effective computational cost as compare to the frequency domain features. 
The frequency domain features are computationally complex and costly due to the expensive Fourier 
transformation [20,59] making them less feasible for our target smartphone platform. 

Table 3. A set of features extracted for activity recognition and user authentication. 

Feature Symbol Formula Domain 
Max. Amplitude s s = max s(t) Time 
Min. Amplitude s s = min s(t) Time 

Mean μ μ = 1N s(t) Time 

Variance σ  σ = 1N (s(t) − μ)  Time 

Kurtosis K K = m m⁄ Time 
Skewness S S = (m ) (m ⁄ )⁄ Time 

Peak-to-Peak Signal Value s s = s − s Time 

Peak-to-Peak Time t  
t = t + tt = t|s(t) = s  t = t|s(t) = s  

Time 

Peak-to-Peak Slope s s = s t⁄ Time 
Absolute Latency to Amplitude Ratio ALAR ALAR = t s⁄ Time 

Energy E  E = |S(f)|  Freq. 

Entropy H S(f)  H S(f) = − p S(f) log p S(f)  Freq. 

4.4. Activity Recognition 

From the perspective of data mining, activity recognition is considered a multi-class 
classification problem. Classifiers are machine learning algorithms that learn essential information 
from the features extracted from the signal, and then make classification decisions on the basis of 
these features [61]. In this work, prevalent classifiers that have been used in the state of the art for 
activity recognition were explored, and four different classifiers were used for this purpose so that 
an efficient comparison can be made of these classifiers’ performance in activity recognition. These 
classifiers include Decision Tree [38], K-Nearest Neighbors Classifier [46], Support Vector Machine 
[42], and Bayesian Network/Bayes Net Classifier [39]. For SVM classifier, a Sequential Minimal 
Optimization (SMO) [62] algorithm was used in this study. 

4.5. User Authentication 

The final step of the proposed methodology is user authentication, i.e., identifying and 
classifying a smartphone user as authenticated, supplementary, or impostor, and assigning a selected 
level of smartphone access privileges to that user. The user classification was performed on the basis 
of activity recognition, using a probabilistic scoring model. After user classification, zero-level access 
privileges were assigned to an impostor, i.e., no data access rights were given to an impostor user at 
all. A restricted-level of smartphone access was provided to a supplementary user, whereas full-level 
access rights to smartphone data and information were given to the authenticated smartphone user. 
The following section provides a detailed explanation of the probabilistic scoring model employed 
for user classification. 

4.5.1. Probabilistic Scoring Model for User Classification 

Activity Weighting 

The probabilistic scoring model classified a smartphone user on the basis of the activity 
recognized after activity classification. All activities were detected and recognized with different 
individual accuracies. This might have influenced the performance of user classification because an 
activity with lower recognition accuracy could have classified a user incorrectly. To avoid this issue, 
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a weight W  was assigned to each of six selected activities according to their individual 
classification accuracies, e.g., W  was the weight assigned to the walking activity. An activity 
detected with higher classification accuracy was assigned a higher weight as compare to an activity 
that was detected with lower classification accuracy. The weight assigned to an activity was 
calculated by dividing its recognition accuracy with the overall average accuracy value of all 
activities, as given in Equation (2): W = ∑ , (2) 

where A  represents an activity label such as walking, running, sitting etc., and M is the total 
number of activities. 

This weight value was used afterwards for calculating the classification score, as given in 
Equation (14), to classify a smartphone user as authenticated, supplementary, or impostor. 

Computation of Trained Feature Vectors for Different User Classes 

For the purpose of activity recognition and user classification, the feature vectors were computed 
by concatenating twelve different features extracted along all four dimensions, i.e., (x, y, z, mag), of 
accelerometer, gyroscope, and magnetometer. Each feature vector was of length 12 × 4 × 3 = 144, and 
computed over a data segment of 5 s (250 samples at a rate of 50 Hz) in time. Each activity’s data were 
collected for 3 min (180 s) duration for all body positions separately; therefore, 180 5⁄ = 36 feature 
vectors were computed corresponding to each activity for a single body position. Overall, 36 × 5 = 180 
feature vectors were computed related to each activity for an individual user. 

For each user class, six activities were performed by a random number of participants belonging 
to that specific user class. The user authentication model was trained separately corresponding to all 
these activities for different user classes by using 70% data (selected at random) for training. For each 
activity, the model was trained for five different body positions. For this purpose, K-means clustering 
[63]was applied separately on the features vectors corresponding to five different body positions for 
each selected activity. As a result, the feature vectors were split into a different number of clusters by 
varying the value of K, and the cluster analysis [64] was performed on the basis of the average 
silhouette values to get an idea of how well-separated the resulting clusters are. The silhouette value 
for each point in the data is actually a measure of how similar that point is to the points in its own 
cluster as compared to the points in other clusters. It ranges from +1 to −1 in such a way that a value 
close to +1 indicates the points in the data that are distant from the neighboring clusters, whereas a 
value near −1 indicates the points that are possibly assigned to the wrong cluster. A silhouette value 
of 0 represents the points that are not distinctive in one cluster or another. The highest average 
silhouette value indicates that the clusters are well-separated. For cluster analysis, the silhouette 
value  for the ith point in the data was calculated as given in Equation (3): = ( )( , ) , (3) 

where   is the average distance from the ith point to all other points in the same cluster, and  is the 
minimum average distance from the ith point to the points in a different cluster, minimized over clusters. 

