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Abstract: The main objective of the introduced study is to design an adaptive Inertial Navigation 
System/Global Navigation Satellite System (INS/GNSS) tightly-coupled integration system that 
can provide more reliable navigation solutions by making full use of an adaptive Kalman filter 
(AKF) and satellite selection algorithm. To achieve this goal, we develop a novel redundant 
measurement noise covariance estimation (RMNCE) theorem, which adaptively estimates 
measurement noise properties by analyzing the difference sequences of system measurements. 
The proposed RMNCE approach is then applied to design both a modified weighted satellite 
selection algorithm and a type of adaptive unscented Kalman filter (UKF) to improve the 
performance of the tightly-coupled integration system. In addition, an adaptive measurement 
noise covariance expanding algorithm is developed to mitigate outliers when facing heavy 
multipath and other harsh situations. Both semi-physical simulation and field experiments were 
conducted to evaluate the performance of the proposed architecture and were compared with 
state-of-the-art algorithms. The results validate that the RMNCE provides a significant 
improvement in the measurement noise covariance estimation and the proposed architecture can 
improve the accuracy and reliability of the INS/GNSS tightly-coupled systems. The proposed 
architecture can effectively limit positioning errors under conditions of poor GNSS measurement 
quality and outperforms all the compared schemes. 

Keywords: tightly coupled navigation; measurement noise covariance estimation; adaptive 
Kalman filter (AKF); unscented Kalman filter (UKF); satellite selection 

 

1. Introduction 

Tightly-coupled inertial navigation system/global navigation satellite system (INS/GNSS) 
integration systems are an attractive positioning option in many navigation service applications 
[1,2]. Although considerable studies have been conducted to improve the performance or reduce the 
computational burden, the algorithms of the optimal adaptive filtering and satellite selection are still 
not theoretically and practically perfect and warrant further investigations. 

A tightly-coupled system uses the GNSS pseudo-range and pseudo-range rate measurements 
as reference to evaluate and correct the INS error [3]. In practice, in order to cope with the unstable 
measurement noise covariance R, caused by the instabilities of the environment and the receiver 
[4,5], the adaptive Kalman filter (AKF) which can estimate R online should be utilized to guarantee 
the navigation accuracy [6–8]. The innovation and residual are the most commonly used information 
to estimate R adaptively, and the corresponding algorithms are known as innovation-based 
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adaptive estimation (IAE) [9] and residual-based adaptive estimation (RAE) [10]. Nevertheless, the 
innovation and residue are coupled with the state estimation error, which can affect the accuracy of 
R and filtering or even cause divergence [11], especially in a biased state estimation situation. 
Besides, abnormal measurements arise in areas like urban and canyons [12]. In these areas, GNSS 
suffers from large errors due to the multipath, poor geometry and high noise. Dhital [13] proposed a 
novel adaptive filter by assuming that the measurement errors follow a heavy-tailed distribution. 
The user acceleration derived from GNSS Doppler measurements and the direct output of inertial 
measurement unit (IMU) are compared to generate a scalar to adjust R. Yang [14,15] introduced the 
robust estimation technique to INS/GNSS tightly-coupled systems to identify and reject aberrant 
measurements. Unfortunately, these algorithms are not theoretically quantitative and will be also 
affected by inaccurate state estimates such as IAE/RAE.  

Satellite selection is an important element to guarantee positioning accuracy in INS/GNSS 
tightly-coupled systems. Geometric dilution of precision (GDOP) [16–21], signal to noise ratio (SNR) 
[22,23] and carrier to noise ratio (CNR) [24,25] are standard indexes utilized to evaluate the 
positioning accuracy from the views of geometry constraints and signal quality. However, the GNSS 
measurement precision level is a crucial factor to be considered in satellite selection and has not been 
well studied due to a lack of effective approaches. In current GDOP- and SNR/CNR-based satellite 
selection algorithms, the satellites which have accurate measurement can be excluded due to low 
SNR/CNR or high GDOP and vice versa, the satellite suffering from large measurement error can 
possibly be taken into consideration to derive the navigation solution for a high SNR/CNR or low 
GDOP. Hence, the satellite selection algorithm faces the drawback that it may involve improper 
satellites or reject a suitable satellite and as such lead to negative effects on the solution. The satellite 
elevation angle is another factor that affects the satellite selection. The satellite elevation-dependent 
weight is adopted for the a priori variance for GNSS observations [26], which is based on the 
assumption that a lower elevation angle introduces higher measurement noise due to its increased 
possibility of multipath delay. However, the deficiency of lacking a real evaluation of measurement 
noise still exists in this approach. 

To overcome the aforementioned limitations of these existing approaches, the present work 
proposes a novel redundant measurement noise covariance estimation (RMNCE) approach, which 
employs redundant information obtained from two independent measurement systems [27] to 
estimate their corresponding measurement noise properties. The RMNCE approach is then applied 
to develop a RMNCE-based tightly-coupled (RMNCE-TC) architecture, including a new 
RMNCE-based satellite selection algorithm and a RMNCE-based adaptive unscented Kalman filter 
(RMNCE-UKF). Additionally, the altitude aiding algorithm [27–29] is adopted to augment the 
external measurements for aiding the navigation solutions. The main contributions of this research 
are summarized below: 

(1) A novel RMNCE approach is put forward and proved mathematically. The main advantage of 
the RMNCE approach is that the noise estimate is only based on measurements and therefore 
can be isolated from the state estimation error. 

