ﬂ SCNSors m\py

Article
An Adaptive Trajectory Clustering Method Based on
Grid and Density in Mobile Pattern Analysis

Yingchi Mao *, Haishi Zhong !, Hai Qi !, Ping Ping ! and Xiaofang Li 2

1 College of Computer and Information, Hohai University, Nanjing 210098, China;

zhonghs@hhu.edu.cn (H.Z.); qihai@hhu.edu.cn (H.Q.); amazingapple@hhu.edu.cn (P.P.)
School of Computer Information & Engineering, Changzhou Institute of Technology,
Changzhou 213032, China; lixf@czu.cn

*  Correspondence: yingchimao@hhu.edu.cn; Tel.: +86-139-5102-9973

Received: 14 July 2017; Accepted: 30 August 2017; Published: 2 September 2017

Abstract: Clustering analysis is one of the most important issues in trajectory data mining. Trajectory
clustering can be widely applied in the detection of hotspots, mobile pattern analysis, urban
transportation control, and hurricane prediction, etc. To obtain good clustering performance,
the existing trajectory clustering approaches need to input one or more parameters to calibrate
the optimal values, which results in a heavy workload and computational complexity. To realize
adaptive parameter calibration and reduce the workload of trajectory clustering, an adaptive trajectory
clustering approach based on the grid and density (ATCGD) is proposed in this paper. The proposed
ATCGD approach includes three parts: partition, mapping, and clustering. In the partition phase,
ATCGD applies the average angular difference-based MDL (AD-MDL) partition method to ensure
the partition accuracy on the premise that it decreases the number of the segments after the partition.
During the mapping procedure, the partitioned segments are mapped into the corresponding cells,
and the mapping relationship between the segments and the cells are stored. In the clustering phase,
adopting the DBSCAN-based method, the segments in the cells are clustered on the basis of the
calibrated values of parameters from the mapping procedure. The extensive experiments indicate
that although the results of the adaptive parameter calibration are not optimal, in most cases, the
difference between the adaptive calibration and the optimal is less than 5%, while the run time of
clustering can reduce about 95%, compared with the TRACLUS algorithm.

Keywords: mobile pattern analysis; spatio-temporal data; trajectory clustering; adaptive parameter
calibration; grid

1. Introduction

In recent years, with the rapid development of sensor technology and smart phones, GPS devices
are widely applied to track moving objects, e.g., humans, vehicles, and animals, which can produce
huge amounts of trajectory data every day. The trajectory data is the spatial-temporal data series
from the moving objects with different timestamps. They contain a lot of information and help us
understand the behaviors of the moving objects more directly. For example, zoologists can cluster the
paths of animals to study the migration of animals [1]. Meteorologists explore the movement path
of hurricanes through clustering and correlation analysis to improve the capabilities in disaster early
warning and prevention [2]. Based on the clustering analysis of the movement patterns of vehicles,
traffic managers can plan urban roads to mitigate the traffic jams [3,4]. For example, Yue et al. proposed
the single-linkage clustering method to analyze taxi trajectory data to detect the time-dependent hot
spots and movement patterns for urban traffic planning [5]. Moreover, a mobility-based clustering of
vehicle trajectories was presented to detect hotspots and avoid the traffic jams [6].
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Clustering analysis is one of the most important methods used in trajectory data mining. Trajectory
clustering approaches can be applied in hotspot path analysis, mobility pattern analysis, and urban
planning. At present, the trajectory clustering approaches include two types [7]: the first cluster the
trajectory data based on the similarity of the full sequences. In other words, they take the whole
trajectory as a unit to cluster the trajectory data. Those approaches have good effects on the clustering
for the simple trajectories, however, they have negative effects for complex trajectories due to the
fact they ignore the local detail sequences. The second type cluster the trajectory data based on the
similarity of the sub-sequences. This means that the whole complex trajectory sequence is divided into
several segments, which can be clustered with one segment as a unit. The second approaches have the
ability to recognize the local features of complex trajectories.

Nonetheless, most available trajectory clustering algorithms depend on the calibration of one
or multiple parameters. Meanwhile, the parameter values have a great influence on the effect of
clustering. To reduce the complexity and workload of parameter calibration in trajectory clustering,
a method called Adaptive Trajectory Clustering approach based on Grid and Density (ATCGD) is
proposed in this paper. ATCGD firstly divides the trajectory data into multiple discrete segments
through the average angular difference-based MDL (AD-MDL) algorithm. All of the discrete segments
are mapped into the corresponding cells. Then, it calculates the average distance among the different
segments in each cell, and the average number of the trajectory segments in each cell. Finally, adopting
a DBSCAN-based approach, ATCGD carries out the adaptive parameter calibration based on the above
data to realize effective and accurate trajectory clustering. As an illustration of the capabilities of
the proposed method, we evaluate the performance of ATCGD approach on clustering quality and
cost using two data sets from the random trajectories and hurricane trajectories in the Atlantic Ocean.
The experimental results indicate that although the results of the adaptive parameter calibration are
not optimal, in most cases, the difference between the adaptive calibration and the optimal one is less
than 5%, while the run time of clustering can be reduced by about 95%.

The remainder of this paper is organized as follows: Section 2 discusses the related works and
analyzes their drawbacks. The discrete trajectory partition algorithm, that is the average angular
difference-based MDL (AD-MDL), is discussed in Section 3. Section 4 presents the proposed ATCGD
approach, and the performance evaluations are given in Section 5. Discussion and conclusions are
given in Section 6.

2. Related Work

2.1. Trajectory Clustering Approaches

Trajectory data can be regarded as time sequence data. Trajectory clustering is an important part
of clustering analysis. To study the trajectory clustering of mobile objects, Gaffney et al. presented
the mixture regression model-based trajectory clustering algorithm [8]. Furthermore, considering
the temporal feature of trajectories, the spatial distance of the mobile objects was expanded to the
spatial-temporal distance of the trajectories [9]. The time-focused trajectories clustering of moving
objects algorithm, TFCTMO, was proposed based on the spatial-temporal distance. To obtain the
moving cluster in the spatial-temporal trajectory data, the filter-based spatial-temporal clustering
algorithm was discussed [10]. The filter-based cluster algorithm first filtered the trajectory data in
the different time-scale ranges, and then clustered the data in the spatial-scale range within the same
timestamp. All of the above clustering algorithms are based on the similarity of the full sequences.