The silhouette analysis was performed separately on the data corresponding to all selected 
activities for five different body positions. The data of all three user classes was considered in the 
analysis. Table 4 shows a comparison of the average silhouette values obtained for different values 
of K by clustering the activity patterns corresponding to five different body positions for all three 
user classes. Only the average silhouette values computed over all three user classes are provided for 
each activity. The highest average silhouette value obtained corresponding to each activity at a 
specific body position is represented in bold. It can be observed from the table that K = 3 provides the 
highest average silhouette value for all selected activities at all body positions, except the walking 
downstairs activity (at the left thigh position) for which the highest average silhouette value is 
obtained for K = 2. It means that K = 3 provides the best results in clustering the activity patterns of 
different class users. Therefore, using K-means clustering, the feature vectors for all selected activities 
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corresponding to each body position were divided into three clusters by selecting K = 3. The centroid 
of each cluster was taken as a trained feature vector. In this way, 5 × 3 = 15 trained feature vectors 
were generated for a single activity. Thus, for all six activities, a total of 15 × 6 = 90 feature vectors 
were computed per user class. 

Table 4. Cluster analysis based on the average silhouette values for different values of K. 

Activity K = 2 K = 3 K = 4 K = 5 K = 6 Body Position 

Walking 

0.74 0.75 0.63 0.51 0.50 Waist 
0.81 0.84 0.76 0.57 0.56 Left Thigh 
0.71 0.72 0.67 0.58 0.49 Right Thigh 
0.79 0.80 0.73 0.63 0.60 Upper Arm 
0.80 0.87 0.65 0.51 0.40 Wrist 

Sitting 

0.64 0.73 0.58 0.46 0.43 Waist 
0.68 0.70 0.63 0.50 0.45 Left Thigh 
0.80 0.84 0.76 0.51 0.50 Right Thigh 
0.71 0.79 0.60 0.51 0.49 Upper Arm 
0.64 0.71 0.56 0.40 0.20 Wrist 

Standing 

0.61 0.70 0.53 0.41 0.43 Waist 
0.71 0.80 0.72 0.61 0.60 Left Thigh 
0.54 0.75 0.51 0.33 0.31 Right Thigh 
0.61 0.61 0.44 0.32 0.30 Upper Arm 
0.74 0.80 0.65 0.50 0.48 Wrist 

Running 

0.54 0.60 0.43 0.36 0.35 Waist 
0.79 0.86 0.76 0.57 0.50 Left Thigh 
0.51 0.65 0.41 0.21 0.21 Right Thigh 
0.46 0.75 0.62 0.41 0.41 Upper Arm 
0.84 0.87 0.70 0.50 0.49 Wrist 

Sitting 

0.64 0.73 0.58 0.46 0.43 Waist 
0.68 0.70 0.63 0.50 0.45 Left Thigh 
0.80 0.84 0.76 0.51 0.50 Right Thigh 
0.71 0.79 0.60 0.51 0.49 Upper Arm 
0.64 0.71 0.56 0.40 0.20 Wrist 

Walking Upstairs 

0.71 0.79 0.63 0.56 0.49 Waist 
0.82 0.82 0.73 0.54 0.50 Left Thigh 
0.77 0.81 0.70 0.61 0.60 Right Thigh 
0.70 0.75 0.51 0.44 0.40 Upper Arm 
0.51 0.61 0.46 0.25 0.24 Wrist 

Walking Downstairs 

0.81 0.88 0.73 0.58 0.40 Waist 
0.79 0.77 0.67 0.57 0.53 Left Thigh 
0.72 0.76 0.61 0.40 0.31 Right Thigh 
0.51 0.55 0.62 0.31 0.26 Upper Arm 
0.67 0.71 0.56 0.47 0.45 Wrist 

The robustness of the method was tested by analyzing how the change in training data may 
affect the number of resulting clusters and the cluster centroids. For this purpose, 20 random training 
sets were obtained by selecting 70% data randomly from each user class corresponding to all selected 
activities. While selecting data for new training sets, all five body positions were considered for an 
activity. For each training set, the cluster analysis was performed on all activity patterns for different 
values of K and it was observed that K = 3 provided the best average silhouette value for all activities. 
It means that updating the training set did not influence the number of resulting clusters. Hence, the 
activity patterns were split into three different clusters using K-means clustering, and the new 
centroids were computed from the resulting clusters to find out how these centroids differ from the 
previously learned centroids. For this purpose, the newly computed centroids were compared with 
the corresponding learned centroids on the basis of Euclidean distance, and the minimum distance 
from the best-matching learned centroid was calculated as given in Equation (4): d = arg min ‖ − ‖ , (4) 

where  and  denote the nth new centroid and the mth learned centroid, respectively, and 1 ≤≤ . 
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Finally, the average distance was calculated between the new centroids and the previously learned 
centroids by taking the mean value of all minimum distances computed for a training set. The mean 
distance values were calculated separately for all 20 training sets, which are plotted in Figure 3. 