(2) A novel satellite selection approach is proposed by considering the measurement noise variance 
of different satellites, which takes both GDOP and the online estimated measurement noise into 
account to select an optimal satellite combination. Herein, the observation quality of the GNSS 
measurements can be well monitored and the differences in accuracy of different measurements 
can be fully considered. 

(3) An AKF scheme is designed and applied to UKF [30,31]. The RMNCE-UKF ensures that the 
measurement noise estimate is uncorrelated to the state estimate, and correspondingly avoids 
the risk of filter divergence and self-oscillation. Moreover, a new R expansion strategy, which 
can be regarded as an alternative approach to Receiver Autonomous Integrity Monitoring 
(RAIM) and other detection algorithms, is designed to avoid the negative effects of outlying 
observations. 
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The remainder of the paper is organized as follows: Section 2 introduces the proposed RMNCE 
theory and provides a mathematical proof; Section 3 illustrates the proposed satellite selection 
algorithm; Section 4 gives the adaptive RMNCE-UKF; Section 5 presents an overview of the 
proposed RMNCE-TC architecture; Section 6 presents both simulation and practical test results 
verifying the overall system performance, and, finally, Section 7 presents the conclusions of the 
work. 

2. Adaptive R Estimation 

2.1. Related Work about R Estimation 

The most commonly used AKF (i.e., IAE and RAE), make use of the new information in the 
innovation sequence or residual sequence to adaptively tune the measurement noise covariance 
matrix R [11,31]. For a nonlinear system, the two algorithms are implemented as: 
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where ,zz k
P  is the covariance of the predicting measurement error [31], ,zz k

P  is the covariance of 
the filtering measurement error [32] and N represents the length of a sliding window. The 
innovation kε  and residue kr  are given by: 
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where , 1
ˆ
k kX  denotes the state prediction, ,

ˆ
k kX  denotes the state estimate and  h   is the 

measurement function. 
As shown in Equation (2), kε  and kr  can be affected by biased state estimates that cannot be 

totally avoided in an INS/GNSS integrated navigation system. Therefore, if the system state vector 
is not well estimated, a negative effect will be introduced on the filter performance and as such 
reduce the rationality of adaptive filtering or even cause diverge. The proposed RMNCE algorithm 
just utilizes redundant measurements to estimate R, which is immune to state estimation error and 
then improves filtering performance. 

2.2. RMNCE Theory 

If there are two redundant measurements for the same signal with uncorrelated zero-mean 
white noises, the variances of the noises can be estimated just based on the measurement 
differences. 

Theorem. Assuming that Z1(k) and Z2(k) are independent redundant measurements of a signal Z(k) from two 
systems, the measurements can be modeled as [27]: 

        , 1,2i i iZ k Z k S k V k i            (3) 

where, for the measurement system i, Si(k) is the unknown measurement system error and Vi(k) is zero-mean 
white noise at time epoch k. The first-order-self-difference (FOSD) ∆Zi and the second-order-mutual-difference 
(SOMD) ∆Z12 are defined as: 
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If Si(k) is stable over a short period, namely: 

   1 0i iS k S k        (5) 

the variances of V1(k) and V2(k) are given by: 
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Proof. The FOSD terms of the two uncorrelated measurement systems are given by: 
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and the autocorrelation of 1( )Z k  can be calculated: 
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Because the statistical characteristics are stable over a relatively short period, Equation (8) can 
be written as: 

    2
1 1 1( ) ( ) ( ) ( 1) ( ) ( 1) 2TTE Z k Z k Z k Z k Z k Z k k                     (9) 

Similarly, the autocorrelation of 2 ( )Z k  is given by: 

    2
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Considering Equations (9) and (10), we can obtain that: 
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On the other hand, the SOMD term ∆Z12 is given by: 
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and its autocorrelation is: 
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Finally, by solving Equations (13) and (11), both  2
1 k  and  2

2 k  can be obtained as: 
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□ 

From the above derivation, the advantages of RMNCE algorithm can be summarized as below:  

(1) The estimate of variance is only based on measurements and therefore can be isolated from the 
state estimation error.  

(2) The estimate of variance is immune to measurement system errors and can be determined 
without any knowledge of the real measurement by applying FOSD and SOMD. 

(3) The noise variances of redundant measurements can be estimated simultaneously. 

In practice, because the statistical characteristics are stable over a relatively short period, a 
sliding window [27] can be employed to derive the autocorrelations in Equation (14). The sliding 
window width can be empirically set to 30~60. 

3. RMNCE-Based Satellite Selection 

Optimal satellite selection is an important way to realize acceptable accuracy with minimum 
computation [33]. The tightly coupled algorithm approach has been proven to be an effective 
method of positioning based on limited satellites, especially in harsh situations [34,35]. For an 
embedded tightly coupled system, proper satellite selection, based on indexes to evaluate 
measurement accuracy directly, plays an important role to guarantee filtering precision with 
necessary calculations. 