Lee et al. thought that the clustering approaches based on the full sequences may have negative
effects for complex trajectories due to the fact they ignore the local partial similarity [11]. Moreover, they
put forward a partition-and-group framework and clustering algorithm—TRACLUS—that divides
the whole trajectory into several segments and clusters them through the DBSCAN method [12-14].
The TRACLUS algorithm can recognize the local partial similarity of trajectories, however, in order
to obtain good clustering quality, TRACLUS requires a large amount of workload to calibrate two



Sensors 2017, 17,2013 30of 19

parameters (the scanning range eps and the density minPts of each group). At the same time, the
values of the two parameters are sensitive to the different data sets. In order to reduce the complexity
and workload of parameter calibration, some parameter adaptive clustering algorithms based on
the DBSCAN were put forward. For example, a self-adaptive density-based clustering algorithm
(SA-DBSCAN) was presented in [15]. In the SA-DBSCAN approach, the distance of every object-pair
in the data set is calculated as the input of two parameters eps and minPts. Although SA-DBSCAN
can achieve good accuracy, it results in high computational complexity O(n?). Furthermore, through
integrating the Affinity Propagation (AP) clustering method with DBSCAN, an AP-based clustering
algorithm (APSCAN) was presented to cluster the objects without parameters [16]. However, the
APSCAN algorithm still needs to compute the distance of every object-pair and thus exhibits high
complexity. To further realize adaptive parameter calibration, the GCMDDBSCAN clustering algorithm
established grid cells based on the various data, and then clustered the data based on optimal values
of parameters eps and minPts with the cell as a unit [17].

From the above analysis, all of the DBSCAN-based clustering algorithms can achieve the adaptive
parameter clustering for the simple object data. Considering the spatial and temporal characteristics of
trajectory data, which differs from that of the simple object data, the trajectory clustering algorithm
should reduce the computation complexity of clustering algorithms, especially in large-scale vehicle
trajectories from intelligent systems. Based on the analysis of the DBSCAN-based clustering algorithms
with adaptive parameter calibration, an Adaptive Trajectory Clustering approach based on Grid and
Density (ATCGD) is proposed in this paper. ATCGD firstly divides the trajectory data into discrete
trajectory segments based on the MDL-based method. All of the segments are mapped into the
corresponding cells. Then, it calculates the average distance among the different segments in each grid
cell, and the average number of the trajectory segments in each cell. Finally, adopting the idea of the
DBSCAN-based method, ATCGD carries out the adaptive parameter calibration based on the above
data to realize effective and accurate trajectory clustering.

Li et al. found that the existing trajectory algorithms focused on the static data and cannot deal
with the problem of the data dynamic growth [18], so an incremental clustering framework of the
trajectory, TCMM, was presented. In the TCMM framework, the whole trajectory was divided into
several sequences and micro-clusters were established and dynamically maintained. The K-means
method was also applied to the trajectory clustering problem [19]. However, it needed to determine
the value of K in advance and cannot deal with noisy data, which results in poor performance
in actual applications. Furthermore, the space covered by the trajectories was divided into cells.
The trajectory clustering based on cells was proposed to cluster the grids when each cell is an object [20].
The cells-based clustering algorithm can exhibit good processing performance, while it ignores the
differences among the sequences and leads to the poor clustering accuracy.

2.2. Trajectory Partition Methods

The proposed ATCGD algorithm includes three parts: partition, mapping, and clustering, as
shown in Figure 1. In the partition phase, ATCGD applies the average angular difference-based MDL
(AD-MDL) partition method to ensure the partition accuracy on the premise that it decreases the
number of the segments after the partition. During the mapping procedure, the partitioned segments
are mapped into the corresponding cells, and the mapping relationship between the segment and
the cell are stored. In the clustering phase, adopting the DBSCAN-based method, the segments
in the cells are clustered on the basis of the computed values of parameters from the mapping
procedure. The clustering results can be applied in hotspot paths analysis, mobility pattern analysis,
and urban planning.

In the field of trajectory partition, most of trajectory partition approaches rely on trajectory
compression algorithms. The classical one is the Douglas-Peucker (DP) algorithm [21]. It detects some
unnecessary points by calculating the information loss. Through introducing the concept of “window”,
that is the segment, into the information loss computation, the OPening Window algorithm (OPW)
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was proposed [22]. OPW uses iterations to compress the trajectories with one “window” as one unit,
instead of one whole trajectory as one unit. Using an iterations method, OPW can greatly reduce the
computation cost. Afterwards, taking the time dimension into consideration, the Top-Down Time
Ratio (TD-TR) algorithm was presented [12], and the optimal upper bound of errors compression
algorithm (SQUISH-E) was proposed [23].

original trajectories
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Figure 1. The illustration of the proposed ATCGD approach.

These further improved the applicability of the compression algorithms in the GPS trajectory data.
Lee et al. put forward the trajectory partition algorithm based on the Minimum Description Length
(MDL) [11], which can effectively compress data as well as ensure the accuracy of the compressed
data. From the above analysis of compression algorithms, it can be found that most of the compression
algorithms try to obtain successive sequences of trajectory, which means all segments are end-to-end.
However, continuity is unnecessary to the clustering of the trajectory segments. We can improve the
accuracy of the compressed data when dealing with the discrete segments of trajectory. As shown
in Figure 2a,b, TS, .1 and TS._ .2 marked with the red line, are the continuous representative
segments of the original trajectory data TS,;gine; and TSy yep1 and TSy yepp, marked with the green
line, are the discrete representative segments, respectively. The dash area represents the area difference
between the representative segments and the original trajectory. It is obvious that the area difference
between TSc—rep and TSyigina is greater than that between TSy, and TSyyiginal-
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Figure 2. Illustration of the continuous representative segments and the discrete representative
segments. (a) The continuous trajectory segments; and (b) The discrete trajectory segments.