 
Figure 3. Average distance between the learned centroids and the new centroids for different training sets. 

It can be seen from Figure 3 that the newly computed centroids differ from the learned centroids 
in accordance with the change in training data. As the training sets were generated based on the 
random data taken from each user class, hence these training sets were comprised of different data 
as compare to each other. This difference in the data was because different users had their own style 
of performing an activity, which gave rise to dissimilar activity patterns for different users. 

On the basis of the results discussed above, it can be said that if new training data are added to 
the training set, it will not affect the number of clusters obtained by splitting different activity patterns 
using K-means clustering. So, the value of K will remain equal to 3. However, the cluster centroids 
will change according to the change in training data. Therefore, when new data are added to the 
training set in real time, the system updates the learned centroids according to the new training data. 
The updated centroids are then used as the trained feature vectors. 

Calculation of Euclidean Distance between Feature Vectors 

For testing of the user authentication model, the feature vectors were computed by extracting 
selected features from the rest of 30% data that was not used in training. Each testing feature vector 
was passed as an input to the activity recognition module for recognizing the activity performed by 
the user. Machine learning algorithms were used for the purpose of activity classification. After 
activity classification, the label of the activity recognized and its feature vector extracted from testing 
data were passed as inputs to the user authentication model for identifying the user type. For this 
purpose, the feature vector of the recognized activity was compared with the trained feature vectors, 
and Euclidean distance was computed between the feature vectors. As the label of recognized activity 
was known by the user authentication model, the extracted feature vector was compared only with 
the trained feature vectors corresponding to the recognized activity for all user classes. Hence, it 
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saved computational time required for the comparison of the extracted feature vector with the trained 
feature vectors of all other activities. 

Let A  represents the label of the activity recognized by the user authentication model, e.g., 
walking, standing, sitting, running, walking upstairs, or walking downstairs. The symbols  U  , U , and U  represent smartphone users belonging to the authenticated, supplementary and 
impostor classes, respectively. Let f  represent the feature vector of the activity recognized from testing 
data, whereas  f ,  , f ,  , and f ,  represent the trained feature vectors for the recognized 
activity corresponding to the authenticated, supplementary, and impostor classes, respectively. Euclidean 
distance [65]was calculated between these feature vectors using Equation (5): ( , ) = ∑ ( − ) , (5) 

where  and  represent two different feature vectors and  is the length of each feature vector. 
Euclidean distance was computed between three different pairs of feature vectors as follows: 

 f  , f ,  represents Euclidean distance computed between the feature vector of the 
activity recognized and its trained feature vector for the authenticated user class. 

 f  , f ,  denotes Euclidean distance computed between the feature vector of the 
activity recognized and its trained feature vector for the supplementary user class. 

 f  , f ,  indicates Euclidean distance computed between the feature vector of the 
activity recognized and its trained feature vector for the impostor user class. 

These distances were added together to find out the total distance  as given in Equation (6): =  f  , f , + f , f , + f , f ,  . (6) 

Calculation of Conditional Probabilities for Detecting Different Class Users 

Euclidean distance computed between the feature vectors was used to find out the conditional 
probabilities of detecting a user as authenticated, supplementary, or impostor. These probabilities 
were calculated as follows: P(U |A ) = , ,.   (7) 

P U A = , ,.   (8) 

P U A = , ,.  , (9) 

where P(U |A ), P U A  and P U A  represent the conditional probabilities of detecting 
a user as authenticated, supplementary, or impostor respectively, given the activity recognized A  . 

These probability values were ranging from 0 to 1 and calculated in such a way that their sum 
was equal to 1, as shown in Equation (10): P(U |A ) + P U A + P U A = 1. (10) 

To satisfy Equation (10), it is necessary that one of these probabilities should have a minimum 
value of 0.34. If all these probabilities are less than 0.34, then their summation can never be equal to 
1. For this reason, the least maximum conditional probability value for a user class was taken as P = 0.34. 

Normalization of Conditional Probabilities 

The conditional probability values of detecting different class users were scaled from their initial 
range, i.e., [P  P ] = [01], to a new range, i.e., [R   R  ], using Equation (11): 
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= ( − P ). ( ) + (R ) , (11) 

where  represents a probability value from 0 to 1,  represents the normalized probability value 
of P, P  gives the minimum possible value of  that is equal to 0, P  denotes the maximum 
possible value of  that is equal to 1, R  represents the minimum value of , and R  denotes 
the maximum value of  that is kept equal to P  . 

The value of R   should be greater than or equal to the least maximum conditional probability 
value for any user class, i.e., R  ≥ P . If the conditional probability value for any user class is 
less than   P  , it means that one of the other two user classes has a maximum value of the 
conditional probability. Consequently, all conditional probability values less than P  , i.e., 0.34, 
need to be discarded. For this reason, the probability values were normalized to a new range, i.e., 
[R   R  ], such that,  P ≤ R  < 1  and R  = 1. Another purpose of normalizing these 
values to a higher range was to expand the classification score to a wider range for the efficient 
computation of the threshold values for classifying a user. 