3.1. Deficiency of GDOP Based Methods 

After the compensation of satellite clock offset, ionospheric delay and tropospheric delay, the 
pseudo-range observation model [36] is reduced to: 

     2 2 2
GNSS s s s ux x y y z z t                    (15) 

where  , , T
s s sx y z  is the position of the satellite,  , , Tx y z  is the position of receiver, ut  is the 

receiver clock offset delay, and   denotes the measurement noise. Meanwhile, replacing 

 , , Tx y z  with the INS result  , , T
INS INS INSx y z , a prediction of the GNSS observation, which can be 

taken as a redundant measurement, can be derived and denoted as INS . Because the INS and the 
GNSS are two independent systems, the measurement noise of GNSS  and INS  are uncorrelated. 
By using the RMNCE approach the variance of   can be estimated as 2ˆ . Similarly, the 

measurement noise variance 2ˆ   of the pseudo-range rate can be estimated simultaneously. 
According to the measurement of pseudo-range Equation (15), the GNSS positioning accuracy 

can be analyzed as below: 
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where x  is the error vector of the receiver and H  is the Jacobin matrix with respect to the 

expanded vector  , , , T
ux y z t .   1T 

 H HGDOP  trace  is the traditional index to select the 

optimal satellite combination. For embedded systems, because the directions of the satellites in the 
sky change slowly, H  can be periodically updated to decrease the computational burden. 

In order to consider other factors besides geometry, weighted GDOP defined as below based 
on prior knowledge has been implemented and proved more effective than standard GDOP: 

  1T
W


 H WHGDOP   trace  (17) 

Although weighted GDOP and SNR/CNR have been utilized to select optimal satellites in 
previous research, the uncertainty of weight and the inconsistency between the SNR/CNR and the 
measurement accuracy will degrade the effectiveness. The exclusion method using elevation and 
SNR/CNR has the risk of selecting the satellites with bad quality or missing the satellites with good 
quality. Hence, if the accuracy of pseudo-range can be evaluated precisely in real time, the selection 
reasonability and the subsequent positioning accuracy can be improved. 

3.2. RMNCE Based Method 

As described in Section 3.1, the RMNCE is employed to estimate the measurement noise 
variances of the pseudo-range and pseudo-range rate. Assuming that the number of satellites at 
epoch k is NS , the estimate of kR  can be expressed in the following form: 

 2 2 2 2 2 2
,1 ,2 , ,1 ,2 ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , , ,
N N

RMNCE
k S Sdiag           R       (18) 

where 2
,ˆ l  and 2

,ˆ l   respectively denote the estimated variance of the pseudo-range and 
pseudo-range rate measurement noise of the l-th satellite. 

Since pseudo range can be measured from INS and GNSS simultaneously, the GNSS 
measurement noises are able to be evaluated by RMNCE without the interference of state 
estimation error coming from IAE or RAE. At each epoch  2ˆ k  is updated, then the selection 
operations can be expressed as follows:  

      2 2ˆ ˆ , ( )
l

l l
l GNSS INS thrd S thd lS k k k S S k          1       and    (19) 

2

1 ,
ˆ

l

l l
S

w S


  
  

  
W 1   (20) 

 min ,l W lS S    2 1  GDOP    (21) 

where ( )S k  is the set of observable satellites at epoch k, thrd  is the threshold of pseudo range 
difference between INS and GPS, 2ˆ thd  is the threshold of variance, 1  is the candidate set 
discarding the abnormal observations, and 2 is the selection set.  

In Equation (19), the pseudo range difference between INS and GNSS is taken as an index to 
reject abnormal pseudo-range errors mainly caused by the multipath effect [37]. However, this 
index is biased because it is affected by the INS positioning error, which may cause the wrong 
detection. To cope with this problem, as shown in Equation (19), satellite measurement noise 
variances estimated by RMNCE are considered with the pseudo range difference together to detect 
the abnormal measurements. Moreover, as illustrated in Equations (20) and (21), the weighting 
matrix W which is calculated by the estimated noise variances  2ˆ

lS
  is used to derive the weighted 

GDOP; thus, both satellite geometry and measurement noise characteristic have been taken into 
consideration in the satellite selection procedure. 
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Besides, five satellites, when available, are selected to improve the positing accuracy in this 
research. In order to speed up processing, all the observable satellites are sorted in descending 
order according to elevation angle, and the first two as mentioned in [33] are selected. Then the 
remained satellites can be determined according to GDOPW . The main procedure of the proposed 
satellite selection algorithm is shown in Figure 1. 

Remark 1. In Equation (15), the receiver clock offset delay is unimportant when only implementing the 
RMNCE method, because this term cancels in the SOMD. However, the satellite exclusion step described by 
Equation (19) requires that GNSS  and INS  should be comparable. Hence, the compensated GNSS  not the 
direct measurement is used in Equation (19). 

Calculate the elevation angles

Find the highest two satellites

Find the other three satellites based on  GDOPW

Get the final selection set  2

Obtain all the visible satellites

Output

Get the candidate set      by Equation (19)1

 
Figure 1. The flow chart of the proposed satellite selection. 

4. RMNCE-Based Adaptive UKF 

In this work, nonlinear system state model and nonlinear measurement model are employed to 
achieve better performance, and the RMNCE approach is applied to design an adaptive UKF. 
Furthermore, a R expanding strategy is proposed to inhibit the negative effects of the sudden 
enlargement of the measurement noise and abnormal observations, that always happens with 
multipath effect and cannot be tackled by the statistic RMNCE method. 