In this paper, adopting the AD-MDL discrete trajectories partition method, the proposed ATCGD
trajectory clustering approach can map all of the segments into the corresponding cells. Then, based
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on the idea of the DBSCAN-based method, the segments are clustered through the calibration of
adaptive parameters with the mapping relationship. The experimental results illustrate that the
ATCGD approach can improve the effectiveness of clustering as well as ensure the accuracy.

3. Discrete Partitioning of Trajectories

3.1. Distance Measure Between the Trajectory Segments

Definition 1 (trajectory). With a given Euclidean space, a trajectory is composed of a series of trajectory points,
expressed as TR = {Py, Py, ..., Py}, where the discrete trajectory points are sorted by timestamp, P; refers to
the trajectory point i, P; = (x;,y;), and n represents the number of points in the trajectory.

Definition 2 (sub-trajectory segment). Two adjacent discrete trajectory points P; and P;_ 1 are connected to
form a trajectory segment P;P; 1, which is a sub-trajectory segment, denoted as TS;.

A trajectory sequence consists of a series of discrete points. Two adjacent discrete points are
connected to form a sub-trajectory segment. Due to the massive amount of trajectory data generated
by mobile phones and other GPS equipment, the trajectory data compression is an important task for
the sub-trajectory segments clustering. To reduce the workload of clustering all of the trajectory data,
it should first partition the trajectory TR = {Py, P>, ..., Pn} into the multiple sub-trajectory segments
TS ={TSq, TSy, ..., TSy_1} by adopting the appropriate compression algorithm.

Lee et al. proposed a method to calculate the distance between two sub-trajectory segments with
the weighted sum of the horizontal distance, vertical distance, and angular distance [10]. That distance
of trajectory segments is suitable to the trajectory clustering. The horizontal distance can effectively
avoid the noisy data problem when the distance between the two long trajectory segments is long.
However, the angular distance may cause the problem of the short trajectory segments priority, which
means that the shorter the trajectory segment is, the smaller the angular distance is. To solve the
problem of the short trajectory segments priority, a new method to calculate the distance between
the different segments is presented in this paper. As shown in Figure 3, TS; is the shorter trajectory
segments and T'S; is the longer one. /| 1 and [ , are the minimum and maximum vertical distance from
any point in TSy to the segment TS, respectively. /| and /|, are the distance from the corresponding
intersection to the endpoint, respectively. d, is the vertical distance between the two segments
calculated with /| ; and [ | 5. dH is the horizontal distance between the two segments calculated with lHl
and /|, 0 is the angle between the two segments TSy and TS,, as shown in Equations (1) and (2):

(H5h2) < (1+sin0) if 0<3

d =
+ (h5h2) x @4sin(0 - 7/2)) if 0> F

)

min 1”1,1”2 X (l—i—smG) Zf 0 < %
min lHl,lH2 X (2+Sil’19) Zf 92 %

TS:

|
|

__.z386_ N - H

lHl lnz

Figure 3. The illustration of distance measure between the two trajectory segments.
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The distance between the two segments T'S; and TS, can be computed as shown in Equation (3):
dist(TS1, TSy) = dist(TSy, TS1) =d | + dH 3)

3.2. Discrete Representative Trajectory Segments

Definition 3 (representative trajectory segments).  Given a set of the trajectory segments
TS ={TSy, TSy, ..., TSn}, TS can be represented with a trajectory segment TSyep as the representative
trajectory segment.

According to the discussion in Section 2, from Figure 2a,b, it is obvious that the area difference
between TSc_rep and TSy iging is greater than that between TSy, and TSyiginga- In order to reduce
the area difference between the set of the partitioned segments and the original whole trajectory,
ATCGD approach applies the discrete representative trajectory segments to replace the original whole
trajectory, instead of the continuous representative trajectory segments. Figure 4 illustrates the discrete

representative segments. As shown in Figure 4, P;, i = 1,...,5 denotes the trajectory point in
5

the original trajectory. P,;; is the middle point in the original trajectory, where x,,;; = Y. x;/5,
i=1

5
Ymid = ‘21 yi/5.
1=

Q
Ps\_ -~

Figure 4. The diagram of the discrete representative trajectory segment.

In Figure 4, TS,,;; is the trajectory line through the middle point P,;;. Suppose that TS;-0
represents the clockwise angle between the trajectory segment T'S; and the horizontal line, where
0 < TS;-0 < 7. TS,,i4-0 is the clockwise angle between the trajectory segment T'S,,;; and the horizontal
line. TS,,;;-6 can be calculated as follows:

4
Y. TS;6

TSpigf = =2 ——

i @

Then, it makes two vertical lines from two endpoints of original trajectory P; and P5 to the
line TS,,;;, and intersects at the points Ps and P, respectively. The trajectory segment P;P, is just
the representative trajectory segment of the original trajectory {Py, P2, P3, P4, P5}, denoted as TSy).
The coordinate values of the intersection Ps can be calculated with Equation (5):

o = tan(t/2-T5,ig6) X1 —Ymig +tan(TS mia-0) Xmia
$ tan(TS,,;;-0)+tan(w/2—T8S,,;;-0) 5)

Ys = tan(TS,,ig-0)-(Xs — Xpia) + Yia

In the same way, the coordinate values of the intersection P, can be calculated. It is obvious that
the representative trajectory segments via the above method are discrete and cannot be end-to-end.
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From Figure 2, the area difference between TSc—rep and TS,iginal is greater than that between
TSi—rep and TSypiginai- Therefore, this discreteness cannot take negative effect on the clustering results,
instead it can generate the more accurate representative segments of the original trajectory.

