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Abstract: Fog computing extends cloud computing to the edge of a network enabling new Internet
of Things (IoT) applications and services, which may involve critical data that require privacy
and security. In an IoT fog computing system, three elements can be distinguished: IoT nodes
that collect data, the cloud, and interconnected IoT gateways that exchange messages with the IoT
nodes and with the cloud. This article focuses on securing IoT gateways, which are assumed to
be constrained in terms of computational resources, but that are able to offload some processing
from the cloud and to reduce the latency in the responses to the IoT nodes. However, it is usually
taken for granted that IoT gateways have direct access to the electrical grid, which is not always
the case: in mission-critical applications like natural disaster relief or environmental monitoring,
it is common to deploy IoT nodes and gateways in large areas where electricity comes from solar
or wind energy that charge the batteries that power every device. In this article, how to secure IoT
gateway communications while minimizing power consumption is analyzed. The throughput and
power consumption of Rivest–Shamir–Adleman (RSA) and Elliptic Curve Cryptography (ECC) are
considered, since they are really popular, but have not been thoroughly analyzed when applied to IoT
scenarios. Moreover, the most widespread Transport Layer Security (TLS) cipher suites use RSA as the
main public key-exchange algorithm, but the key sizes needed are not practical for most IoT devices
and cannot be scaled to high security levels. In contrast, ECC represents a much lighter and scalable
alternative. Thus, RSA and ECC are compared for equivalent security levels, and power consumption
and data throughput are measured using a testbed of IoT gateways. The measurements obtained
indicate that, in the specific fog computing scenario proposed, ECC is clearly a much better alternative
than RSA, obtaining energy consumption reductions of up to 50% and a data throughput that doubles
RSA in most scenarios. These conclusions are then corroborated by a frame temporal analysis of
Ethernet packets. In addition, current data compression algorithms are evaluated, concluding that,
when dealing with the small payloads related to IoT applications, they do not pay off in terms of real
data throughput and power consumption.

Keywords: ECC; ECDSA; RSA; ECDHE; IoT; IoT gateway; TLS; power consumption; performance;
IoT security; cryptographic security; energy efficiency; fog computing

1. Introduction

The Internet of Things (IoT) refers to a paradigm where physical devices (e.g., home appliances,
environmental sensors and actuators, vehicles) are interconnected using a communication network that
allows for real-time data exchange and control. Smart environments rely on the constant availability
of sensor and actuator devices, whose power consumption is a concern due to the large number of

Sensors 2017, 17, 1978; doi:10.3390/s17091978 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-9891-4553
https://orcid.org/0000-0003-2179-5917
https://orcid.org/0000-0002-4991-6808
http://dx.doi.org/10.3390/s17091978
http://www.mdpi.com/journal/sensors


Sensors 2017, 17, 1978 2 of 39

sensor nodes to be deployed. IoT networks make possible the required integration and connectivity
with already available networks, thus enabling sensor networks to reach integration levels impossible
to achieve with traditional approaches.

Cloud computing has been a success thanks to offloading clients from computational-intensive tasks.
However, in scenarios where latency and communications have to be minimized, other paradigms have
arisen by moving the capabilities of the cloud towards the edge of the network [1]. Fog computing
is one of such paradigms, being regarded as an extension of cloud computing where part of the
computational and communication capabilities of the cloud are moved close to the sensor nodes [2].
Such a movement derives on the following remarkable benefits [3]:

• Latency minimization allows for providing new IoT real-time applications.
• The fog distributes computational and storing resources, which is ideal for large and widely

distributed sensor networks.
• The resource distribution also improves mobility and location awareness, providing services to

mobile and location constrained users.
• The fog connects devices in different physical environments, enabling their interaction, which may

lead to provide new services and functionality.
• The fog is highly flexible, being really easy to scale the network.

To provide such benefits, an IoT fog computing system requires three elements: IoT nodes,
IoT gateways and a cloud. IoT nodes are usually composed of one or more sensors (e.g., temperature,
relative humidity, human presence, CO2 level), a wired or wireless transceiver, a computing device
(e.g., a microcontroller, an ASIC (Application-Specific Integrated Circuit), a SoC (System-on-Chip))
and a power source. The cloud is basically a server or a set of servers with large computational power
and storing capabilities that receives, processes and analyzes all the data collected from the IoT nodes.
IoT gateways connect the IoT nodes with the cloud and among them.

In terms of energy efficiency, researchers have traditionally focused on the nodes, since they
are usually battery operated [4], but, in the last few years, the energy consumption on the cloud has
been also thoroughly studied [5,6]. There is also some research on the energy efficiency of the IoT
gateways [7], but it is usually assumed that they have direct access to the grid, which is not always the
case: in applications for precision agriculture [8], smart cities [9], and Industry 4.0 [10,11], it is common
to deploy IoT nodes and gateways in large areas where a power outlet is not available and electricity
has to be harvested to charge the batteries that power every device. In addition, note that the main
target of fog computing is the reduction of both the computing and networking energy consumptions
through adaptive horizontal (e.g., intra-fog nodes) and vertical (e.g., inter-fog nodes) scaling of the
overall available resource pool [12].

IoT gateways can be improved in different ways to reduce power consumption, but, in this paper,
how to increase energy efficiency and maximize data throughput while guaranteeing high security in
the communications between IoT gateways and with the cloud is analyzed. Note that, although this
improvement in the energy efficiency is especially useful for battery-operated gateways, the increase
on the level of security may also benefit other IoT applications like home automation [13–15], defense
and public safety [16], transportation and connected vehicles [17], or healthcare, where security issues
can pose risks for human safety and privacy [18,19] and which can be the target of cyberwarfare
attacks [20].

It is also important to emphasize that security in IoT and fog computing systems is often
overlooked or not completely addressed [18,21,22], slowing down the broad adoption of IoT.
Furthermore, one of the main barriers for not implementing security mechanisms to protect the
communications is the low computing capabilities of most IoT nodes, which is a topic to be researched
in the next years.

In comparison to the cloud or to regular computers, IoT gateways and nodes are
resource-constrained and usually embed low-cost computing devices that consume little power [23].
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Resource-constrained devices are designed limiting their memory, storing capacity and processing
power, as well as their network communication capabilities, including their data rate, in order
to reduce power consumption. In the case of a Wireless Sensor Networks (WSN), low-power
consumption requirements make difficult the implementation of the complex and heavy operations
required by ciphering algorithms to encrypt and secure communications [24–27]. Thus, securing IoT
communications at IoT gateways must be addressed carefully to achieve a good trade-off between
security, energy efficiency and performance.

Since IoT fog computing networks usually rely on Internet protocols, the use of already existing
and proven security protocols seems to be the best approach in terms of reliability and implementation
efficiency. As explained in [16], the fog layer must provide horizontal integration between different
layer protocols. IoT nodes and intermediate devices implement heterogeneous protocols; thus, the IoT
fog paradigm relies on the gateways to translate between them and allow for the data aggregation
needed to provide the required services. For this reason, IoT fog gateways are assumed to support
Transmission Control Protocol/Internet Protocol (TCP/IP).

A generic IoT fog computing architecture considering all of these aspects is described in Figure 1.
The scenario presented considers three different IoT networks and a fog layer that allows for the
communications among the nodes between the networks and to the cloud. The bidirectional arrows
between the different elements represent data transmissions. Three layers of gateways were considered,
the one placed at the top being responsible for providing a single access point to the fog. This layered
approximation works similarly to the different cache memory levels in a computer, which are designed
to reduce the latency for accessing the processor memory. In this case, the layer closest to the IoT
nodes is the one that responds faster, but it has less computational and memory resources. Services are
then distributed among the gateways in the fog layer. Depending on each service need (e.g., latency,
computational capacity, data aggregation), they will be deployed closer to the nodes or to the cloud.