4.1. INS/GNSS System Description 

The state vector in the proposed tightly-coupled system is given by: 

, , , , , , , , , , , , , , , ,
T

E N U E N U x y z x y z u uV V V L h t t                 X =    (22) 

where  , , T
E N U    is the misalignment vector between the true and estimated local navigation 

frame in East-North-Up (ENU) coordinate,  , , T
E N UV V V    is the velocity error,  , , TL h    is 

the position error, , ,
T

x y z      is the gyroscope bias, , ,
T

x y z      is the accelerometer bias, ut  

and ut  are respectively the GNSS receiver clock offset and clock drift. The nonlinear differential 
equations of INS states are well known and can be found in [38–40]. The biases of IMU sensors are 
considered constant, and ut   is modeled as a first-order Gauss-Markov process. 

The measurement equation of pseudo-range is shown in Equation (15). The pseudo-range rate 
observation model is formulated as: 
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     , , ,GNSS x s x x y s y y z s z z ue v v e v v e v v t                           (23) 

where , , ,, ,
T

s x s y s zv v v    is the satellite velocity, , ,x

T

y zv v v    is the receiver’s velocity, , ,
T

x y ze e e    is 

the unit vector between the receiver and the satellite, ut  denotes the receiver clock drift and    
is the measurement noise of pseudo-range rate. 

Besides, altitude information is employed to augment the observation system. The ellipsoid 
equation is employed to serve as an auxiliary measurement equation [27]: 

2 2 2

2 2 2 1
( ) ( ) ( )e e p

x y z
R h R h R h

  
  

      (24) 

where h is the altitude information, eR  and pR  are the lengths of the Earth’s semi-major and 
semi-minor axes respectively. 

4.2. Expanded R Design 

ˆ RMNCE
kR  is a statistic within a sliding window and therefore cannot keep up with the change of 

R in real time, which will lead to improper estimate especially in case of multipath, disturbance and 
other sudden measurement noise changing circumstances. To cope with this indeterminate R, a 
performance based R expanding algorithm is designed as below. 

Assuming that the expanded kR  can be defined by: 

ˆ RMNCE
k kR βR   (25) 

where β  is the expanding scale and can be expressed as  1 2 NS
diag   . Then the estimated state 

vector ˆ
kX  in the UKF can be expressed as: 
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prediction, and ˆ ,z kP  is the covariance of the measurement prediction error. To control the 

influence of the undetermined measurement noise, we assume that k kK ε  should lie within a 
reasonable range: 

 
1

, ˆ ,
ˆ RMNCE

xz k k kz k



 P P βR ε C    (27) 

where C  denotes the maximum state transition error and processing noise in one step. For an 
INS/GNSS integrated navigation system, C is mainly decided by the performance of IMU. 

In order to avoid the computational complexity, sequential processing [41] is employed to 
estimate the boundary value of β . In the l-th step of the sequential UKF at the k-th epoch, the 
corresponding expanding scale l  can be calculated as: 
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where  l
k  is the innovation of the l-th observation,   ( )m

i  and   ( )c
i  are UT weights [30], 

 
  ,
l
k iχ  denotes the sigma points,  ˆ l

k
X  denotes the prediction in the l-th step,    lh   is the l-th 

observation equation,  
,
l
xz kP  is a vector and  

ˆ ,
l
z k
P   is a scalar quantity. 

According to the performance vector C and innovation, the expanding scale of every 
measurement can be determined but still not optimal due to the insufficient samples. For this 
improved tightly coupled application, the maximum expanding scale is selected as the unique scale 
for those abnormal measurements to suppressing undetected measurement noise effectively: 

     

   
2max 1,2, , ,

,
N N

N

l l
l l S i S GNSS INS thrd

l l
l l S GNSS INS thrd

i S k k

k k

     

    

     


  

+

+

 =         
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where l  and + Nl S  are the expanding scales corresponding to the pseudo-range and 

pseudo-range rate of the l-th satellite. The same thrd  in Equation (19) is utilized to judge whether 
expanding or not when abnormal measurements must be selected in challenging situations. 

Regarding the particularity of inertia based integrated navigation system, this strategy is 
proved effective to cope with multipath and other GNSS challenging situations. In practice, the 
transition, input and output matrixes are usually stable or tiny different in a given period, the 
expanding scale can be determined based on the experiment data. 

Remark 2. The threshold value C  should be time varying due to the INS cumulative error, and increases 
with δt, which is the difference between the current epoch and the epoch at which the previous feedback 
correction was implemented. In this paper, C  is set to be linearly increasing with respect to δt. 

4.3. Application in UKF 

The aforementioned adaptive strategy is employed to the UKF to solve the nonlinear 
estimation problem. Omitting the well-known details of the UKF, the main procedure of calculating 
the Kalman gain in the proposed RMNCE-UKF is shown from Equation (30) to Equation (33): 

1
, ,k xz k zz k
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*
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j
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  P ς Z ς Z
+

*       (33) 

where  *
1,k j   and  1,

*
k j

ς  are the unscented transformations of the sigma points regarding to the 

state equation and measurement equation respectively, ˆ
k
X  is the state prediction and ˆ

k
Z  is the 

measurement prediction. The detailed time updating and measurement updating can be found in 
[31]. Figure 2 presents the flow chart of the RMNCE-UKF. 
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Figure 2. The flow chart of the proposed adaptive RMNCE-UKF. 

5. RMNCE-TC Architecture Overview 

Figure 3 depicts the proposed architecture and illustrates how the proposed RMNCE approach 
forms the core component linking the INS, the adaptive UKF, and the satellite selection processes. 
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Figure 3. The proposed tightly-coupled architecture based on the RMNCE approach. 