To evaluate the accuracy of the representative trajectory segments, the cumulative distance
difference between the discrete representative trajectory segment TS, and the set of the original
continuous segments TS = {TSy, TSy, ..., TSy} is introduced, which is represented as ¢. Because the
vertical distance is one major impact factor on the difference between the representative trajectory
segment and the original ones, the vertical distance is adopted to compute the cumulative distance
difference, as shown in Equation (6):

n

Q= ZdJ_(TSrernTSi) (6)
i=1

where 7 is the number of the original segments. The smaller ¢ is, the more accurate the representative
trajectory segment is. Meanwhile, in order to verify the accuracy of the discrete representative trajectory
segments, 1000 trajectories from the GeoLife data sets [24] are randomly selected. Assume that
Qdiscrete Tepresents the cumulative distance difference between the discrete representative segment and
the original trajectory segment. @coutinuons represent the cumulative distance difference between
the continuous representative segment and the original one. The experimental results are that
there are Qgiscrete < @continuous N the 982 trajectories from the 1000 trajectories, while there is

only @giscrete > Pcontinuous N the 18 trajectories. The experimental results indicate that the discrete
representative trajectory segment can substitute the original one more accurately.

3.3. Discrete Trajectory Partition Algorithm

From daily life experience, we know that the trajectory variations of people’s or vehicle’s
movements are always relatively smooth. That is to say, there are very small changes in the angle
between the two adjacent trajectory segments. To further quantify the variations of trajectories, the
average angular difference Avg,yg10—gifs 18 introduced. Given a trajectory data TR = {Py, Py, ..., Pm},
the average angular difference Avg,;gj.—4iff can be calculated as shown in Equation (7):

0 — TS;-0|

" |TS
AV angle—aiff (L) =) | 1n ——— where n >2 @)
i—2

Lee et al. put forward the trajectory partition algorithm based on the Minimum Description
Length (MDL) to compress data [8]. MDL is derived from Information Theory, which can be used to
describe a given data set using fewer symbols than needed to describe the data literally. In essence,
MDL can be applied to data compression. In the trajectory data compression, MDL can obtain a
tradeoff between the number of sub-trajectory segments and the accuracy of the trajectories partition
results, but MDL has high computational complexity to obtain the partitioned segments. In order
to reduce the complexity of the trajectories partition, the average Angular Difference-based MDL
(AD-MDL) is proposed to compress the trajectory data and partition the trajectories. AD-MDL consists
of two phases: data filtering and trajectory partition.

In the data filtering phase, it eliminates the obvious outliers with the minimum cost based on
the average angular difference Avg;gje—4iff, which can reduce the computation workload during the
trajectory partitioning. At first, the original trajectory data can be partitioned into multiple continuous
segments. During the procedure of data filtering, the average angular difference Avgug1e—difs iS
considered as the filtering factor. The filter threshold is 0es1014. For each continuous sub-trajectory
segment, if its average angular difference is greater than the threshold 6;j,s1014, the starting point
of that sub-trajectory segment should be added into the set of the candidate trajectory points TR,.
Otherwise, the starting point of the segment is considered as an outlier and cannot be processed in the
trajectory partition phase. After the data filtering, it can get the set of the candidate trajectory points
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TR; = {Pcy, Pcy, ..., Pcy). A Geolife data set is introduced as an example to evaluate the performance
on data compression. Based on the experimental results, it can be found that the AD-MDL can realize
the 39% compression rate when the threshold value is 04,051,014 = 71/ 64. Thus, it can greatly reduce the
computation overhead in the trajectory partition phase.

In the trajectory partition phase, MDL method is still adopted to partition the compressed
trajectories into discrete representative trajectories. During the data compression procedure, the
overhead of MDL usually includes two parts: L(H) and L(D|H). H is the hypothesis, and D is the
described data. L(H) is the overhead of describing the hypothesis and L(D|H) is the overhead to
describe the D under the hypothesis H. MDL aims to find the optimal H to describe D to minimize
the sum of L(H) and L(D|H). As to the trajectory partition, H is the set of discrete representative
trajectory segments, and D is the original trajectory data. L(H) represents the total length of the all
discrete representative segments. L(D|H) represents the difference between the discrete representative
segments and the original trajectory. It is obvious that the greater number of the selected candidate
points is, the more accuracy of the partition is. The greater L(H) is and the smaller L(D|H) is, which
results in the high accuracy and high computation cost. Otherwise, it results in the low overhead and
poor accuracy. When the sum of L(H) and L(D|H) is minimum, the trajectory partition can reach the
tradeoff between the accuracy and computation cost. L(H) and L(D|H) can be computed as follows
Equation (8):

m—1
L(H) = Y log(len(TS¢;,—c,,,))
i=1
m—1¢i+1—1 ®)
L(D|H) = izl jZC log(d 1 (TS¢;—c;,1, PiPiy1))
where TS, _,,, represents the discrete trajectory segment from the candidate point Pc; to Pc; 11, PiPj11
is the original trajectory segment in the TS, ,, and len(TS,,, ) means the length of the discrete
trajectory segment from the point Pc; to Pc; 1.

To obtain the optimal trajectory partition, it should compute the global optimal solution to the
minimum sum of L(H) and L(D|H), which results in the high computation overhead. To reduce the
computation cost, we adopt a greedy solution to find the local optimal results to replace the global
optimal results.

Suppose Pc; and Pc; are two candidate points from TR, = ({Pcy,Pcy,...,Pcy).
MDL(cj,¢j) = L(H) + L(D|H) represents the minimum description length of part of trajectory
segment {Pc;, Pci1q,...,Pcjt and ¢; < ¢j. Lp(cj,cj) represents the original trajectory length of

j—1
the segment {Pc;, Pc;,1,..., Pcj}, thatis, Lp(ci,¢;) = ) len(PcxPcyy1). From the point Pc; as the
x=i

starting point, if MDL(c;, ¢j) < Lp(cj,cj), it reveals that all of the trajectory points in the segment
{Pc;, Pciyq, ..., Pcj} are not trajectory characteristic points and the corresponding trajectory segment
{Pc;, Pcj1q,..., ch} cannot be added into the set of the discrete representative segment, denoted as
Drs. Otherwise, the points in the segment {Pc;, Pc; 41, ..., Pc;} are trajectory characteristic points and
the corresponding segment can be transformed into the discrete representative segment with the
Equations (4) and (5) discussed in Section 3.2.