Let (U |A ) , U A  and U A  represent the normalized conditional 
probabilities of detecting a user as authenticated, supplementary, or impostor, respectively. The 
range of these probability values was equal to [ R  R  ]. The maximum normalized probability 

 was calculated using Equation (12): =   (U |A ), U A , U A . (12) 

Computation of Access Level Values for Multiple User Classes 

An access level value L  was used for each user class, which represented the level of access 
privileges assigned to a user class. Generally, a higher value of the access level for a user class means 
that a user belonging to that specific class is allowed to access more data and information as compare 
to the users belonging to a user class with lower access level value. Therefore, the access level value 
was assigned to each user class in such a way that the authenticated user class had the maximum 
value, the impostor user class had the minimum value, and the supplementary user class had a 
median value for this access level, i.e., L >  L > L . This access level value was calculated 
on the basis of R  using Equation (13): L = (R )  , (13) 

where n represents an integer that was assigned a value of 0, 1, or 2 depending upon the value of 
maximum normalized probability  . 

The values were assigned to L  according to the following criteria: 

 For = (U |A ), the integer n was assigned a value of 0, i.e., = 0. 

Hence, from Equation (13), L =  L = (R ) = 1. 

 For = U A , the integer n was assigned a value of 1, i.e., = 1. 

Hence, from Equation (13), L =  L = (R ) =  R  . 
 For = U A , the integer  was assigned a value of 2, i.e., = 2. 

Hence, from Equation (13), L =  L = (R ) . 

Calculation of Classification Score 

The classification score was calculated on the basis of the access level value assigned to a user 
class, weight of the activity recognized W   and the maximum normalized probability    , as 
given in Equation (14): c = L . W . , (14) 
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where A   represents the label of the activity recognized, e.g., walking. 
The classification score was scaled to a different range of values, depending upon the value of 

maximum normalized probability, according to the following criteria: 

 For = (U |A ), L =  L = 1. 

Hence, from Equation (14), c = W . . (15) 

 For = U A , L =  L = R  . 
Hence, from Equation (14), c = R . W . . (16) 

 For = U A , L =  L = (R )  

Hence, from Equation (14), c = (R ) . W . . (17) 

It can be observed from Equations (15) to (17) that even for the same value of the normalized 
probability across different user classes, the classification score will be different. If the weight of the 
activity recognized W  is considered as close to 1, and a median value of 0.67 is chosen for R  , 
then the classification score will have a different range of values depending upon the value of 
maximum normalized probability, as given below: 

 If = (U |A ), then c  will have a range near to [0.67 1], with (U |A ) having a 
range [0.67 1]. 

 If = U A , then  c  will have a range near to [0.45 0.67], with U A  
having a range [0.67 1]. 

 If = U A , then  c  will nearly have a range of values less than 0.45 with U A  having a range of [0.67 1]. 

Calculation of Threshold Values for Classifying a Smartphone User 

Two threshold values, i.e., Ʈ  and  Ʈ  , were used for classifying a smartphone user into one of 
three different user classes, such that  Ʈ < Ʈ . These threshold values were calculated as given in 
Equations (18) and (19): Ʈ  = R . ( P . (1 − R ) + (R ))  (18) Ʈ = ( P . (1 − R ) + (R )) , (19) 

where R  represents the minimum possible value of the normalized conditional probability for a 
user class, and P  is the least maximum conditional probability value equal to 0.34. 

These threshold values discarded the normalized probability values that were obtained 
corresponding to the conditional probability values less than P  because these values had no 
effect on user classification. The criteria used for classifying a smartphone user on the basis of 
classification score c  and threshold values Ʈ  and Ʈ  are as follows: 

 For 0 ≤ c ≤ Ʈ  , the user was classified as impostor. 
 For  Ʈ < c ≤ Ʈ  , the user was classified as supplementary. 
 For c > Ʈ  , the user was classified as authenticated. 

Effect of Varying  on Threshold Values and User Classification 

It can be seen from Equations (14) to (19) that the classification score and the threshold values 
are dependent on the value of R  . Any change in the value of R  will result in a change in the 
classification score. The threshold values are computed in such a way that upon any change in the 
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value of R  , these values will get updated according to the new classification score to avoid any 
significant change in the user classification results. While testing user classification, a median value, 
i.e., 0.67, was selected for R   , considering that 0.34 ≤ R < 1. The classification score and the 
threshold values were then computed accordingly. 

Figure 4 shows the effect of varying R  on the threshold values Ʈ   and Ʈ  , which are 
represented by Threshold-1 and Threshold-2, respectively. It can be observed that the difference 
between these threshold values, i.e., Ʈ  and Ʈ   , is decreased by increasing the value of R  . If a 
maximum value is taken for R  , the difference between these threshold values becomes least. 
Conversely, if R  is assigned a minimum value of 0.34, then the difference between these threshold 
values becomes maximum. In both these cases, the results of user classification may not be proficient 
because the margin between these threshold values and the classification score will either become 
too small or too large, which may influence the user classification results. Hence, a median value of R   is more suitable for efficient user classification. 