As shown in Figure 3, the modified tightly-coupled system consists of 6 parts. Part 1 and Part 2 
are traditional INS and GNSS procedures. In Part 3, the RMNCE is carried out based on the pseudo 
ranges and pseudo range rates inputted by INS and GNSS according to Equations (4)~(6), which is 
the key adaptive part of this architecture. Satellite selection is accomplished in Part 4 based on 
Equations (19)–(21) and the result is also transferred to Part 6 to expand the R when necessary. Part 
5 provides additional height observation to enhance state observabilities. The adaptive UKF is 
carried out in Part 6 based on RMNCE and expanded R. 
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6. Experiments and Discussion 

Both semi-physical simulation and field experiments were conducted to evaluate the 
performance of the RMNCE-TC architecture. 

6.1. Description of the Algorithms Employed for Comparison 

Many researches [42,43] show that the UKF has a higher accuracy than the EKF, so we directly 
employ existing adaptive UKF schemes to conduct the comparison experiments. All the compared 
schemes with the same altitude aiding strategy [27] are briefly described below: 

(1) Standard tightly-coupled integration (STC) 

A standard UKF integration filter is used to fuse INS results and GNSS measurements, and R 
is set to a fixed value. Four satellites are selected by picking their GDOP ranked least. 

(2) Adaptive tightly-coupled integration (ATC) 

Residual-based adaptive estimation (RAE) is implemented to improve the performance of the 
UKF. For the RAE-UKF scheme [31], R is adaptively updated as follows: 
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where jr  denotes the residual error, N is the window length for calculating the covariance of jr , 

and ,( )j iχ  is the i-th n-dementional sigma point at step j. Besides, a 5-satellite selection based on 
GDOP are employed in ATC. 

(3) Modified ATC (MATC) 

Modified ATC (MATC) which uses the proposed satellite selection algorithm is also 
implemented to help to analyze the individual contributions of the satellite selection algorithm and 
RMNCE-UKF. 

(4) CNR and satellite elevation based tightly-coupled integration (CNE-TC) 

In a recently published article [25], satellites with elevations lower than 10° or CNR lower than 
30 dB-Hz are excluded, and the variance on the pseudo-range estimates is weighted as: 

 

0
10

2 10ˆ
sin

C
N

a b
Elev



 
   (35) 

where 
0

C
N  is the CNR value, Elev  is the satellite elevation, a and b are empirical parameters, that 

are recommended to set a = 1 and b = 2812. 

6.2. Semi-Physical Simulation Experiments 

The CNR is difficult to be simulated without any personal bias, so STC, ATC and MATC are 
selected as the compared schemes to mainly verify the feasibility and effectiveness of the 
RMNCE-TC. The semi-physical experiment platform is shown in Figure 4. A trajectory generator is 
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employed to produce the flight trajectory and corresponding true IMU data. Errors, such as bias, 
ARW, and VRW, are added to the true IMU data to simulate measured IMU data. Meanwhile, the 
barometer measurements are also simulated according to the true position data. All the sensor error 
settings can be found in Table 1. Furthermore, the Spirent GNSS simulator software suite SimGEN™ 
(Spirent Company, Sunnyvale, CA, USA) is employed to simulate GNSS data with 10 Hz output. 

 
Figure 4. Devices employed in the semi-physical simulation experiments. 

Table 1. Sensor error settings employed in the simulation experiments.  

Parameters Performance
Gyroscope bias 10 h   

Angle random walk 0.3 h   
Accelerometer bias 1 mg 

Velocity random walk 1 mg Hz   
Variance of barometer 25 m2 

To evaluate the estimation accuracy of the RMNCE-TC algorithm, a time varying measurement 
noise deviation scheme was implemented. The standard deviation of the pseudo-range 
measurement noise was 1 m, except for: the period during the 730-th second to the 750-th second, 
where large errors were added to the satellites #10, #13, and #24 to simulate the multi-path effect; 
and the period during the 1900-th second to the 2500-th second, where all standard deviations were 
enlarged, particularly those of satellites #10, #13, and #24 were increased to 5m. The number of 
visible satellites and the detailed settings are listed in Table 2. 

Table 2. The GNSS measurement error settings. 

Time(s) Satellite 
Number 

 m   m s   Special Settings 

730–750 7 1 0.01 add additional large errors 1 to the #10, #13 and 
#24 satellite pesudo-range easurements 

1900–2500 7 2 0.01 increase   of #10, #13 and # 24 to 5m 

2900–2960 1 1 0.01 only #24 is visible 
other 8 1 0.01 — 

1 The additional large errors of the pseudo-range measurements of satellites #10, #13, and #24 are set 
as time varying, which can be expressed as error = a∙t + b, where a = 1, b = 100, 90, and 80, respectively. 

6.2.1. Measurement Noise Variance Estimation 

To verify the reliability of RMNCE, we compared the RMNCE results with those obtained by 
RAE. Figure 5 shows the results of satellite #24 which was always visible throughout the simulation. 
The comparison indicates that RMNCE is more robust and accurate than RAE, particularly when the 
true value of the measurement noise variance changes suddenly. 
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Figure 5. The estimated variances of the pseudo-range measurement noise obtained by RAE and 
RMNCE. 