It is important to note that, since IoT networks adopt heterogeneous topologies, the architecture
presented in Figure 1 does not fit in every possible IoT deployment. Nevertheless, the vast majority of
IoT fog computing systems will follow this architecture to some extent. From bottom-up, the amount
of data transmitted with each transaction grows, as well as the computational capabilities of the
gateways. This increase in data throughput and computational capabilities as we get closer to the top
layers is represented by the big arrow on the left. The requests exchanged between IoT nodes from
the same network consist of small payloads, whereas transactions between different IoT networks are
usually larger, since protocol translations may be needed. Furthermore, IoT gateways can aggregate
information collected from several IoT nodes, allowing the top layers to provide more complex services.
Therefore, the first layer of the fog transmits more data than the IoT nodes, but less than the second
upper layer of gateways. This leads the IoT fog layer to exchange payloads with a wide range of sizes.

When securing IoT devices and its communications, several new challenges have to be addressed
since the topology and size of the networks, as well as the communication schemes, are new and not
completely explored. IoT deployments have some unique characteristics that have a direct impact on
the security of the data and the communications involved:

• Resource-constrained end- and intermediate-devices: the devices forming IoT networks are
constrained in terms of available data storage and computational capabilities. Security mechanisms
must be aware of these limitations, reducing both the need for data storage and the computational
load of the required algorithms.

• Number of devices: IoT networks are formed by thousands of devices with heterogeneous
communication needs. The transmission of data between devices tends to be asynchronous,
creating high requirements for backend and middleware applications in terms of availability
and data throughput. Gateways and backend servers have to be capable of handling very large
numbers of secure connections, and at the same time processing the relevant data to provide the
necessary services.
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• Scalability: IoT networks tend to grow very fast. The infrastructure supporting them has to be
able to cope with a variable number of devices while keeping secure connections and maintaining
reasonable response times.

• Hardware and software evolution: the strength of a security algorithm can be compromised by
two main factors. One is the computational capabilities of processors growing at a fast pace.
The second factor is that new software solutions may speed up the breaking of a security algorithm.
Because of this fact, the security mechanisms chosen must allow for increasing the security level
at any time while maintaining reduced data storage and computational needs.

Figure 1. Generic Internet of Things (IoT) fog computing architecture.

In an IoT fog computing scenario, Transport Layer Security (TLS) arises as one of the best
positioned candidates, but it has the problem that most popular standard ciphering suites available
were not designed having in mind the limitations of resource-constrained and battery-operated devices.
This fact has been changing in the last years, since lighter and more future-proof alternatives are being
supported and implemented widely by the standard.

This article includes three main contributions aimed at fostering security in resource-constrained
energy-efficient IoT fog computing gateways. First, it presents a detailed review of the main and the
latest security concerns in IoT systems. Such a review is completed with a clear description of the most
used mechanism for securing Internet communications, TLS. Moreover, several comparative studies of
Elliptic Curve Cryptography (ECC) and Rivest–Shamir–Adleman (RSA) in terms of performance and
energy efficiency are analyzed. Second, a series of tests are conducted to determine the performance
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and power-consumption impact of using TLS over plain HTTP communications and to measure
the differences between RSA and ECC in a real-world scenario in terms of security, scalability,
power consumption, and data throughput when implemented in an IoT network. Third, the RSA
results are then compared to those obtained by a more suitable approach for IoT gateways, consisting
of using ECC algorithms with key sizes that guarantee an acceptable security level for years to come.

The rest of this article is organized as follows. Section 2 enumerates the main state-of-the-art
hardware platforms and security concerns in IoT fog computing systems, describes the basics of TLS,
and compares RSA and ECC in terms of complexity and performance. Section 3 describes the hardware
and software of the testbed designed. In Section 4, multiple experiments are conducted and their
results are analyzed. Finally, Section 5 is devoted to conclusions.

2. Related Work

2.1. Performance and Security of IoT Hardware for Resource-Constrained Energy-Efficient Gateways

The number of IoT hardware platforms that can be integrated as gateways in a fog computing
system has grown from a few alternatives to a large and heterogeneous ecosystem. In recent years,
the evolution of embedded hardware power efficiency and integration has allowed IoT development
boards to achieve computer-like computational capabilities. This fast evolution makes it very difficult
to give a precise definition of resource-constrained devices in terms of memory size or processor clock
rate. One definition of constrained-node networks can be found in [28]. Three levels of constrained
devices are defined attending at RAM and flash memory available. Because of the fast evolution of
embedded hardware capabilities, this classification fails to give an updated definition of constrained
device. As it can be seen in Table 1, even the less powerful boards available nowadays greatly exceed
the memory values defined by each of the three classes. Some of the boards presented in the table are
also analyzed in [29], where an overview of power efficient development boards for IoT applications
is presented.

As it was mentioned in Section 1, security in IoT systems is often overlooked or addressed
lightly by using weak or ad hoc approaches. For instance, in the case of [23], although TLS tests
are performed, a Pre-Shared Key (PSK) cipher suite (i.e., PSK-AES-128-CCM-8) is used. Since only
symmetric key operations are used for authentication [30], it does not require as much memory as
asymmetric cipher suites. The use of this type of cipher suites constrains the devices to a very specific
scenario (e.g., since PSK is used, it has to be established manually and set up in advance). On top of
that, this cipher suite is also considered insecure and not recommended [31].

A comparison of the computational capabilities of some of the latest hardware platforms available
to implement secure resource-constrained energy-efficient IoT gateways is presented in Table 1.
The table shows the name of the board, the clock rate along with the number of cores of the main
processor, the secondary processor (if available), the amount of embedded RAM and use references.

Table 1. Characteristics of some of the latest Internet of Things (IoT) development boards.

Name Clock Rate Cores RAM References

Meshlium 4.0 1 GHz 4 2 GB [32]
UDOO X86 Basic 2.00 GHz 4 2 GB [33]

Raspberry Pi3 1.2 GHz 4 1 GB [34,35]
Tessel 2 580 MHz/48 MHz 1/1 64 MB [36]

UDOO NEO BASIC 1 GHz/200 MHz 1/1 512 MB [37]
BeagleBoneBlack 800 MHz 1 512 MB [38]

Intel Edison Module 500 MHz 2 1 GB [39]
Arduino Yún 400 MHz/16 MHz 1/1 64 MB/2.5 KB [40,41]

Arduino TIAN 560 MHz/48 MHz 1/1 64 MB/32KB [42]
ESP32 240 MHz 2 512 KB [43]

Particle Photon 120 MHz 1 128 KB [44]
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2.2. IoT Security

The IoT paradigm raises public security concerns, including personal privacy issues, threats
of cyber-attacks, and organized crime [45]. In order to confront the uniqueness of IoT in terms
of the upcoming security challenges, several approaches have been proposed in the literature.
For instance, Vasilomanolakis et al. [46] devised a comprehensive list of privacy and security
requirements with the aim of establishing a standard set of security specifications for IoT technologies.
Moreover, Atamli et al. [47] introduced a threat model as a method to analyze the impact of
threats in different applications. From such a threat model, the authors deduce the security and
privacy requirements.

Leo et al. [48] focused on the design of an architecture for secure exchanges in IoT services. Such
researchers proposed an architecture that is mainly devoted to deploying and managing a federated
environment for an authority delegation mechanism, identity-based capabilities, and dynamic context
information. Another piece of architecture for supporting privacy and security in IoT systems is
presented in [49].

Numerous vulnerabilities have also been detected in IoT communication technologies,
middleware, and Machine-to-Machine (M2M) communications. For example, Grabovica et al. [50]
explored the security protocols provided by communication technologies like Radio-Frequency
IDentification(RFID), Bluetooth, Wi-Fi, and ZigBee. Furthermore, Ngu et al. [51] presented a
survey on the capabilities and challenges of IoT middleware architectures ranging from cloud-based,
service-based and actor-based architectures. A cloud-based IoT middleware architecture is limited
for what is available on the cloud and it varies widely among the different cloud-based platforms.
Typically, their functionalities are exposed as a set of Application Programming Interfaces (APIs).
The functionalities provided can be as simple as a high performance storage system or a powerful
computation engine with predefined monitoring and analysis tools. In the case of a service-based
architecture, a high-performing middleware is generally deployed on multiple nodes running in the
cloud or on powerful gateways between IoT devices and the applications. It is not designed to be
deployed in resource-constrained IoT devices and does not support device-to-device communications.
In an actor-based architecture, the middleware is designed to be lightweight and can be embedded
into all the layers (i.e., sensory layer, mobile access layer, and the cloud). The basic middleware
computation units are thus distributed in the network. It provides the best latency and scalability
for large-scale connected IoT devices. Regarding M2M communications, Barki et al. [52] provided
a survey that addresses the security challenges and threats that arise when dealing with a fusion of
heterogeneous networks.