According to the above discussion, the average Angular Difference-based MDL (AD-MDL)
algorithm can be used to compress the trajectory data and create the discrete representative segments.
The pseudo-code of the AD-MDL algorithm (Algorithm 1) is as given below. The AD-MDL trajectory
partition algorithm contains two phases, the first one is the data filtering and the second one is to
create the discrete representative trajectory segments. In the data filtering phase, part of the trajectory
points is selected as the candidate point for the trajectory partition phase, based on the average angular
difference. Thus, it can reduce the number of trajectory points to create the discrete representative
segments and reduce the computation time in the second phase.
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Algorithm 1. AD-MDL: The Average Angular Difference-Based MDL Trajectories Partition Algorithm.

Input: Trajectory sequences TR = {P;, P, ..., Py}, and the threshold of the average Angular Difference 0y,;,s1014
Output: the set of discrete representative trajectory segments Drg

/] data filter phase

1: index = 1; pstart = p1; Pstart is added into the set of candidate trajectory points TR,
2: for j = 2tonin the TR

3: if AVGungle—diff(index,j) > Opresnora then

4: pjis added into the set TR,

5 index =j;,j=j+1,

6: Pend = Pns

7: Pena is added into the set TR,

/I trajectory partition phase

8: index =1;

9: for j = 2 to m in the TR,

10:  if MDL(Cindex, ¢j) > LD (Cindex ¢;)

11: TSc;pqex—c; 18 @ discrete representative trajectory segment, and added into the set Drg
12: index=j;j=j+1;
13: end for

14: return the set Dg.

As shown in lines 1 to 7 of the AD-MDL algorithm, if the average angular difference is not
greater than the threshold 6y,,051014, @ Nnew trajectory point is added. Otherwise, the new added
trajectory point is the characteristic point and is added into the set of candidate points TR.. In the
trajectory partition phase, in order to obtain the clustering accuracy as well as the low complexity,
the MDL-based method is adopted to create the discrete representative segments. As shown in the
line 8 to line 14 of the AD-MDL algorithm, if there is MDL(Ciygex, €j) < LD (Cingex, Cj), the trajectory
points between the pc,,,, and p; are non-characteristic points, and the successive point is included.
If MDL(Cingex,¢j) > LD(Cindex, ), the trajectory points between the p., .. and pc; are characteristic
points and the corresponding segment TS, ,, —c; is added into the set of discrete representative
segments Drg. The AD-MDL algorithm traverses all of the trajectory points twice, so the computation
complexity is O(n), where # is the total number of trajectory points.

4. Trajectory Clustering Based on Grid and Density

4.1. Grid Partition

We can get the discrete representative trajectory segments with the AD-MDL algorithm. After the
trajectory partitioning, the partitioned segments should be mapped into the appropriate cells with
the clustering method based on the grid and density, which is the task of the grid partition phase.
The trajectory clustering based on the density should follow the principle of the cluster size from
small to big. Suppose that the average number of the trajectory segments in each cell is represented as
Numgyg. The value of N umgyg should be as small as possible, which means that the average number of
the trajectory segments should be minimum in each cell. However, in order to conduct the trajectories
clustering based on the density, it needs to compute the distances among the different trajectory
segments for each cell, which results in the heavy overhead of computation. In the experiments of
Section 5.3, it can be found that the minimum value of N UmMgyg cannot obtain the optimum of clustering.
Through a lot of experiments, when Numi,,e = 2, it can obtain the best clustering quality.

Definition 4 (belonging cell). The cells are passed by the trajectory segment TS; are defined as the belonging
cells of TS;, represented as Belong_Cell.TS;. The number of belonging cells of TS; is |Belong_Cell.TS;|.
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As shown in the Figure 5, the cells with point shaded are the belonging cells of the trajectory segment TSq, and
|Belong_Cell. TS |= 4.

i

:r// -I7 _IZL:A_/_I “““ !
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Figure 5. Schematic diagram of the belonged Cell and adjacent Cell.

Definition 5 (adjacent cell). The cells are adjacent to one of the belonging cells of the trajectory segment TS;
are defined as the adjacent cells of TS;, represented as Adjacent_Cell. TS;. The number of adjacent cells of TS;
is |Adjacent_Cell.TS;|. As shown in the Figure 5, the cells with oblique lines shadow are the adjacent cells of
the trajectory segment TSy, and |Adjacent_Cell. TS, |= 14.

Definition 6 (cell density). Suppose a certain cell cell;, the number of the trajectory segments passing through
the cell; is defined as the cell density of cell;, denoted as cell;.seg.

During the procedure of the grid partition and mapping the trajectory segments into the
corresponding cells, it needs to traverse every trajectory segment and recognize all of the belonging
cells and adjacent cells of every segment, as well as every cell’s density. Those computation results are
the inputs for the trajectory clustering.

4.2. Trajectory Clustering Algorithm

The DBSCAN-based clustering approaches should calibrate the values of two parameters eps
and minPts. eps and minPts denote the radius of neighbor cells and the threshold of density of
the trajectory segments, respectively. In Section 4.1, we could obtain the average distance among
the different segments in each cell, and the average number of the trajectory segments in each cell.
With the DBSCAN-based clustering approach, the ATCGD trajectory clustering approach carries out
the adaptive parameters calibration eps and minPts, based on the above data to realize the effective
and accurate trajectory clustering.

Definition 7 (neighborhood of trajectory segment): Suppose there are two trajectory segments TSy and
TSy in Drs, that is TSy € Drg and TS, € Drgs, where Drs is the set of the discrete partitioned trajectory
segments. If there has Neps(TSy) = {TSy € Drs : dist(TSy, TSy) < eps}, where eps is the radius of the
neighbor cells, Neps(TSx) is the neighborhood of trajectory segment TSy with eps, denoted as Neps(TSx ).

From Definition 7, all of the trajectory segments, whose distance from the segment TS, is less
than eps in the set Drg, are the neighborhood of trajectory segment TSy with eps. The size of radius of
the neighbor cells eps can determine the size of Neps(TSy) for the trajectory segment TS,. Next, we
will discuss the procedure of adaptive parameter calibration for eps.