Besides, the error volatility of RMNCE is lower than RAE. We calculated the variances of the 
estimation errors during [1700 s, 1900 s], [1901 s, 2500 s] and [2501 s, 2700 s] intervals. The results of 
RMNCE are 0.0212, 0.2711, and 0.1651, and the corresponding results of RAE are 0.0304, 0.5828 and 
0.3025. It is clear that RMNCE provides a more stable measurement noise variance estimation. 

6.2.2. Navigation Accuracy 

Table 3 presents the root mean square errors (RMSE) of different navigation parameters of the 
entire simulation. The latitude and longitude errors are converted to northward and eastward 
position errors in meters. The RMCNE-TC owns an overall better performance than those of STC, 
ATC and MATC. 

Table 3. RMSE obtained by the different schemes. 

 STC ATC MATC RMNCE-TC
Latitude (m) 3.0236 0.6926 0.5960 0.3706 

Longitude (m) 3.8596 1.5556 1.4370 1.1603 
East velocity (m/s) 0.1528 0.0797 0.0767 0.0698 

North velocity (m/s) 0.1795 0.0863 0.0864 0.0866 
Heading (°) 0.7027 0.4813 0.4766 0.4656 

Pitch (°) 0.4743 0.2013 0.1714 0.1015 
Roll (°) 0.1070 0.1214 0.1176 0.1088 

To further evaluate the navigation accuracy of the different frameworks, we compared the 
three-dimensional (3D) positioning error, which is defined as: 

             
2 2 2

E T E T E Td k x k x k y k y k z k z k                            (36) 

where      , , T
E E Ex k y k z k    is the ECEF position at the k-th epoch calculated by the different 

schemes, and      , , T
T T Tx k y k z k    is the true ECEF position at the k-th epoch. In what follows, the 

3D positioning errors obtained by the different schemes are analyzed over three typical segments, 
including [730 s, 750 s], [1900 s, 2500 s] and [2900 s, 2960 s]. 

(1) 3D Positioning Errors During [730 s, 750 s] 

Figure 6 shows the positioning errors of the selected schemes from the 730-th second to the 
750-th second, where the measurements of satellites #10, #13, and #24 were contaminated by large 
errors. The comparison result shows that RMNCE-TC is more robust in this scenario than other 
schemes. This superiority is mainly owing to the satellite selection procedure and the expanded R 
design. Table 4 lists the satellite selections, GDOP values, and positioning errors of these schemes at 
the 750-th epoch. In contrast to STC and ATC, the contaminated satellites #10, #13, and #24 are 
detected according to the threshold thrd  in MATC and RMNCE-TC. But the requirement for 
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selecting five satellites necessitates including satellite #10 in the candidate list. Here, the expanding 
scale β  employed in the adaptive UKF plays a vital role to effectively suppresses the negative 
impact of large error of satellite #10. 

 
Figure 6. 3D positioning errors of the selected schemes during [730 s, 750 s]. 

Table 4. Satellite selection results of the different schemes at the 740-th second. 

 Selected Satellites ID GDOP 3D Positioning Error 
STC 10, 13, 29, 21 2.766 13.580 m 
ATC 15, 10, 18, 13, 29 2.408 3.115 m 

MATC 15, 10, 18, 21, 29 2.452 2.215 m 
RMNCE-TC 15, 10, 18, 21, 29 2.452 0.152 m 

(2) 3D Positioning Errors During [1900 s, 2500 s] 

Figure 7 shows the positioning errors from the 1900-th second to the 2500-th second, during 
which the pseudo-range measurement noise was increased. Particularly the standard deviations of 
the pseudo-range measurement noise of satellites #10, #13, and #24, were set to 5 m. The fixed R 
employed in STC cannot adapt to the changes, which results in large positioning errors. ATC 
provides considerable improvement due to its adaptive strategy based on RAE. MATC provides a 
second smallest positioning error due to a better satellite selection. RMNCE-TC provides the 
smallest positioning error. Table 5 shows the GDOP of different schemes at the 2050-th second. 
Although the GDOP of RMNCE-TC is not the smallest, its 3D positioning error is the minimum. 

 
Figure 7. 3D positioning errors of the selected schemes during [1900 s, 2500 s]. 

Table 5. Satellite selection results of the different schemes at the 2050-th second. 

 Selected Satellites ID GDOP 3D Positioning Error 
STC 10, 13, 21, 29 2.430 1.072 m 
ATC 10, 13, 18, 24, 29 2.159 0.728 m 

MATC 15, 10, 18, 21, 29 2.168 0.461 m 
RMNCE-TC 15, 10, 18, 21, 29 2.168 0.205 m 
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(3) 3D Positioning Errors During [2900 s, 2960 s] 

Figure 8 presents the performances of the tested schemes when only one satellite is visible. The 
result shows that ATC and MATC even performs worse than STC, but RMNCE-TC still holds a 
better performance. Figure 9 compares the residual sequence and SOMD sequence of satellite #24. 
We note that the residual sequence is clearly biased during GNSS outage, which contradicts the 
conventional assumption that the residual sequence is zero mean white noise. Consequently, the 
RAE based R estimation becomes larger and generates harmful influence on the Kalman filter. In 
contrast, the SOMD sequence is more robust owing to its decoupling from the state estimation error. 
Hence, RMNCE-based noise estimation is more accurate than RAE. 