Furthermore, other researchers suggested security enhancements that rely on a layer-based
approach [53]. An exhaustive analysis on the security protocols and mechanisms available, together
with its operational layer and the security properties and functionality supported, is presented in [54].

In addition, it is worth mentioning that security based on random physical media and objects
is a fast-growing field. The unique and unclonable character of disordered physical structures can
be exploited to address many vulnerabilities. A classification of past and ongoing work in physical
disorder-based security along with security analyses and implementation examples is given in [55].
To enable end-to-end security in constrained network environments, some researchers focused on
different IP-based security protocols for IoT, like Datagram TLS (DTLS) [56], the HIP Diet EXchange
(DEX), and minimal IKEv2. For instance, Hummen et al. [57] identified the challenges that arise when
employing such protocols and provide a high-level overview of approaches proposed to counteract
the design-level protocol issues identified. Moreover, Abeele et al. [58] present an approach that relies
on a trusted gateway to mitigate the overhead of the DTLS handshake in IP-based networks, providing
the flexibility needed to support a variety of security requirements.
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2.3. Securing TCP/IP Communications: TLS

Most IoT deployments, such as the home automation system evaluated in [13], are based on
TCP/IP communications. In order to secure the data transmission in the auto-configuration and
auto-registration protocol, along with the subsequent transducer access, the best option is to use the
TLS [59] standard. For systems that do not depend on TCP/IP, another option could be to use DTLS, the
TLS alternative for User Datagram Protocol (UDP)-based protocols. It was developed for covering the
security needs of new protocols, such as Constrained Application Protocol (CoAP), which uses UDP
instead of TCP. CoAP is basically a reduced HTTP implementation designed to work over 6LoWPAN
networks for IoT applications [54]. CoAP’s main objective is to minimize the overhead created by
the non-payload data required by HTTP. One problem of this approach is that UDP communications
are unreliable. To solve this issue, CoAP defines a reliability mechanism based on request-response
messages that acts as a lightweight TCP implementation using UDP. CoAP was designed having
resource-constrained devices in mind, so security is addressed lightly, with a lot of limitations, such as
the use of pre-shared keys or raw public key cipher suites [60]. Certificates can also be used, but the
cipher suites supported have low security levels. Furthermore, Sehgal et al. [23] concluded that DTLS
uses more RAM and stack memory than TLS, meaning that, for the same security level, there is no
advantage on using DTLS instead of TLS. Hence, only TLS is considered for further analysis.

The primary goal of TLS is to provide privacy and data integrity to the communications performed
over the Internet. One advantage of TLS is that it is independent from the application protocol.
Higher-level protocols can layer on top of the TLS protocol transparently. For instance, the commonly
used HTTPS [61], the protocol to secure Internet web page access and transactions, uses TLS to secure
the communications channel. A large set of protocols, such as File Transfer Protocol over SSL (FTPS),
Simple Mail Transfer Protocol Secure (SMTPS), Real Time Streaming Protocol (RTSP), Internet Message
Access Protocol over SSL (IMAPS) and many more, rely on TLS.

The main goals of the TLS protocol are the following:

• Cryptographic security: TLS can be used to establish a secure connection between two parties.
• Interoperability: two different programmers should be able to develop applications that can

establish a secure communication successfully, without any knowledge of each other’s code,
making use of TLS.

• Extensibility: TLS seeks to provide a framework into which new public key and encryption
methods can be incorporated. This removes the need for new protocol creation or entire library
implementations, reducing the risk of introducing new weaknesses.

• Relative efficiency: cryptographic operations tend to be Central Processing Unit (CPU) intensive,
particularly public key operations. TLS aims to be as efficient as possible while achieving the
security level required.

The protocol is composed of two layers: the TLS Record Protocol and the TLS Handshake Protocol.
The TLS Record Protocol provides connection security with two basic properties:

• Connection privacy: communications are encrypted by using symmetric cryptography
(e.g., AES, RC4). The symmetric keys involved are generated uniquely for each connection and are
based on a secret negotiated previously by another protocol (e.g., the TLS Handshake Protocol).

• Connection reliability: The message transport includes message integrity and authenticity checks
using a keyed Message Authentication Code (MAC). This is achieved by using secure hash
functions (e.g., SHA-1) for MAC computations.

The TLS Handshake Protocol allows server and client to authenticate each other and to negotiate
an encryption algorithm along with the cryptographic keys needed for the application protocol to
transmit or receive data. The three basic properties that the TLS Handshake Protocol grants are:

• The peers involved are authenticated using public key (i.e., asymmetric) cryptography
(e.g., RSA, Digital Signature Algorithm (DSA)).
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• It is secure to negotiate a shared secret. As it was mentioned before, the TLS Record Protocol uses
symmetric key cryptography. The shared secret can be negotiated whilst remaining unavailable
to eavesdroppers and, for an authenticated connection, the secret cannot be obtained, even using
a Man-in-the-Middle (MitM) attack.

• The negotiation is reliable: it is not possible for an attacker to modify the negotiation
communications without being detected by the parties involved in such communications.

The TLS Handshake Protocol has three subprotocols that are used to allow peers to agree upon
security parameters for the record layer (i.e., the cipher suite to be used), to authenticate themselves,
to instantiate the security parameters negotiated, and to report error conditions to each other.

2.4. TLS Handshake Procedure and TLS Cipher Suites

The TLS Record Protocol is the one in charge of securing the connection once the TLS Handshake
Protocol takes place and after agreeing on the parameters to use during the TLS session.

A cipher suite is defined by its name, which indicates the algorithms involved in both the TLS
Handshake and the TLS Record operations. For example, the cipher suite ECDHE-RSA-AES128-GCM
-SHA256 uses:

• ECDHE-RSA: Elliptic curve Diffie–Hellman Ephemeral (ECDHE) with RSA signing for the
key-exchange algorithm.

• AES128-GCM: Advanced Encryption Standard (AES) with a key length of 128 bits as the block
cipher. GCM stands for Galois/Counter Mode and defines the mode of operation of the symmetric
key block cipher. AES is a symmetric encryption algorithm, and the secret used to derive the
ciphering key is the one obtained by the previous use of ECDHE-RSA during the TLS Handshake.

• SHA256: Secure Hash Algorithm with a hash result of 256 bits. This is used as the Pseudo-random
Function (PRF) to ensure the cryptographic integrity of the handshake messages.

In the case of ECC, a more detailed explanation of its cipher suites can be found in [62].
There are two main subgroups of cipher suites recommended for TLS [31]: RSA and ECDHE.

RSA-based cipher suites use RSA as the key-exchange algorithm, while the ECDHE-based ones use
an algorithm that makes use of Ephemeral Diffie–Hellman based on Elliptic Curves. The Ephemeral
part means that the key is regenerated after each session, providing Perfect Forward Secrecy (PFS) in
contrast to the variants based on RSA.

Figure 2 illustrates the messages exchanged during the handshake when using the cipher suite
with a ECDHE key-exchange algorithm. dx refers to private keys, while public keys are the ones
defined as Qx. The procedure takes place as follows:

• The client sends a ClientHello specifying its supported cipher suites.
• The server responds with a ServerHello with the cipher suite selected. This is the cipher suite that

is going to be used during the whole TLS session.
• The server sends its certificate in a Certificate message. Along with it, the public key (Qcert) of the

aforementioned certificate is sent.
• The server generates a key pair (ds, Qs) needed for the ECDHE algorithm and sends the public

key to the client, encrypted with the private key of the certificate (dcert(Qs)). This corresponds to
the ServerKeyExchange message.