It selects the cells with density greater than 1, that is cell;.seg > 1, wherei = 1,...,n, n is the
number of cells. Suppose the number of the selected cells with cell;.seg > 1is M, cell;.seg is the
cell density of cell;, cell;. TSy is the trajectory segments TS, passing through cell;. The radius of the
neighbor cells eps can be computed as follows:
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cellj.seg cell;.seg
EXPeps(i) =max( Y, ¥ dist(cell;. TSy, cell;. TS;))
p=1 g=p+1

M .
EXPavg = ‘21 EX];\E/IESO) (9)
1=

M —
eps = EXPuyg + Y. \/w
i=1

where EXPes(i) is the expected value of eps for the cell;, and EXP,y represents the average expected
value of eps for all of the cells. From the discussion in Section 4.1, we set Num,,g = 2 to obtain good
clustering quality. Due to the value of Numi e is enough small, the distances among the different
trajectory segments in each cell are very short. The maximum distance among the trajectory segments
in the cell; is selected as the expected value of eps of the cell;. The radius of the neighbor cells is the sum
of the average expected value EX Py and the standard deviation of all cells” expected values. For any
one cell cell;, its cell density cell;.seg is constant. The computation complexity of eps is O(log n), where
n is the number of the cells.

Definition 8 (segment density). Suppose there is one trajectory segment TSy in Drg, the density of
TSy is defined as the number of trajectory segments in its neighborhood, denoted as p(TSy). That is

0(TSx) =|Neps(TSx)|.

Definition 9 (core segment). Suppose there is one trajectory segment TSy in Dtg, and minPts is the threshold
of density of the trajectory segments. If p(TSy) > minPts, the trajectory segment TSy is defined as the core
segment of Drg. Otherwise, TSy is non-core segment of Drg. The set of core segments is denoted as Dore and
the set of non-core segments is denoted as Dyon—core-

In the ATCGD trajectory clustering approach, the threshold value of minPts is not fixed and may
vary with the different number of the belonging cells of the trajectory segments. In the applications,
if the density of the trajectory segment TS, is not less than the mean value through the statistical
results, it can be considered that the density of the segment TSy, p(TSy), can meet the requirements
of trajectory clustering. For the trajectory segment TSy, the corresponding threshold minPts is set to
minPts = Numizog x |Belong_Cell.TS;|. On the other hand, one trajectory segment may pass through
one or more cells, and one cell can be covered by one or more trajectory segments. Numigyg is the
average number of the trajectory segments in each cell. Numi gy can be further improved considering
the many-to-many relationship between the |Belong_Cell.TS;| and the cell;.seg for each segment and
grid cell. The modified N UMgyg is denoted as Nypg and can be computed as Equation (10):

" |Belong_Cell.TS;
3 Iuims s
]:

Navg == (10)

Crum

Y. cell;seg
i=1

CPlul’H

where Cy; is the number of the cells, and 7 is the total number of the trajectory segments.

Definition 10 (directly density-reachable). Suppose there are two trajectory segments TSy and TS, in
Drs, that is TSy € Drs and TS, € Drs. If TSy € Deore and TSy € Neps(TSx), TSy are said to be directly
density-reachable from TSy. By Definition 10, no trajectory segments are directly density-reachable from a
non-core segment.

Definition 11 (density-reachable).  Suppose there are m trajectory segments in Drg, that is
T51,TSy,..., TSy € Drts, where m > 2 and TS1,TSy,...,TSy—1 € Deore. If TS; is the directly
density-reachable from TS;_1, then TS,, is the density-reachable from TS;.
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The density-based trajectory clustering procedure includes three phases. The first phase is to map
the discrete trajectory segments into the cell. Suppose there are n discrete representative trajectory
segments obtained with the discrete trajectory partition algorithm (AD-MDL). Num,,g is set to 2, and
the area can be divided into n/N Umgyg cells. Then, it can calibrate two parameters eps and minPts
to set the scanning radius of cells and the threshold of density of the trajectory segments and form a
cluster, respectively, based on the Equations (9) and (10). The second phase is to execute the grid and
density-based clustering with DBSCAN-based method. It starts with an arbitrary trajectory segment
TS; that has not been visited. The TS;’s neighborhood is retrieved, and if its density p(TS;) is greater
than minPts, a cluster is started. Otherwise, the trajectory segment is labeled as noise. If the trajectory
segment T'S; is found to be a dense part of a cluster, its neighborhood N,ps(TS;) is also part of that
cluster. All of the trajectory segments that are found within the neighborhood N,ps(TS;) are added, as
is their own neighborhood when they are also dense. This process continues until the density-reachable
cluster is completely found. Then, a new unvisited trajectory segment TS; is retrieved and processed,
leading to the discovery of a further cluster or noise. After the trajectory clustering, the set of the
candidate clusters, S5, are created. However, if one candidate cluster C; is not dense, which cannot
meet the application’s requirement for the clustering quality. The last phase is to check the cardinality
for each cluster. For one candidate cluster C;, if the number of trajectory segments in the cluster C; is
not greater than Cnfj;n cell j.seg / Cuum, where Cy,p, is the number of the cells, the cluster C; should be the
final cluster and ‘Le removed from the set of the candidate clusters.

Based on the procedure of the density-based trajectory clustering, it can be found that a trajectory
that is neither a core segment nor directly-reachable is called as a noise segment. A cluster should
satisfy two properties: all trajectory segments within the cluster are mutually density-reachable; and
if a trajectory segment is density-reachable from any segment of the cluster, it is part of the cluster
as well.

The density-based trajectory clustering algorithm can be expressed in pseudo-code as follows.

Algorithm 2. The Density-Based Trajectory Clustering Algorithm.

Input: The set of the discrete trajectory segments Dyg = {TS1,TSy,..., TS}

Output: the clustering results

/I map the trajectory segments into the cells

1:  the area is divided into 1/ Numaye cells and the cells are covered by one or more than trajectory segments
2: calibrate two parameters eps and Njyg to set the radius and the threshold of segments density based on
Equations (9) and (10)

/I trajectory clustering based on the density

3: all of the trajectory segments in the Dtg as unclassified and k = 0

4: while (Dg # ©)

5: select any one trajectory segment TS; in the Drg, and delete it
6 if (TS; is unclassified) then

7: Dimp = Neps(TS;)

8: if (}Neps(TSi)|2 Napg < ’Belong_Cell.TSi‘) then

9: TS;.cid =k

10: while (Diyp # @) // expand the current cluster
11: select any one trajectory segment TS i in the Dy and delete it
12: if (| Neps (TS))| > Naug x | Belong_CelL.TS;|) then
13: Dtmp = Dtmp U NepS(TSj)

14: if (TS; is unclassified or noise) then

15: TSj.cid =k

16: else
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17 Mark TS; is noise

18: k=k+1

Il check the trajectory cardinality

19: for each cluster C; in the set of clusters S_;stor

C"llﬂl
20: if(G] < ¥ cell;.seg/ Crum)
j=1

21: remove C; from the set S, qt0r
22: Return the final set of clusters.