 
Figure 4. Effect of varying R  value on the threshold values Ʈ  and Ʈ . 

5. Results and Performance Analysis 

For the purpose of smartphone user authentication, the proposed framework utilized activity 
recognition and user classification. The user classification was performed by means of activity 
recognition. To evaluate the performance of the proposed scheme, the experimental results are 
presented in two different sections separately for activity recognition and user classification. 
Following sections discuss these results. 

5.1. Performance Analysis of Activity Recognition 

In order to evaluate the performance of activity recognition for this study, four different 
classification algorithms including Decision Tree (DT), Bayes Net (BN), K-Nearest Neighbor (K-NN), 
and Support Vector Machine (SVM) were trained and evaluated on the selected dataset. These 
classifiers were selected because they have been used in the state of the art for activity recognition 
[20,21,25,59]. To ensure fairness in activity recognition results, a 10-fold stratified cross validation 
scheme was used for evaluating the performance of these classifiers. Hence, all activity traces in the 
dataset were split randomly into 10 sets, and iterated 10 times in such a way that every set of data 
was selected to use for testing and remaining sets were employed for training of the classifiers. Only 
the average results of all 10 repetitions are included in this section. The performance metrics used in 
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this study for evaluating the classifiers performance for activity recognition are computational time 
taken, average accuracy rate, f-measure, kappa statistic, Root Mean Squared Error (RMSE) and Mean 
Absolute Error (MAE). The kappa statistic is a measure that is independent of the total number of 
classes and the number of samples per class. A kappa statistic value of k = 0 represents a chance level 
classification performance, whereas in case of perfect classification, k reaches its best value of 1. If k < 
0, it means that the performance of classification is poorer than the chance level classification 
performance. These performance metrics are evaluated for all four classifiers selected for activity 
recognition, and the results of activity classification are computed separately for all five body 
positions selected in this study. 

Figure 5 shows the individual percentage accuracies of classification for all selected activities 
over five body positions when classified with DT, K-NN, BN and SVM classifiers. It can be observed 
that the individual classification accuracies of standing, running, and sitting activities are higher 
irrespective of the classifier and the body position. Thus, it can be said that these activities are more 
easily recognizable than other selected activities. The activities of sitting and standing are 
distinguished from each other on the basis of the fact that the orientation of the smartphone placed 
on a human body changes when a user changes his/her posture or stance for sitting and standing. 
Thus, the readings of smartphone inertial sensors are different. The classification of walking, walking 
upstairs, and walking downstairs activities is position dependent, and gives better results if the 
smartphone is placed in the left or right jeans pocket. All six activities are recognized with higher 
individual accuracies when classified with SVM and BN classifiers.  
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(e)

Figure 5. Individual classification accuracies of selected activities when classified with DT, K-NN, BN, 
and SVM classifiers for five different body positions: (a) waist; (b) left thigh; (c) right thigh; (d) upper 
arm; (e) wrist. 

Table 5 shows the performance parameters of the selected classifiers for activity recognition at 
five different body positions. It can easily be observed that SVM classifier provides the best average 
accuracy rate as compare to the accuracy rate values provided by DT, K-NN, and BN classifiers. On 
the other hand, the error rate for SVM classifier, evaluated by MAE and RMSE, is also very high for 
all body positions. Table 6 shows the average values of individual performance metrics for all selected 
classifiers. It can be seen that the overall average values of accuracy rate, kappa statistic, and f-
measure are higher and comparable for SVM, BN, and DT classifiers. However, K-NN provides lower 
accuracy rate along with lower kappa statistic and f-measure values. The average accuracy rate for 
SVM classifier is 99.18%, which is 2.36%, 1.8%, and 5.88% higher than the average accuracy rate of DT, 
BN, and K-NN classifier, respectively. The values of MAE and RMSE for SVM classifier are 0.22 and 
0.312 respectively, which are higher as compare to the error rate values for DT and BN classifiers. The 
average accuracy rate of BN classifier is 0.56% and 4.08% higher than the average accuracy rate of DT 
and K-NN classifier, respectively. Also, the error rate of BN classifier is better than the error rates 
provided by DT, SVM, and K-NN classifiers. 

Table 5. Performance metrics of the selected classifiers for activity recognition at five body positions. 