• Once the client receives the ServerKeyExchange, it uses the certificate’s public key received in
the Certificate message to check the authenticity of the ECDHE public key by verifying the RSA
signature (Qcert(dcert(Qs))), thus obtaining the ECDHE public key (Qs) of the server.

• Finally, the client generates its own ECDHE key pair (dc, Qc) and sends the public key to the server.
• At this point, both server and client can obtain the Session Secret by performing an operation (ECC

dot product) with one’s own private key and the other party’s public-key. For instance, the client
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will perform the dot product of its own private key and the server public key (dcQs) obtaining
as a result a the coordinates of an elliptic curve point (xk, yk). The x-coordinate of this point is
then used to generate the session key needed for the AES128-GCM block cipher, by using a Key
Derivation Function (KDF) [63]. The client sends a finished message encrypted using AES-128
and the server responds with an equivalent message.

Figure 2. Transport Layer Security (TLS) Handshake procedure for ECDHE-RSA-AES128-GCM-
SHA256 and similar cipher suites.

It is important to note that many connections can be established using the same session through
the resumption feature of the TLS Handshake Protocol, but eventually sessions must be renegotiated.
Moreover, it is not always possible to accommodate the use of TLS resumption on IoT fog gateways,
and, depending on the number and periodicity of the connections, its benefits can be limited.

2.5. Cipher Suites for IoT Fog Computing Applications

As explained in Section 2.4, ECDHE can be used as the key-exchange algorithm to obtain
PFS. Note that DHE can also be used, but it is clearly outperformed by ECDHE [64]. The only
reason to use DHE instead of ECDHE is the existence of possible incompatibility issues, but nearly
every TLS implementation supports both algorithms [65–68]. ECDHE-RSA cipher suites signs the
ServerKeyExchange message using the RSA public key certificate. In addition, certificates can be
generated with different public key sizes, 2048-bit RSA being the minimum size considered secure
nowadays. In addition, 768-bit RSA was factored in 2010 using the number field sieve factoring
method [69] and a 1024-bit RSA implementation of OpenSSL was successfully broken using a
fault-based security attack in less than 100 h [70]. However, note that the use of a 2048-bit certificate
on an ephemeral key-exchange algorithm introduces heavy overhead and computing requirements,
which are very difficult to accommodate on the constrained hardware capabilities of most IoT devices.
The encryption and decryption processes take place every time a device accesses or sends data over
a secure connection. Although expensive public-key operations are needed only in the beginning of
the communications (i.e., during the TLS Handshake), they are renegotiated when a new session is
established. Moreover, IoT gateways, that need to manage a great number of connections are even
more affected by this encryption overhead, reducing throughput, and increasing power consumption.
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2.5.1. Public-Key Security Levels

In order to understand better why RSA needs such a big key size to be considered secure,
this section gives an overview of how public-key sizes relate to security.

Public key cryptography is based on the theoretical robustness of trapdoor functions. A trapdoor
function is a mathematical expression that can be easily computed in one direction, but it is very
difficult to compute in the inverse way without some specific information, which is called the
trapdoor. The security level of a public-key cryptosystem is a way of measuring the effort to break its
trapdoor function. The effort is generally expressed as the number of operations needed to break the
cryptographic primitive, meaning that a k-bit security level will need 2k operations to be broken and,
thus, it offers a security level k. With symmetric cryptosystems, the key-length selected directly relates
to the security level offered by the cryptosystem. However, when applying this concept to public-key
schemes, it is not easy to give a value for the security level relying on the length of the key.

For example, the RSA trapdoor function is based on the assumption that factorizing large integer
numbers that are the result of two large prime numbers is a difficult problem to solve. If the prime
numbers used are big enough, the resultant encryption is considered secure.

The process of finding the required prime numbers is fairly simple and the operations required
are not computationally expensive. The problem with the RSA system is that existing algorithms such
as Quadratic Sieve [71] or General Number Field Sieve [72] allow for a faster integer factorization than
brute force or prime guessing approximations. The problem is even worse, due to the fact that these
algorithms work much better the larger the number they are trying to factorize. As a consequence,
the security level that RSA can provide does not grow lineally with key size. This behavior can be
observed in Figure 3, where RSA, ECC, and symmetric ciphers are compared. The key size needed for
the different security levels presented is described in Table 2 [73]. The actual values shown in Figure 3
are taken from TLS curve implementations [62] in the range of these key size values. It can be observed
that even for low security levels, RSA key sizes are much larger than ECC key sizes.

Figure 3. lKey size needed for different security levels using symmetric, Rivest–Shamir–Adleman
(RSA) and Elliptic Curve Cryptography (ECC) ciphers.
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Table 2. Comparable strengths for symmetric, Rivest–Shamir–Adleman (RSA) and Elliptic Curve
Cryptography (ECC) ciphers.

Security Symmetric RSA ECC
Level Key Algorithms Key Size Key Size

80 2TDEA 1024 bits 160–223 bits
112 3TDEA 2048 bits 224–255 bits
128 AES-128 3072 bits 256–383 bits
192 AES-192 7680 bits 384–511 bits
256 AES-256 15,360 bits 512+ bits

Note that there is not a direct correspondence between security levels and key sizes. For instance,
as described in Table 2, for a 112 security level, a 2048-bit key size must be used if an RSA cipher
is selected, but only a 224-bit key size is needed if the cipher uses ECC. Moreover, these differences
increase with the security level. A comprehensive explanation of security levels, why they can be
misleading and how they are obtained for each type of cipher can be found in [74].

As a final conclusion, it can be stated that security levels offer a much better understanding of how
secure a given algorithm is instead of only relying on the key-size used. In the following sections, the
values presented in Table 2 for ECC and RSA are considered as the reference of the security provided.

2.5.2. ECC vs. RSA: Power Consumption and Performance

Until today, techniques like RSA and ECC were not used in IoT nodes because they have resource
demanding requirements. Thus, other alternatives have been studied. For example, research work in
key management schemes has been conducted in [75,76]. Mbarek et al. [77] compared and analyzed
two different authentication protocols: Security Protocols for sensor Networks (SPINS) and TinySec.
For such an analysis, the authors made use of the Network Simulator version 2 (NS-2) to compare the
performance of both authentication protocols.

Recent research has been focused on the usage of RSA and ECC for resource-constrained
devices and studied the basic operations of Elliptic Curve Digital Signature Algorithm (ECDSA)
and Elliptic curve Diffie–Hellman (ECDH) [78]. For instance, in [79], both algorithms are analyzed,
and the application of ECC is recommended to increase security and speed. However, the authors
remark that, in order to maximize the performance in chips, the ECC implementation would need
consistent enhancements.

A time performance comparison between ECC (secp160r1, secp192r1, secp224r1) and RSA
(1024 and 2048 bits) is conducted in [80] using 8-bit CPUs. In such a paper, the researchers describe
the implementation of the algorithms and present execution times and detailed information about the
more time-consuming operations. The authors conclude that ECC outperforms RSA for the key sizes
tested, and that it would be even more efficient for larger key sizes.

Other authors studied the communications overhead that a TLS handshake requires when used
in conjunction with ECC [81]. The experiments presented focused on the number of messages
exchanged by third-party cipher suites and by their own ECC library for embedded systems.
Their results represent a useful guide when considering a trade-off between security and performance
in resource-constrained scenarios.