From Algorithm 2, the density-based trajectory cluster algorithm includes three phases.
From line 1 to line 2, the area is divided into the appropriate number of cells and the segments
are mapped into the corresponding cells. Meanwhile, it executes the adaptive parameter calibration
for eps and minPts. The complexity of the first phase is O(n). The clustering phase is from the line 3 to
line 18, which adopts the DBSCAN-based method to cluster the discrete segments with the values of
adaptive calibrated parameters, and get the candidate clusters. The complexity of clustering procedure
is O(nlogn). To further check the results of clustering, it checks the density of each cluster. If the
density of cluster is not greater than the average density, the candidate cluster should be removed,
as shown from line 19 to line 22. As a whole, the complexity of the trajectory clustering based on the
density is O(nlogn).

5. Performance Evaluation

5.1. Experimental Setup

To evaluate the clustering performance of proposed trajectory cluster approach-ATCGD, two data
sets are introduced. One is a series of randomly generated trajectories (hereafter referred to as Random
Trajectory, RT), as shown in Figure 6a,b. The other is hurricane trajectory data in the Atlantic Ocean
provided by American Weather Information System Company, referred to as Hurricane Track (HT)
as shown in Figure 6¢. RT data includes two patterns: RT1 and RT2. RT1 has about 100 trajectories
and 2000 trajectory segments. Those trajectories can be clearly divided into four groups from top to
bottom. RT2 has about 100 trajectories and 7000 trajectory segments, and is more complicated than
RT1. The trajectories in RT2 are also divided into four groups. The trajectories in the RT1 and RT2
sets are similar to the trajectory data from vehicle movement, thus, RT1 and RT2 can represent a data
set from a real application. The HT data set includes the hurricane track information about latitude,
longitude, and the highest wind speed from 1851. The frequency of sampling is once for every 6 h.
The experiments extract 100 hurricane trajectories with 2465 trajectory segments from 1940, which
includes the latitude and longitude of the hurricane track.

Figure 6. The trajectory in the RT and HT datasets. (a) RT1; (b) RT2; and (c) HT.
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To further evaluate the clustering quality of the proposed ATCGD approach, one metric QMeasure
is introduced as the standard to evaluate the clustering effect [10]. QMeasure includes two parts: one
is the sum of squared error (SSE) and the other is the penalty value of noise. The QMeasure can be
calculated as follows:

Ncluster 1

Measure =
Q ,; (2|Ci|

Y, L dist(e )+ g L dist(p,0)” (11)

x€C;yeC; peDy, geDy

where D, is the noise set, Nj,ser is the number of the cluster of the trajectory segments, and C;
represents the i cluster of trajectory segments. |C;| is the number of the trajectory segments in

the i cluster. |D,| is the number of the noise trajectories. The sum of squared error (SSE) can be
Ncluster
calculated with Y (ﬁ ) dist(x,y)z), which reflects the distances between the different
i=1 Ny eC; yGCi
trajectory segments in each cluster. The smaller value of eps is and the greater value of minPts is, it
can obtain smaller SSE. In the applications, if it can calibrate appropriate values of two parameters
eps and minPts, it can exhibit good cluster quality. At the same time, the noise trajectory data are

considered when calculating the value of QMeasure. ﬁ Y. Y dist(p, q)z is used to calculate the
"' peDy qeDy,

sum of squared distances between the any noise trajectory segments, which is as the penalty. Therefore,
the value of QMeasure and the quality of the clustering exhibits the negative correlation. The smaller
the metric value of QMeasure is, the higher quality of the clustering is.

5.2. Clustering Performance

Figure 7 shows the clustering results with the RT1, RT2 and HT data sets, respectively. As shown
in Figure 7, the different clusters are represented with different colors. From Figure 7a, the proposed
ATCGD approach can cluster those trajectory data into four groups with high accuracy, which is in
accordance with the expectation. Compared to the original trajectory data, it can be found that some
trajectory segments are recognized as the noise. Figure 7b illustrates the clustering results with RT2.
In contrast with RT1, the trajectories of RT2 exhibit apparent non-smoothness. This reveals that RT2
has greater difficulty than RT1 in clustering, but the ATCGD approach can still cluster those trajectories
into four different groups. Therefore, the ATCGD can effectively be applied to the vehicle trajectory
data, which has high similarity to the RT data set. Figure 7c shows the HT clustering results. From
Figure 6¢, the trajectories in the HT data set are much more complicated than those in the RT data
set. The ATCGD approach can classify those hurricane data into two clusters, which conforms to the
expectation. It implies that the ATCGD approach can also provide effective clustering for complex
trajectory data.

(a) (b) (c)

Figure 7. The clustering results on the RT and HT dataset, (a) RT1; (b) RT2; and (c) HT.
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5.3. Comparison Analysis

To further quantify the accuracy of the ATCGD clustering approach, we compare the ATCGD
approach with TRACLUS in terms of QMeasure. Due to the slight differences about the distance
calculation of the trajectory segments between the ATCGD and TRACLUS, it adopts the proposed
distance computation equation between the trajectory segments in this paper, shown in Equation (3),
to calculate QMeasure.

In the experiments, the different number of trajectories from RT and HT data sets are selected to
evaluate the clustering quality. Thus 100, 200, 300, 400 hurricane track trajectories since 1940 from the
HT data set are randomly selected and denoted as HT-100, HT-200, HT-300, and HT-400, respectively.
Meanwhile, we apply the parameter calibration method proposed in the TRACLUS algorithm to
conduct the experiments for twenty times and get the 20 different combination results of the two
parameters eps and minPts. The minimum of combination results, that is the minimum QMeasure, is
taken as the results of the TRACLUS algorithm. The experimental results of the ATCGD and TRACLUS
algorithm are listed in Table 1.