 
Figure 8. 3D positioning errors of the selected schemes during [2900 s, 2960 s]. 

 
Figure 9. Comparison of the residual sequence and SOMD sequence of satellite #24 when the number 
of visible satellites changes from 1 to 8 at the 2960-th second. 

6.3. Field Experiments 

A tightly-coupled integration system platform was designed and implemented within a vehicle 
to test the proposed architecture. The platform was mainly comprised of a Crossbow IMU-440 
MEMS sensor (Milpitas, CA, USA), a differential GNSS receiver and a single chip MS5803 low-cost 
barometer, which is shown in Figure 10a. The performance indexes of the IMU-40 are listed in  
Table 6. Moreover, a NovAtel IMU-ISA-100C device (Calgary, AB, Canada) is utilized to provide 
high accuracy reference navigation solutions. 

Table 6. The performance parameters of the IMU sensor. 

Gyroscope Performance Accelerometer Performance 
Bias stability: 10 h   Bias stability: 1 mg 

ARW: 4.5 h   VRW: 0.5 m s h   
Input range: 200  s   Input range: ±10 g 

Scale factor non-linearity: ≤100 ppm Scale factor non-linearity: ≤100 ppm 
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(a) (b) 

Figure 10. The test vehicle platform and equipment. (a) Designed hardware platform; (b) GNSS 
antennas and the NovAtel device. 

Table 7. Different schemes during the test. 

Label Satellite Selection Filer Technique 

STC4 4 satellites, DGOP based Standard UKF 
STC5 5 satellites, DGOP based Standard UKF 
ATC 5 satellites, DGOP based RAE-UKF 

MATC 5 satellites, RMNCE based RAE-UKF 
RMNCE-TC 5 satellites, RMNCE based RMNCE-UKF 

CNE-TC Variable selected satellite number based 
on CNR and elevation 

R is weighted by CNR and satellite elevation 

To make effective comparisons, GDOP based 4-satellite and 5-satellite selection standard 
tightly-coupled positioning schemes, denoted as STC4 and STC5 are carried out; and CNE-TC is 
also implemented to show the contributions of RMNCE-TC over the SNR/CNR and elevation based 
methods. More detail settings about the compared schemes are listed in Table 7. Different schemes 
during the test. The NovAtel reference trajectory is shown in Figure 11. 

Starting 
PointEnding 

Point

South

West

 
Figure 11. Reference trajectory of the field experiment (the blue arrows indicate the final part). 

6.3.1. General Evaluations 

The main navigation errors of longitude, latitude, east and north velocities of all the considered 
schemes are shown in Figure 12. From Figure 12 we can find that: (1) in most cases, the accuracy of 
SCT5 is just marginally better than that of STC4 due to utilizing a redundant visible satellite. 
However, this may be counterproductive when the redundant measurements include large errors; 
(2) the performance of ATC is better than both STC4 and STC5 in most cases. However, when 
abnormal measurements occur, ATC suffers from large positioning errors; (3) MATC has an 
improvement over ATC owing to the RMNCE based satellite selection; (4) RMNCE-TC, which 
benefits from robust measurement noise estimation and the adaptive satellite selection, provides 
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the best performance of all the considered schemes; (5) CNE-TC has an improvement over STCs 
and ATC, even performs better than RMNCE-TC at some epochs when the observability is good. 
But it still suffers from the large measurement errors when the observability quality becomes bad. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 12. Navigation differences with respect to the reference trajectory using STC4, STC5, ATC, 
MATC RMNCE-TC and CNE-TC: (a) longitude differences (m); (b) latitude differences (m); (c) east 
velocity differences (m/s); (d) north velocity differences (m/s). 
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The RMSE was also employed to evaluate the global performances of the different schemes. 
Table 8 lists the RMSE results in detail. From the comparison, we note that MATC and CNE-TC 
have a similar navigation accuracy. RMNCE-TC provides the smallest navigation error. 

Table 8. Global RMSE values of the different schemes. 

 STC4 STC5 ATC MATC RMNCE-TC CNE-TC
Latitude (m) 1.8205 1.7114 1.3430 1.1557 0.5697 1.5629 

Longitude (m) 2.2633 2.1034 1.7706 1.4231 0.8689 1.1514 
East velocity (m/s) 0.1124 0.1078 0.0595 0.0301 0.0299 0.0300 

North velocity (m/s) 0.1122 0.1337 0.0406 0.0382 0.0370 0.0475 
Heading (°) 0.9092 0.8389 0.6072 0.6101 0.6061 0.6001 

Pitch (°) 0.2838 0.2537 0.1925 0.1905 0.1835 0.1921 
Roll (°) 0.1957 0.1832 0.1852 0.1860 0.1852 0.1858 

6.3.2. Navigation Reliability 

To evaluate the methods more effectively, 3D positioning error was calculated and statistically 
analyzed. The 3D positioning differences between the test schemes and the reference are shown in 
Figure 13. The positioning errors of STC4 and STC5 are much larger than those of others. CNE-TC 
performs better than STC4, STC5 and ATC. But when the environment becomes challenging, 
CNE-TC cannot cope with the large measurement errors effectively. MATC provides a smaller 
positioning error due to the RMNCE based satellite selection. RMNCE-TC performs best owing to 
not only the satellite selection algorithm but also the adaptive UKF. Figure 14 shows the expanding 
scales calculated by Equation (28) and we adopted the maximum as the final value at each epoch. 