ECC and RSA power consumption has been also studied in different scenarios [24,82,83].
Moreover, a framework for analyzing power consumption of cryptographic algorithms and security
protocols is proposed in [84]. In such a paper, the authors examine several cryptographic algorithms
from the three main classes (i.e., asymmetric, symmetric, and hash) jointly with a comprehensive
analysis of the energy requirements of the security mechanisms. They also study the power
consumption requirements of the transport-layer security protocol (Secure Socket Layer (SSL))
considering the impact of various parameters at the protocol level (such as cipher suites, authentication
mechanisms, and transaction sizes) and the cryptographic algorithm level (i.e., cipher modes, strength).
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The researchers carried out the evaluation on a Compaq iPAQ H3670 Pocket PC, which contains an
Intel SA-1110 with a Strong ARM processor clocked at 206 MHz, 64 MB of RAM, and 16 MB of Flash
ROM. The paper presents the power consumption of the different steps involved in the algorithms
analyzed (e.g., key generation, key exchange, signing, verifying). They also tested the SSL protocol
to transmit payloads that range from 1 KB to 1 MB. After the analysis, the authors presented five
conclusions. First, asymmetric and hash algorithms have the highest and least energy costs, respectively.
Second, the energy cost of asymmetric algorithms is dependent on key size, while symmetric algorithms
are not significantly affected. Third, the power consumption of a symmetric algorithm depends not only
on the bulk data encryption and decryption cost, but also on the key set-up cost. Fourth, wide variations
in power consumption exist within the same family of cryptographic algorithms, and finally, a trade-off
between the level of security provided by the algorithm and energy savings can be achieved by tuning
the parameters.

All the works mentioned provide interesting conclusions and insight into the ECC versus RSA
dilemma. Power consumption and performance results comparing both algorithms are presented,
but all of them fall short at some point. Not taking into account security levels, comparing the
algorithms with an ad hoc implementation and in an isolated way, providing an approximated
value of the energy consumption or not measuring it with external devices, or the use of hardware
platforms that do not provide mid-term valid results are some of the drawbacks found. Furthermore,
some references do not use real communication protocols or use insecure key-lengths or deprecated
cipher suites. None of them compares together power consumption and throughput for real-life IoT
fog computing scenarios with adequate security levels.

3. Evaluating Power Consumption and Throughput in Resource-Constrained IoT Gateways

In this section, a series of tests are conducted to evaluate the impact of TLS on IoT communications
performed by IoT gateways. Since the selected IoT gateways have to cope with constrained resources
(i.e., they require reduced power consumption and have limited computing power) and they are
usually deployed for extended periods of time, cryptographic schemes should be designed to be
efficient, lightweight, and robust.

The objective is to determine the performance and power-consumption impact of using TLS over
plain HTTP communications, and measure the differences between RSA and ECC in a real-world
scenario. Note that the use of HTTP is due to the fact that a fog abstraction layer hides the platform
heterogeneity by providing generic APIs [85], which are usually implemented by using plain HTTP or
HTTP-like APIs that are accessed through horizontal and vertical links (i.e., by performing intra-fog
and inter-fog communications).

3.1. Hardware Testbed

The hardware testbed proposed needs to meet two major objectives. First, it has to support the
cipher suites selected in Section 3.4 and allow for using well-known and tested implementations of
TLS. The usage of specific hardware with ad hoc TLS implementations could bias the results due to the
ciphering algorithm implementations. Therefore, by using some open-source and extensively used TLS
implementation such as OpenSSL [86], the performance and energy consumption differences between
ciphering algorithms should be as close as possible across different hardware and software platforms.
Second, in order to provide medium- and long-term valid conclusions, the selected hardware must
fulfill future performance expectations for energy-efficient IoT gateways.

To comply with all these requirements, it was decided to use a Single Board Computer (SBC)
based on a low power consumption SoC. The Cortex-A7 [87] was chosen since it fits the requirements
and it is the most efficient ARMv7-A processor and the most commercially successful with more than
a billion units in production.

Note also that three SBCs are actually needed: one running as server, another running as client,
and a third in charge of measuring power consumption. Several SBCs were evaluated and Orange Pi
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PCs [88] were finally selected, since they offer a good trade-off between features and cost (as of writing,
its price starts as low as $15). This SBC uses an Allwinner H3 SoC [89] with a quad-core Cortex-A7
configuration. The detailed PCB layout of an Orange Pi PC is depicted in Figure 4. Using a different
SBC or SoC-based platform could yield different total power consumption results, but the conclusions
obtained when comparing cipher suites should not change.

It is worth mentioning that, during the tests, in order to measure power consumption, external
hardware was used instead of the Advanced Configuration and Power Interface (ACPI) of the SBCs.
In this way, current readings are independent from the particular ACPI-related hardware of the SBC
and the setup remains valid for any other SBC.

Figure 4. Orange Pi PC Printed Circuit Board (PCB). Top view (A) and bottom view (B).

The main characteristics of the Orange Pi PC are:

• 1 GB DDR RAM.
• Allwinner H3 SoC, A7 quad-core 1.6 GHz processor.
• 100 Mbit Ethernet.
• 3 USB 2.0 ports.
• 5 V/2 A power input.
• HDMI output.

Although the Allwinner H3 SoC has hardware-accelerated encryption support powered by a
Crypto Engine (CE), it was not used during the tests, since it can distort the results obtained. Moreover,
it must be mentioned that, as of writing, the driver available for the CE does not support RSA or
ECDSA acceleration [90].

During the experiments, the Orange Pi PCs were connected using a TP-Link TL-SG108 Gigabit
switch and ad hoc Cat 5e Ethernet patch cables. To power up the system, a fixed 5 V/12 A power
source was used. The SD cards used were four 32 GB Samsung Evo MB-MP32DA/EU cards.

To measure the current being drawn, an Adafruit INA219 was selected, since it offers enough
precision (it can be configured in high precision mode measuring 0.1 mA steps with a maximum of
±400 mA or in low precision mode measuring 0.8 mA steps and a maximum of ±3.2 A), and allows
for measuring up to 26 V. The Inter-Integrated Circuit I2C bus used by the INA219 makes it easy to
configure the device and to measure values in an automatized way. For instance, an INA219 was
utilized by GreenMiner [91], a framework aimed at measuring the real energy consumption of a
given application running in an actual smartphone. Figure 5 shows the four SBCs (three used for the
experiments and one used as a gateway to allow external access to the testbed) along with the INA219,
the switch, the power supply, and one fan for cooling purposes.
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Figure 5. Testbed. (A) Orange Pi PC Single Board Computers (SBCs); (B) INA219; (C) switch; (D) power
supply; (E) cooling fan.

3.2. Testbed Architecture

The different hardware components described in the previous subsection are organized in the
architecture described in Figure 6. The 5 Volt supply powers directly the Orange Pi PC in charge of
acquiring the energy consumption samples. Between the power supply and the other two Orange Pi
PCs (one acting as a server and the other acting as a client), two INA219 modules are installed, one
for each PC. The INA219 modules are also connected to the third Orange Pi PC using the I2C bus,
allowing it for accessing the modules and reading the desired values. A Gigabit switch is in charge of
providing network connectivity to the three SBCs. A PC with Wireshark installed is also connected
to the switch, in order to perform a frame time analysis. Finally, the Gigabit switch is connected to
the Internet using a domestic Gateway (do not confuse with the concept of IoT gateway), in order to
provide Internet access to the Orange Pi PC in charge of acquiring the energy consumption samples.
The Internet connectivity is only needed for simplifying the process of extracting the values obtained
during the tests, so they can be processed and analyzed. In this way, the results are uploaded to a
server where they can be easily accessed.

Figure 6. Detailed testbed architecture.
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3.3. Software

The operating system installed on the Orange Pi PC was ARMbian [92], a modified Debian
distribution for ARM-powered devices.

The HTTP servers used for the tests were Apache2 and Nginx. These two web servers were
chosen since they are, as of writing, the most popular [93], with a market share of 51.5% and 31.3%,
respectively. During the experiments, the same tests were run in two different web servers to eliminate
any bias that could be introduced by the server implementation or configuration. In addition, both
servers used the same TLS library (OpenSSL).

To automate the HTTP/HTTPS request generation process, an HTTP benchmark software was
used. Some alternatives were studied, such as Apache Benchmark [94], Httperf [95] or Siege [96].
Eventually, Siege was selected because, although significant differences were not found among the
different benchmark software in terms of features, Siege was easier to run and parse, and presented all
the necessary configuration parameters needed for the tests.

The configuration used for Apache2 and Nginx was left to default values. Both servers were
installed using Aptitude and the default repositories of the ARMBian distribution. It was verified
that both servers were configured for using all four logical processors available on the Orange Pi PC
SOCs. The only change in configuration was made to enable and disable GNU ZIP (GZIP) compression
and configure the same compression level on both Apache2 and Nginx when compression was used.
A compression level of 6 was selected, since it provides a good trade-off between computational cost
and size reduction on the resulting compressed data.