Classifier Average Accuracy % Kappa F-Measure MAE RMSE Body Position 
Decision Tree 96.23 0.99 0.96 0.012 0.111 

Waist 
K-NN 92.53 0.91 0.92 0.025 0.157 

Bayes Net 97.55 0.97 0.97 0.008 0.088 
SVM 99.71 1.00 0.99 0.222 0.310 

Decision Tree 98.90 0.98 0.99 0.004 0.067 

Left Thigh 
K-NN 95.23 0.94 0.95 0.016 0.125 

Bayes Net 98.57 0.98 0.98 0.005 0.061 
SVM 99.81 1.00 1.00 0.222 0.310 

Decision Tree 97.87 0.97 0.98 0.007 0.083 

Right Thigh 
K-NN 95.23 0.94 0.95 0.016 0.125 

Bayes Net 98.01 0.97 0.98 0.006 0.080 
SVM 99.47 0.99 0.99 0.222 0.310 

Decision Tree 95.93 0.95 0.96 0.014 0.121 

Upper Arm 
K-NN 92.58 0.91 0.95 0.025 0.157 

Bayes Net 95.45 0.94 0.95 0.015 0.115 
SVM 98.75 0.98 0.99 0.222 0.310 

Decision Tree 95.18 0.94 0.95 0.017 0.124 

Wrist 
K-NN 90.93 0.89 0.91 0.031 0.173 

Bayes Net 96.85 0.96 0.97 0.015 0.100 
SVM 98.18 0.97 0.98 0.222 0.311 

Table 6. Average performance metrics of the selected classifiers for activity recognition. 
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Classifier Average Accuracy % Kappa F-Measure MAE RMSE 
Decision Tree 96.82 0.96 0.96 0.010 0.102 

K-NN 93.30 0.91 0.93 0.022 0.147 
Bayes Net 97.38 0.96 0.97 0.027 0.086 

SVM 99.18 0.98 0.99 0.222 0.310 

Another important performance metric for evaluating the performance of these classifiers is their 
computational complexity, which effects the time taken by each classifier for building training model 
and performing classification. Figure 6 shows a comparison of the computational time taken by the 
selected classifiers for activity classification. It can be observed that K-NN classifier takes less time as 
compare to all other classifiers. The time taken by SVM classifier for activity classification is 25.21 s, 
which is 10.8 times more than the time (2.32 s) taken by K-NN classifier, and 4.5 times more than the 
time (5.61 s) taken by BN classifier to perform classification. The time taken by DT classifier for 
activity classification is 10.11 s. 

 

Figure 6. Computational time taken by different classifiers for activity classification. 

On the basis of the results discussed above, it can be said that the overall performance of Bayes 
Net classifier in classifying the selected activities is better than other classifiers performance. 
Although, SVM provides the best accuracy rate for activity classification, but its error magnitude is 
also quite higher. On the other hand, the BN classifier provides an accuracy rate that is comparable 
to the accuracy rate of SVM classifier, but its error rate is very small. Also, the SVM classifier is 
computationally expensive, and it takes significantly more time for building a training model and 
performing classification. As a smartphone is equipped with limited processing power, memory, and 
storage, therefore, it is not feasible to use SVM classifier for on-device activity classification in real-
time. Otherwise, the battery power will be drained quickly, and the output will be delayed because 
of the extensive computational time taken by SVM classifier for classification. Bayes Net classifier is 
based on a probabilistic model that is computationally very simple [39]. Hence, it takes less time in 
building and updating the training model, and performing on-device activity classification in real 
time. This suggests the Bayes Net classifier as an optimal choice for online activity recognition using 
smartphone sensors. 

5.2. Performance Analysis of User Classification 

The user authentication was done by means of user classification based on activity recognition. 
For user classification, three user classes were considered, including authenticated, supplementary, 
and impostor class. The dataset used for the activity recognition was pre-labeled for all activities 
performed by 10 participants/users. However, there were no user class labels for the participants in 
the dataset. Our idea was to utilize the dataset for learning the activity patterns of different users or 
a set of users. For this reason, the users in the dataset were randomly divided into three folds, i.e., 
Fold-1, Fold-2, and Fold-3. Fold-1 and Fold-2 represented the sets of users belonging to the 
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authenticated and supplementary classes, respectively, whereas Fold-3 contained the set of users 
belonging to the impostor class. Five different scenarios were taken for the distribution of 10 users 
among these folds, as shown in Table 7. For each scenario, all possible permutations of the users were 
applied on three folds iteratively in such a way that every user became a part of each fold at least once. 

Table 7. Distribution of different users amongst three folds for user classification. 

Scenario No. of Users in Fold-1 No. of Users in Fold-2 No. of Users in Fold-3 
A 2 4 4 
B 2 3 5 
C 3 3 4 
D 3 4 3 
E 4 3 3 

For validating the user classification results, a 70%–30% split was used for training and testing 
data, respectively. For this purpose, each fold of data representing a specific user class was randomly 
partitioned into two independent sets, i.e., training and testing sets, where 70% of the data were 
selected for training the user classification model, and the remaining 30% were used for testing. The 
authors in [66]performed a broad simulation study for the purpose of evaluating commonly used 
splitting strategies for testing and training data, which concluded that allocating two-thirds (nearly 
67%) of the data for training provides better classification accuracy. Moreover, the existing studies 
[60,67]also utilized a 70%/30% split for training and testing data, respectively, which provided 
efficient results for physical activity recognition. For every user class, the authentication model was 
trained to recognize six selected activities performed by the user while carrying the smartphone at 
five different body positions. The research work in [20,21,58,59] showed that a time interval of 4–5 s 
is sufficient for the recognition of a physical activity, considering a sampling rate of 50 Hz. For this 
purpose, the user authentication model was trained to identify a user with the activity duration of 5 
s. During testing of user classification, the selected features were extracted from testing data over a 
data segment of 5 s in time, having 250 samples at a rate 50 Hz. The activity performed by the user 
was recognized based on these extracted features. After that, the recognized activity and the extracted 
features were passed to the user authentication model. The probabilistic scoring model was applied 
on the extracted features to calculate classification score on the basis of Euclidean distance between 
different feature vectors, using Equation (14). A median value of 0.67 was taken for R  initially 
and the threshold values Ʈ   and  Ʈ   were calculated using Equations (18) and (19). The user was 
classified as authenticated, supplementary, or impostor based on these threshold values. 