Table 1. Comparison of clustering quality between ATCGD and TRACLUS.

TRACLUS ATCGD
QMeasure Run Time (s) QMeasure Run Time (s)
HT-100 1,486,875 1.25 1,140,856 0.14
HT-200 5,416,222 5.84 4,327,626 0.23
HT-300 8,164,510 15.75 7,602,455 0.44
HT-400 9,741,195 26.34 10,682,513 0.61
RT1 461,437 1.07 39,426 0.09
RT2 164,351 21.75 176,269 0.57

From Table 1, it can be seen that the run time of TRACLUS algorithm is much higher than that of
the ATCGD method. Meanwhile, the difference in the run times becomes greater between the two
algorithms as the data size increases. The reason is that the ATCGD approach adopts the belonging
cells and adjacent cells to determine the candidate set, which can be used to compute the neighborhood
of eps. That method can greatly improve the efficiency and reduce the execution time of the trajectory
clustering. The computation complexity of the ATCGD approach is O(n log 1) based on the analysis
in the Section 4.2. On the contrary, without the index scheme, the computation complexity of the
TRACLUS algorithm is up to O(1n?), where 7 is the number of trajectory points. On the other hand,
as to the metric of the clustering quality QMeasure, the ATCGD approach does not appear to be
much different from the TRACLUS algorithm. The ATCGD can obtain slightly better QMeasure than
the TRACLUS algorithm. In most cases, the value of QMeasure in the ATCGD is smaller than that
in the TRACLUS, except the HT-400 and RT2 data sets. The reason is that the ATCGD approach
adopts the adaptive parameters calibration method to obtain the values close to the optimum, thus
it can exhibit the good quality of clustering with the lower computation cost. While the TRACLUS
algorithm can obtain the near-optimal combination results of two parameters eps and minPts through
the large number of parameters calibrations, which results in the high accuracy and high computation
complexity. If the combination results of two parameters are inappropriate, the TRACLUS algorithm
will obtain the poor quality of trajectory clustering.

5.4. Parameter Sensitive Analysis

In order to further provide the quantitative analysis of the parameter values of Numigyg,
the HT-100, HT-200, HT-300, and HT-400 data sets are used to compute the quality of clustering metric
QMeasure with the different values of Numigye. The experimental results are shown in the Figure 8.
When Numgye = 2, the value of QMeasure is minimum for all of the data sets. When Num,g < 2,
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the value of QMeasure decreases with the increase of N UM gpg. On the contrary, when N UMgyg > 2, the
value of QMeasure increases with the increase of Nume. Based on the experimental results, when
the ATCGD approach sets Numi,y¢ to 2, it can get better quality of the trajectory clustering.

QMeasure *10°

20 25 an 35

Figure 8. QMeasure values under different Numiayg.

To verify the correctness of the parameters calibration, two parameters eps and Ny (minPts
can be computed based on Njy) are selected for the sensitivity analysis. The data sets are still
HT-100, HT-200, HT-300, and HT-400. We compare the different values of QMeasure with different
combination of eps and Ny as well as the adaptive calibration values of those two parameters eps,
and Nyyg 4. The value range of is [|eps, — 3], |eps, + 3]] and the step is 1. The value range of Njyg is
[Nm;g_a — 0.6, Navg o + 0.6] and the step is 0.2. Figure 9 illustrates the distributions of QMeasure with
different values of eps and Ny in the data sets of HT-100, HT-200, HT-300, and HT-400. As shown in
Figure 9, the red points are the results of adaptive parameter calibration for eps, and Nyyg 4; the green
points are the results of different combinations with different values of eps and Npyg
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Figure 9. Experimental results of parameter adaptive analysis, (a) HT-100; (b) HT-200; (c) HT-300;
and (d) HT-400.
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From Figure 9, it can be found that there is a large variation range of QMeasure with the different
combinations of two parameters’ values, when adopting the TRACLUS algorithm. While the ATCGD
approach can get the small value of QMeasure. The reason is that it adopts the adaptive parameters
calibration method to compute the value of QMeasure. On the other hand, if the difference between the
values of QMeasure by adopting the adaptive parameters calibration and the optimal combination is
smaller, the ATCGD approach can obtain higher quality of trajectories clustering. Moreover, although
the results of the adaptive parameter calibration are not optimal, in most cases, the difference between
the values of QMeasure with the adaptive calibration and the optimal combination is less than 5%.
It indicates that the adaptive calibrated parameters eps and N, can gain good clustering effects.

6. Conclusions

Clustering analysis is one of the most important issues in trajectory data mining. Trajectory
clustering can be widely applied in hotspots detection, mobile pattern analysis, urban transportation
control, hurricane prediction, etc. Many trajectory clustering algorithms have been proposed to obtain
good clustering performance. Nonetheless, most available trajectory clustering algorithms depend on
calibration of one or multiple parameters. Meanwhile, the values of these parameters have a great
influence on the effect of clustering. To reduce the complexity and overhead of parameter calibration in
trajectory clustering, an Adaptive Trajectory Clustering approach based on Grid and Density, ATCGD,
was proposed in this paper. ATCGD firstly divides the trajectory data into multiple discrete segments
through the proposed the average angular difference-based MDL (AD-MDL) algorithm. All of the
discrete segments are mapped into the corresponding cells. Then, it calculates the average distance
among the different segments in each cell, and the average number of the trajectory segments in
each cell. Finally, adopting a DBSCAN-based approach, ATCGD carries out an adaptive parameter
calibration based on the above data to realize effective and accurate trajectory clustering. With two
data sets from random trajectories and hurricane trajectories on the Atlantic Ocean, we evaluate the
performance of the ATCGD approach on clustering quality and cost. The experimental results indicate
that although the results of the adaptive parameter calibration are not optimal, in most cases, the
difference between the adaptive calibration and the optimal is less than 5%, while the run time of
clustering can be reduced by about 95%.
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