The specific versions of the software used were:

• ARMBIAN Debian GNU/Linux 8 (jessie) 3.4.112-sun8i / #10 SMP PREEMPT Sun Oct 23 16:06:55
CEST 2016 armv7l.

• Apache/2.4.10 (Debian) Sep 16 2016 10:04:38.
• nginx/1.6.2.
• OpenSSL 1.0.1t May 3rd 2016.
• SIEGE 3.0.8.

3.4. Selected Cipher Suites and Certificate Generation

The main algorithms involved in a cipher suite were examined previously in Section 2.4.
The public key authentication, where the signing and verifying processes are performed during
the TLS handshake, demands the highest computational power. To analyze the impact of ECC and
RSA, two identical cipher suites were selected, with the only difference being the signing algorithm
used during the key exchange (i.e., RSA and ECDSA):

• ECDHE-RSA-AES128-GCM-SHA256.
• ECDHE-ECDSA-AES128-GCM-SHA256.

It is important to note that both cipher suites use ECC in the key-exchange process (i.e., ECDHE),
but the key signing and verifying processes are carried out using RSA and ECDSA, respectively.
Both cipher suites chosen are among the few recommended by the National Institute of Standards
and Technology (NIST) guidelines for cipher suite selection and configuration [31], sharing all the
parameters but the signing algorithm.

As explained in [62], ECDHE_ECDSA cipher suite certificates must contain an ECDSA-capable public
key and the ServerKeyExchange parameters must be signed with this key. Equivalently, ECDHE_RSA
cipher suite certificates must contain an RSA-capable public key. Thus, two different certificates are
needed, one for each cipher suite.

OpenSSL was used in order to generate the certificates. The selected key sizes for each certificate
are obtained from Table 2, for a strength level of 112. For RSA, a 2048-bit key size was selected, and,
for ECC, the secp256r1 curve (also known asprime256v1 andNIST P-256) was chosen. Such a curve
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corresponds to a 256-bit ECC key size; therefore, the ECC certificate is closer to a strength level of 128
than to a 112 strength level. This difference in strength level obeys for two reasons. First, 2048-bit RSA
is one of the most used signing systems for TLS and the curve secp256r1 is one of the TLS ECC curves
with greater support. Second, the experiments were designed to show the advantages of ECC over
RSA, so putting ECC in a worse scenario than RSA in terms of performance should display the benefits
of ECC.

4. Experiments

4.1. Testbed Setup

To evaluate the performance differences between the selected RSA and ECDSA cipher suites,
a series of tests were performed. A set of files using JSON data were created using lorem ipsum
extracts [97], along with randomly generated strings to obtain the desired file sizes. JSON data files
were generated through a Python script using the library Faker (version 0.7.3) [98]. This file generation
process was conceived with two goals in mind: to allow for creating files with the exactly desired size,
and to make use of data structures similar to the ones usually transmitted by IoT devices, achieving
GZIP compression ratios similar to real scenarios. An analysis on the compression ratios that can be
reached for different types of data can be found in [99]. The sizes of the files generated ranged from
32 bytes to 131,072 bytes (128 kilobytes) in a base-2 exponential progression. The x-axis spacing of the
charts presented in this section correspond to the value log 2(bytes), but the byte values are presented
instead of the logarithmic value for a more intuitive representation.

The impact of the signing algorithm used in the TLS handshake (i.e., ECDSA or RSA for the
cipher suites selected) is independent of the size of the payload transmitted by the underlying HTTP
communications. Since the aim of the tests performed was to determine the relative impact of the
ciphering algorithm in a real IoT scenario, payloads with different sizes were used. Typical payloads
transmitted by IoT gateways when managing requests from a few IoT nodes are represented with the
lower values used in these tests (i.e., from 32 to 1024 bytes). Nevertheless, IoT gateways can transmit
larger payloads as a result of carrying out data aggregation for several IoT nodes. Payloads as large as
128 kilobytes are used to determine whether input/output operations and network transactions have
an impact on power consumption and data throughput when using different cipher suites. These tests
allow not only determining the suitability of ECDSA over RSA for small fog computing networks,
but also for densely populated IoT networks.

For each file size, Siege was run making use of the multiple configuration parameters it offers,
which allow for varying the number of concurrent clients, the amount of requests per client, the delay
between requests, and much more. The configuration used was as follows:

• Benchmark mode: no delay between client requests.
• 200 requests per client.
• Concurrent clients from 2 to 128 in a base-2 exponential progression.

Combining the file sizes with the number of concurrent Siege clients, a total of 91 separate tests
were performed for each cipher suite and web server. The same tests were also conducted for plain
HTTP to determine a reference baseline where no encryption algorithms were used. All tests were run
using both GZIP compression and no compression at all. Thus, Siege was run 1092 separate times to
obtain the results presented. The same tests were performed two times, one for measuring the server
side power consumption and another to measure the client side.

4.2. Baseline Power Consumption Test

In order to analyze the impact of the hardware platform and the Linux distribution on the power
consumption, several tests were performed. For an interval of ten minutes, an instantaneous power
consumption sample was obtained each second for three different scenarios.
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• Idle state: the Orange Pi PC was running the Linux system while the Nginx web server was left in
an idle state, with all the other services running.

• Load state: using another Orange Pi PC board, Siege was executed with 16 concurrent clients
against the Orange Pi PC while running the Nginx server. This test was performed by
downloading a 512 byte file with Siege configured in benchmark mode. This test was performed
using two different configurations:

– HTTPS and Nginx configured to use the ECDSA cipher suite.
– Plain HTTP.

With these tests, three different power consumption baselines were obtained, as it is illustrated
in Figure 7.

Figure 7. Power consumption during 10 min for idle state and 16 concurrent clients accessing a 512 byte
payload served by Nginx using HTTPS and HTTP.

As it can be observed, power consumption remains stable when the board is idling, with minimal
and low amplitude deviations. When using HTTP, power consumption increases, but it presents
several drops that even reach idle power consumption values. This is explained due to the fact
that the HTTP requests are processed extremely fast, leading to very short time intervals where no
input/output or network operations are being carried out by the Nginx server. As expected, HTTPS
power consumption is the highest and it presents less amplitude variation. Compared to plain HTTP,
the use of TLS is more CPU intensive and leads to longer lasting transactions that keep the CPU
from idling.

After analyzing these results, it can be concluded that the hardware and software of the testbed
has a very stable base power consumption. Furthermore, it can be stated that any relevant energy
consumption differences observed during the next tests can be attributed directly to the cipher suite
algorithms evaluated.
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4.3. Analysis of the Effect of Compression, Server Implementation, and Cipher Suite Selection on Power
Consumption and Data Throughput

Figure 8 shows the server side energy consumption values for both Apache and Nginx running
the ECC and RSA cipher suites, as well as for plain HTTP communications. Both GZIP compression
(solid lines) and no compression (dotted lines) test results are represented, using all the different
payload size files except the ones for which compression causes larger payloads to be transmitted due
to GZIP overhead (32, 64, and 128 bytes). For the sake of clarity, only the 16 concurrent client test charts
are shown. As it can be observed in the next figures, the results with this number of clients are more
stable than the ones obtained with less concurrency. By using more concurrent clients, the absolute
energy consumption value varies, but the differences between implementations remain constant. As it
can be seen, there is almost no difference in energy consumption for each curve until the payload
size exceeds 4096 bytes. With 4096 bytes or more, all six combinations of cipher suite and web server
present an increment on energy consumption when using GZIP compared with using no compression.
This is due to the fact that the compression of large files takes more time and power, and in a general
IoT scenario, the gains of sending less data through the network do not compensate for the effort of
compressing data in terms of total energy consumption.

Figure 8. lServer-side page size versus energy consumption for Apache2 and Nginx with 16 concurrent
clients, with and without GNU ZIP (GZIP) compression.