Figure 7 shows Euclidean distance between the trained feature vector for the authenticated class 
and the feature vectors computed from testing data for different class users to illustrate how sure the 
system is about the authentication. The trained feature vector for the authenticated class was selected 
corresponding to the walking activity for the left thigh position in this case. Similarly, the feature 
vectors for the different candidate users were also computed corresponding to the walking activity 
for the left thigh position over the data segments of 5 s. The distance was calculated after every 5 
seconds’ interval of time for the activity duration of one minute only. From Figure 7, it can be 
observed that the distance of the authenticated class feature vector from the authenticated user is 
very small for all time intervals (except at interval from 41  to 45 ) as compare to its distance from the 
supplementary and imposter users. Also, the distance values computed at the same time for the 
different candidate users have a wide gap for most of the time intervals. It can be observed that both 
supplementary and impostor users are well separated from the authenticated user on the basis of the 
computed distances. Also, the supplementary and impostor users are at a fair distance from each other 
in this case. This shows that the system is quite sure about the authenticity of different class users for 
most of the time intervals. 

Looking at the relative distances of the different candidate users from the authenticated class 
only (as shown in Figure 7), the output of the system cannot be realized. It is necessary to compute 
the distance of each candidate user from all user classes in order to know the output of the system. 
For example, to find the output of the system while classifying the authenticated user (whose distance 
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is plotted from the authenticated class in Figure 7), the distance of this specific user was calculated 
from other user classes as well. From Figure 7, it can be observed that the distance of this particular 
user from the authenticated class is very large for the time interval from 41  to 45 . Therefore, after 
this time interval the user was misclassified as an imposter because the user had minimum distance 
from the imposter class. Figure 8 shows the output of the system after every five seconds’ interval of 
time while classifying this candidate user. It can be seen that the system has correctly recognized the 
user as an authenticated user for all time intervals, except the time interval from 41  to 45 , after 
which the user was classified as an impostor. So, after a period of one minute, it can be said that the 
system has correctly identified that the smartphone was possessed by an authenticated person with 
a very high accuracy of 91.67%. These results also suggest that an activity pattern of 5 s duration is 
sufficient to recognize and classify a user, considering a sampling rate of 50 Hz. 

 
Figure 7. Euclidean distance between the authenticated user class feature vector and the feature 
vectors computed from testing data for different candidate users. 

 

Figure 8. Output of the classification model at different time intervals while classifying a candidate 
user belonging to the authenticated class. 

The results of the user classification were computed iteratively for all possible permutations of 
the users across three folds, considering all the scenarios given in Table 7. Only the average results of 
all iterations are included in this section. To thoroughly analyze the results, different values were 
chosen for R  but no significant changes were observed in the results that were obtained 
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corresponding to the initial value of R = 0.67. Therefore, this section reports the average results 
of the user classification for only the initial value of R . The metrics used to evaluate the user 
classification performance are True Positive Rate (TPR), False Positive Rate (FPR), accuracy, 
precision, recall, and f-measure. Table 8 shows the results of user classification based on activity 
recognition at five different body positions. It can be seen that for all body positions, the value of TPR 
is higher for the impostor class, which means that the authentication model has identified the 
impostor users more accurately as compare to the authenticated and supplementary users. 

Table 8. Results of user classification based on activity recognition at five body positions. 

User Class TPR FPR Precision Recall F-Measure Body Position 
Authenticated 0.90 0.04 0.90 0.90 0.90 

Waist Supplementary 0.91 0.03 0.92 0.91 0.91 
Impostor 0.95 0.04 0.93 0.95 0.94 

Authenticated 0.92 0.04 0.90 0.91 0.90 
Left Thigh Supplementary 0.90 0.03 0.92 0.90 0.91 

Impostor 0.91 0.05 0.91 0.90 0.91 
Authenticated 0.90 0.04 0.89 0.90 0.90 

Right Thigh Supplementary 0.88 0.04 0.89 0.88 0.88 
Impostor 0.91 0.06 0.90 0.91 0.90 

Authenticated 0.85 0.06 0.86 0.85 0.85 
Upper Arm Supplementary 0.86 0.06 0.85 0.86 0.86 

Impostor 0.86 0.09 0.86 0.86 0.86 
Authenticated 0.82 0.07 0.83 0.82 0.82 

Wrist Supplementary 0.83 0.06 0.85 0.83 0.84 
Impostor 0.90 0.09 0.86 0.90 0.88 

Figure 9 shows that the individual classification accuracies of all the user classes are higher for 
the waist, left thigh, and right thigh positions. It means that it is easy to identify a user by recognizing 
an activity if the smartphone is placed in the left or right jeans pocket, or hung from a belt clip at the 
waist. This is due to the fact that the performance of activity recognition is better for these body 
positions as compared with other body positions used, as can be seen in Figure 5. The overall 
classification accuracies for the authenticated, supplementary, and impostor classes are 87.94%, 
87.78%, and 90.74%, respectively. 