3D Positioning Differences with respect to the Reference

 
Figure 13. 3D positioning differences of the test schemes with respect to the reference trajectory. 

 
(a) (b)

Figure 14. The value of the expanding scale i  with respect to the five pseudo-range 

measurements: (a) 1150 s to 1250 s; (b) 5070 s to 5120 s. 

In practical applications, a position accuracy within 2 m is an important criterion for evaluating 
the reliability of a navigation solution [5]. Figure 15 shows the corresponding 3D error histograms. 
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The percentages within 2 m are 38.79%, 50.48%, 57.35%, 80.36%, 91.23% and 76.88% for STC4, STC5, 
ATC, MATC, RMNCE-TC and CNE-TC respectively. 

0–2 2-4 4-6 6-8 8-10 >10
3D Positioning Error (m)  

Figure 15. Histogram of the positioning errors obtained for the test schemes. 

6.3.3. Segment Analysis 

Four segments marked by yellow circles in Figure 16 were selected to elaborate on the 
comparison results. Figure 17 presents the trajectories provided by the different schemes. The 
trajectories obtained by RMNCE-TC reside the closest to the reference trajectories. But the 
performance of STC5 is not as good as might be expected when introducing a redundant satellite, 
and is at times even inferior to STC4 (e.g., see the results for S3 presented in Figure 17c). This 
indicates that merely increasing the number of satellites without introducing additional error 
handling methods can lead to unexpected degradation in the navigation performance. ATC 
provides an improved positioning accuracy due to the RAE-UKF. MATC and CNE-TC have an 
accuracy improvement over ATC but are still inferior to RMNCE-TC. 

The GDOP values obtained by STC4, STC5 (with an equivalent satellite selection as that of 
ATC), RMNCE-TC (with an equivalent satellite selection as that of MATC) and CNE-TC are plotted 
in Figure 18. The results show: the GDOP values of STC5(ATC) calculated using five satellites are 
lower than STC4 and RMNCE-TC (MATC); CNE-TC always provides a minimum GDOP value due 
to its loosely excluding condition; the GDOP of RMNCE-TC is relatively large at many epochs. We 
calculated the single point positioning (SPP) errors of the selected satellite measurements, which are 
shown in Figure 19. Unexpectedly, the SPP error of STC5(ATC) is very large, and RMNCE-based 
satellite selection presents the best performance. This further indicates that adding redundant 
satellites always decreases the GDOP value, but may not always improve the positioning accuracy. 
Increasing the quantity of observations has the risk of unexpectedly introducing large measurement 
errors into the system. Therefore, the measurement quality should be fully considered when 
selecting an appropriate satellite combination. 

South

West

S1

S2

S3

S4

 
Figure 16. Four segments in the vehicle trajectory selected for detailed analyses. 



Sensors 2017, 17, 2032 20 of 23 

 

E

 
(a) (b)

 
(c) (d)

Figure 17. Local reference trajectories and those provided by different test schemes: (a) trajectories in 
segment S1; (b) trajectories in segment S2; (c) trajectories in segment S3; (d) trajectories in segment S4. 

 

 
Figure 18. GDOP values of the different satellite selection algorithms during segments S1, S2, S3, and S4. 

 
Figure 19. Cont. 
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Figure 19. Single point positioning errors of the different satellite selection algorithms during 
segments S1, S2, S3, and S4. 

Finally, the 3D positioning errors during segments S1, S2, S3, and S4 are presented in Figure 20. 
CNE-TC has the ability to control the large errors based on the weighted pseudo-range variance, 
but it is still inferior to RMNCE-TC. RMNCE-TC can adaptively eliminate the satellites with poor 
measurement quality, and effectively estimate R to obtain a robust solution. 

 

 
Figure 20. 3D positioning errors of the different test schemes during segments S1, S2, S3, and S4. 

7. Conclusions 

In this paper, we introduce a novel adaptive low-cost INS/GNSS tightly-coupled integration 
architecture that can provide reliable navigation solutions within disturbed GNSS communication 
environments. The proposed architecture features an adaptive redundant measurement noise 
covariance estimation (RMNCE) approach, which is characterized by only employing the 
measurement system information. Different from traditional algorithms, this method avoids the 
effect of Kalman filter state vector estimation error. The RMNCE approach is applied to design a 
fast satellite selection algorithm and an adaptive UKF in our proposed system, which has 
increasingly improved system performance and accuracy. Both semi-physical simulation and field 
experiments have been carried out to demonstrate its overall better performance compared to the 
standard tightly-coupled schemes, RAE-based adaptive scheme, and CNR and satellite 
elevation-based adaptive tightly-coupled integration scheme. The experimental results lead us to 
conclude that: (1) the RMNCE approach can achieve a comprehensive better and robust 
measurement noise estimation results than the traditional noise estimation algorithms; (2) the 
RMNCE-based satellite selection algorithm takes both measurement noise and GDOP into 
consideration to derive an optimal satellites combination, and hence can avoid the risk of 
unexpectedly introducing large measurement errors into the system; (3) the RMNCE-based 
adaptive UKF is advantageous in reducing the positioning errors when the GNSS measurements 
are contaminated; (4) the proposed architecture effectively limits positioning errors when the GNSS 
measurement quality is poor, and can provide 91.2% positioning reliability (2 m positioning error), 
which performs the best among all of the test schemes. 
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