Similarly, Figure 9 presents the results for the same test, but measuring the energy consumption
at the client side. In this case, the difference starts to be noticeable when the payload size exceeds
8192 bytes, although the absolute difference is smaller than in the server case. These differences were
expected, since GZIP is asymmetric, the computational cost of compression being greater than the
computational cost of decompression. To sum up: GZIP decreases the energy efficiency for large
payloads and does not enhance it for smaller payloads.

For a better visualization of the differences in energy consumption, Tables 3 and 4 present the
relative energy consumption, expressed as a percentage, of using GZIP compression compared to
no compression. These results correspond to the same test results presented in Figures 8 and 9.
For example, in the case of using Apache as a server, Table 3 shows, for a 256-byte payload, that
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compression makes the system consume 1.9% more in the case of RSA, 4.3% more in the case of
ECDSA, and 83.7% more in the case of HTTP. However, when the same tests are run at the client side
(whose results are shown in Table 4), it can be observed that the use of compression consumes 1.6%
and 4.4% less for RSA and ECDSA, respectively, than when no compression is used. These differences
between client and server are explained in Section 4.3 and are due to the asymmetric nature of the
compression algorithms. In any case, the gains are minimal and only present at the client side.

Table 3. Server-side page size versus energy consumption difference (in percentage) between GNU
ZIP (GZIP) compression and no compression for Apache2 and Nginx with 16 concurrent clients.

Bytes Apache RSA Nginx RSA Apache ECDSA Nginx ECDSA Apache HTTP Nginx HTTP

256 1.9% 1.7% 4.3% 1.1% 83.7% 39.8%
512 1.7% 0.9% 3.5% 1.5% 112.2% 34.3%

1024 1.1% 1.6% 4.2% 0.6% 136.4% 25.0%
2048 2.8% 2.3% 5.5% 0.4% 131.2% 68.2%
4096 2.8% 2.5% 8.0% 1.8% 140.1% 69.1%
8192 5.0% 4.6% 11.5% 3.8% 187.0% 72.4%

16,384 10.0% 8.9% 22.6% 13.2% 179.7% 117.0%
32,768 23.4% 18.9% 54.9% 38.2% 197.9% 179.5%
65,536 58.0% 55.7% 125.7% 93.3% 209.3% 291.1%

131,072 118.2% 122.3% 198.0% 146.2% 209.8% 337.4%

With the results presented it can be concluded that, in terms of energy efficiency, GZIP is not
recommended for large payloads, and has almost no effect on the payloads that will be typically
involved in IoT node communications. For payloads of 128 bytes and less, using GZIP compression
will not only increment power consumption, but it will also increase the size of the original data,
resulting in more data being transmitted through the network. Because of this, the results presented in
the next subsections were obtained without using any kind of compression.

Figure 9. lClient-side page size versus energy consumption for Apache2 and Nginx with 16 concurrent
clients, with and without GNU ZIP (GZIP) compression.
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Table 4. Client-side page size versus energy consumption difference (in percentage) between GNU ZIP
(GZIP) compression and no compression for Apache2 and Nginx with 16 concurrent clients.

Bytes Apache RSA Nginx RSA Apache ECDSA Nginx ECDSA Apache HTTP Nginx HTTP

256 −1.6% −1.3% −4.4% −5.0% 46.0% 19.2%
512 0.5% −1.5% −5.0% −5.2% 48.6% −3.2%
1024 0.1% − 1.3% −4.3% −4.5% 50.6% 11.4%
2048 0.5% −1.7% −4.2% −4.7% 60.8% 10.4%
4096 1.2% −0.6% −4.5% −7.1% 50.6% 9.8%
8192 2.1% 1.1% −1.8% −6.3% 41.3% −4.4 %

16,384 5.3% 2.6% 1.6% −3.9% 37.0% −3.4%
32,768 13.6% 9.8% 6.7% 3.8% 40.1% 8.8%
65,536 33.7% 24.8% 23.4% 10.5% 73.2% 28.9%
131,072 61.3% 41.9% 46.7% 23.5% 87.8% 43.6%

4.4. Comparative Analysis of RSA and ECC Energy Consumption and Data Throughput

Figures 10–12 present the energy consumption on the server-side expressed in mWh for different
payloads using 2, 16, and 128 concurrent clients, respectively. These three cases were selected to
illustrate low, medium, and high client-transaction load scenarios. Other amounts of concurrent client
tests are omitted since their results are very similar. Note that the oscillation of the two-concurrent
client curves (Figure 10) is higher than in the other two cases. This is due to the lower number
of samples averaged for this case, since only 400 requests are used, in contrast to 3200 and 51,200
requests for the 16 and 128 concurrent client scenarios. Therefore, increasing the number of concurrent
clients smooths the results and the differences between the cipher suites due to the larger number of
transactions averaged.

Figure 10. lServer-side page size versus energy consumption for Apache2 and Nginx with two
concurrent clients.
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Figure 11. lServer-side page size versus energy consumption for Apache2 and Nginx with
16 concurrent clients.

Figure 12. lServer-side page size versus energy consumption for Apache2 and Nginx with
128 concurrent clients.

Figure 10 shows that, for two concurrent clients, energy consumption is reduced by half when
using ECC. For 16 and 128 concurrent clients, ECC energy consumption savings achieve a 60%
reduction respect to the RSA implementation. Note that the gain with two concurrent clients is not
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larger due to the fact that the SBC processor is more time idle than in the cases when more clients are
sending requests. With 16 and 128 concurrent clients, the difference in energy consumption drops to
about a 40% reduction for a 128 kilobyte payload. Thus, large payloads increase energy consumption
due to internal input–output data operations and network data transmissions. This diminishes the
impact of the cipher suite in the energy consumption values, thus reducing the savings and the final
difference between cipher suites. Furthermore, by observing the HTTP energy consumption curve of
Figure 10, it can be concluded that the effect of large payloads on the energy consumption does not
depend on TLS or on the cipher suite selected.

Figure 13 presents the throughput expressed in requests per second for HTTP, ECDSA, and RSA
for different amounts of concurrent clients and for a payload size of 512 bytes. Figure 14 presents
the same results, but it removes the HTTP curves to observe better the differences between RSA and
ECDSA. A drop in performance can be seen for Apache as the number of concurrent clients rises,
both for RSA and ECDSA. This figure is a good example of how the implementation and configuration
influence the servers and justifies the presence in the comparison of Apache and Nginx instead of
showing results for only one server.

Once a minimal number of concurrent clients is reached, in this case 8, the server is constantly
responding to requests. This causes the requests per second to remain constant even if the number
of concurrent clients is increased. Comparing ECC with RSA, the former is able to handle more than
twice requests per second. This can be seen as a relevant result only for servers or IoT gateways that
need to handle multiple requests coming from hundreds or even thousands of IoT nodes.

Note that the inverse of requests per second value (i.e., 1/requests/second) represents the mean
response time for a single request. When calculating such a metric, a result can be obtained that an
RSA transaction takes approximately 0.012 s, while, when using ECC, it only takes 0.005 s. These delay
values are critical when real time actuation over IoT devices is required, and, since ECC is 2.5 times
faster than RSA, it represents a better option for these types of applications.

Figure 13. lServer-side concurrent clients versus throughput for Apache2 and Nginx with 512 bytes
of payload for Elliptic Curve Digital Signature Algorithm (ECDSA), Rivest–Shamir–Adleman (RSA),
and HTTP.
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Figure 14. Server-side concurrent clients versus throughput for Apache2 and Nginx with 512 bytes of
payload for Elliptic Curve Digital Signature Algorithm (ECDSA) and Rivest–Shamir–Adleman (RSA).

Figure 15 presents the requests per second per mWh (i.e., requests/s/mWh) for a 512-byte payload
and different concurrent clients. Once again, it can be observed that ECC consumes less energy than
RSA: is requires between 2 and 2.5 times less energy per request than RSA, depending on the total
number of concurrent clients.