 

Figure 9. Individual classification accuracies of different user classes at five different body positions. 

Generally, a smartphone has a single authenticated user and a few supplementary users only. 
All other users of the smartphone may be treated as impostors. Therefore, the impostor user class has 
a large number of instances as compare to the authenticated and supplementary user classes. For 
real-time authentication, the proposed framework requires the recording of training data for the 
authenticated and supplementary class users only. During training, the system extracts different 
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features from the data recorded for the authenticated and supplementary class users, and divides the 
feature vectors computed corresponding to different activities into K clusters using K-means 
clustering. The system then takes the learned centroids as the trained feature vectors for 
authenticated and supplementary classes. If new training data are added to the training set, then the 
training data are clustered again using K-means clustering and the centroids are updated in 
accordance with the new data. After computing trained feature vectors, the system calculates the 
distance of each computed feature vector from the trained feature vectors and finds the maximum 
possible distance  . During real-time authentication, the system considers a smartphone user as 
an impostor by default until and unless a definite matching pattern is detected for an activity in the 
trained users’ profiles. It extracts the feature vector from the real-time data obtained from the 
smartphone sensors and recognizes the activity performed by the user. The extracted feature vector 
is then compared with the trained feature vectors of the authenticated and supplementary classes, 
and user classification is performed. In the case of an authenticated or a supplementary user, the 
extracted feature vector will be matched with one of the trained feature vectors and the Euclidean 
distance between the matched similar feature vectors will be less than or equal to  . Hence, the 
user will be classified as an authenticated or a supplementary user. On the other hand, if the user is 
an impostor, his/her activity pattern will be different from those of trained activity patterns. So, the 
Euclidean distance between the feature vector extracted for an impostor’s activity and that of trained 
feature vectors will be higher than  and the user will be recognized as an impostor. In this way, 
the system ably handles a new smartphone user as an impostor whose activity pattern is not yet 
determined. 

6. Conclusions 

In this paper, smartphone user authentication based on physical activity recognition using 
mobile sensing has been analyzed. A novel multi-class user classification scheme is presented for the 
authentication of smartphone users, which is based on physical activity recognition incorporated 
with micro-environment sensing. Twelve different features from time and frequency domains are 
extracted for the recognition of six different activities, i.e., walking, standing, sitting, running, 
walking upstairs, and walking downstairs. The smartphone users are classified into three classes, i.e., 
authenticated, supplementary, and impostor, by recognizing their activity patterns using a 
probabilistic scoring model. It is observed that the recognition of standing, running, and sitting 
activities is easier irrespective of the smartphone position on the human body. As a result, it is easy 
to identify a smartphone user on the basis of these activities. On the other hand, the activities of 
walking, walking upstairs, and walking downstairs are smartphone position-dependent. These 
activities can be best recognized only if the smartphone is placed in the left or right jeans pocket, or 
hung with a belt clipper at the waist position. This shows that these positions are best suited for 
placing a smartphone on the human body for user authentication based on activity recognition. 
Moreover, it is noticed that the Bayes Net classifier provides the best performance for on-device 
activity recognition in terms of accuracy, error rate, and computational time required for activity 
classification. Hence, these findings conclude that the Bayes Net classifier is an optimal choice for 
online authentication of a smartphone user based on physical activity recognition. 

This work can be extended to detect, recognize, and trace more complex activities for 
smartphone user authentication. For this purpose, more sensors can be added to the framework 
including virtual sensors such as apps usage, etc., to learn and recognize the behavior of a 
smartphone user while using smartphone. In case of a large amount of input data, the processing can 
be done on the cloud instead of the device itself. During real-time authentication of a smartphone 
user, because of noise and other interference, the data collected from the smartphone sensors may 
give rise to a random or abnormal activity sequence that can incorrectly classify a smartphone user. 
A knowledge-based authentication can be incorporated into the framework along with behavioral 
authentication to improve the accuracy of user classification. A list of security questions can be added 
to the framework. The answers to these questions should only be acknowledged by the authenticated 
user. If an abnormal activity pattern is detected by the system and the calculated classification score 
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falls in a particular range, then a random security question can be asked. In case of a correct answer, 
the classification score can be updated by adding an additional score for the right answer. In case of 
a wrong answer, the classification score can be decreased. The updated classification score can then 
be compared with the threshold values for classifying the smartphone user. To further expand the 
work, the location of a smartphone user can be traced using smartphone sensors and his/her activity 
information can be acquired. This information can be further utilized for different purposes including 
forensic analysis and crime investigations. 
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