Figure 15. lServer-side concurrent clients versus requests/mWh for Apache2 and Nginx with 512 bytes
of payload for Elliptic Curve Digital Signature Algorithm (ECDSA) and Rivest–Shamir–Adleman (RSA).
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The same power measurements were taken at the client-side. Figures 16–18 represent the same
results of Figures 10–12, but for the client. As it can be observed, at the client-side, ECDSA is still more
energy-efficient than RSA, but the difference is less dramatic than at the server-side. This difference
is due to the fact that, in the case of RSA, signing and verifying processes require asymmetric
computational operations costs, but they are almost symmetric for ECDSA, as other authors have also
observed [84]. It is important to note that, in the experiments performed, a 112-bit security level key is
being used for RSA in contrast with a more secure 128-bit security level key for ECDSA: even with
this difference, ECC is more efficient at both the server- and the client-side. It is also important to
remark that, in the tests performed, only server authentication was used. Client authentication might
be needed in some scenarios: in such a case, the server- and client-sides would obtain similar energy
consumption values, since both carry out signing and verifying operations.

Figure 19 shows the results for the same tests as Figure 15, but at the client-side. The results
present a reduction in the difference of energy consumption per request between RSA and ECDSA
compared to the obtained in server side. However, ECDSA still consumes about 20% less energy per
request than RSA.

Finally, Figure 20 illustrates the total energy consumption at server- and client-sides for a 512-byte
payload and 32 concurrent users. The total energy consumption is reduced about 50% when using
ECDSA instead of RSA. The specific energy consumption values for server- and client-side, expressed
in mWh, are shown in Table 5.

Figure 16. lClient-side page size versus energy consumption for Apache2 and Nginx with two
concurrent clients.
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Figure 17. lClient-side page size versus energy consumption for Apache2 and Nginx with 16
concurrent clients.

Figure 18. lClient-side page size versus energy consumption for Apache2 and Nginx with 128
concurrent clients.
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Figure 19. lClient-side concurrent clients versus requests/mWh Apache2 and Nginx with 512 bytes of
payload for Elliptic Curve Digital Signature Algorithm (ECDSA) and Rivest–Shamir–Adleman (RSA).

Figure 20. Total energy consumption for a 512-byte payload for 32 concurrent clients. Client and
server-side consumption stacked for Apache and Nginx using Elliptic Curve Digital Signature
Algorithm (ECDSA), Rivest–Shamir–Adleman (RSA), and plain HTTP.
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Table 5. Total energy consumption for a 512-byte payload for 32 concurrent clients. Client and
server-side consumption for Apache and Nginx using Elliptic Curve Digital Signature Algorithm
(ECDSA), Rivest–Shamir–Adleman (RSA), and plain HTTP.

Server and Cipher 1 Server Consumption (mWh) Client Consumption (mWh)

Apache RSA 17.28 8.38
Nginx RSA 16.36 8.02

Apache ECDSA 6.79 7.00
Nginx ECDSA 6.08 6.60
Apache HTTP 0.28 0.27
Nginx HTTP 0.26 0.28

1 Cipher or plain HTTP.

4.5. Frame Analysis

The main reasons to choose HTTP over other protocols oriented towards energy consumption
optimization, like CoAP or Message Queue Telemetry Transport (MQTT), are the repeatability of the
tests performed and the need for IoT fog gateways to support TCP/IP. HTTP is the most used protocol
on network communications, hence we consider it as the best option in terms of consistency and
implementation efficiency. The tests performed were aimed at determining the differences between
RSA and ECC when securing network communications. To understand better how the communications
protocol and compression affect the tests, as well as how both RSA and ECDSA cipher suites compare
to plain HTTP communications, an Ethernet frame analysis was carried out. The IoT scenario remained
the same as in the previous tests, but a desktop computer running Wireshark [100] was sniffing the
packets exchanged between the Orange Pi PCs. To transmit the frames to the desktop computer,
it was necessary to modify the TL-SG108 switch configuration to mirror the packages received in the
ports connected to the Orange Pi PCs to the port connected to the desktop computer. Note that the
time instants presented in the next figures are not the exact times when the data were received at the
Orange Pi PCs, but the instants when the frames reached the desktop computer running Wireshark.
While using a dedicated switch and a controlled network environment, these times can vary and have
to be treated as approximations.

Figures 21 and 22 present the handshake and data transmission times when sending 512 byte
and 128 kilobyte packets. The results were obtained using Apache and Nginx for all the cipher suites
and compression combinations tested in the previous experiments. In the figures, the handshake
time also contains the first compression steps when GZIP is enabled. As it can be seen in the figures,
when using GZIP, the first transmitted payload frame takes longer to be sent, since data have to be
compressed. The total transmission time is also higher, being more noticeable when using a 128 kilobyte
payload. For 512 byte payloads, there is a minimal difference in the total time when using Nginx.
Apache presents very similar times, being even faster when RSA is used. For 128 kilobyte payloads,
using no compression is always faster, with reductions in time of up to 46%. This makes GZIP not
recommended both in terms of energy consumption (as concluded in Section 4.4) and in terms of
actuation delay and throughput.

Comparing ECDSA with RSA, it can be seen that, for 128 kilobyte payloads, ECDSA greatly
reduces the total transaction time, being the main time reduction produced in the handshake as
expected. The differences in the handshake times between GZIP and no GZIP are due to the fact that
the time presented for the handshake also includes the first GZIP operations. For 512 byte payloads
and using NGINX, the time differences are even larger, since the savings in the handshake remain
constant, and the data transmission time is reduced. For Apache and 512 byte payloads, the times are
almost the same for all of the tests performed. The reason behind this unexpected behavior seems to
be an Apache implementation performance inefficiency in the TLS Handshake when ECDSA is used,
as explained in the analysis of Figure 23.
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Figure 21. Handshake and payload communication times for 512-byte and a 128-kilobyte payloads
using Elliptic Curve Digital Signature Algorithm (ECDSA), Rivest–Shamir–Adleman (RSA), and HTTP,
with and without GNU ZIP (GZIP) compression using Apache2. * HTTP handshake for HTTP, Transport
Layer Security (TLS) and HTTP handshakes for ECDSA and RSA.

Figure 23 presents a detailed analysis of the time involved in the main TLS handshake steps
and data transmission. The size of each colored bar represents the time elapsed from the previous
frame. It is important to note that for a 512 byte payload size using Apache with ECDSA, the Client
Key-Exchange frame is delayed compared to the other scenarios. This explains why Figure 23 presents
very similar time values for ECDSA and RSA, compared with Figure 22, where a clear difference can
be seen. It also explains the gap in requests per second between Apache and Nginx that can be seen in
Figure 14 and, consequently, the same gap in terms of requests per mWh in Figure 15. The reason for
this delay can be attributed to some kind of performance drawback due to Apache implementation
or concurrency configuration, although the specific cause remains unknown. Apart from that, it can
be observed that, in every scenario, the first frame containing a data payload is always transmitted
sooner when using ECDSA.

Table 6 shows the number of total data transmitted through the network, along with the number
of frames needed for each server and cipher suite, for a 512 byte and a 128 kilobyte payload, in the
cases when GZIP compression is enabled or disabled. Taking a closer look at the no-compression
transactions, it can be observed that, for a 512-byte payload, the RSA cipher suite transmits about 15%
more data than the ECC cipher suite. Likewise, the ECC cipher suite transmits about 130% more data
than plain HTTP.
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The number of frames is almost the same in both cipher suites, but such an amount is larger
than without security, due to the TLS handshake messages transmitted at the beginning of the
communications. However, for a 128 kilobyte payload, the total data transmitted is almost the
same for both cipher suites and plain HTTP. Specifically, RSA is the one that requires less frames,
followed by ECDSA and HTTP. This behavior is due to cumulative Acknowledgements ACKs, where
the same ACK frame is used to confirm several received frames. When using TLS, processing each
received frame takes more time than when using plain HTTP. In this interval of time, other frames can
arrive, and, in this case, only the ACK is sent to confirm all of them. Thus, the number of ACKs and
the total data transmitted are reduced.

Figure 22. Handshake and payload communication times for 512-byte and a 128-kilobyte payloads
using Elliptic Curve Digital Signature Algorithm (ECDSA), Rivest–Shamir–Adleman (RSA), and HTTP,
with and without GNU ZIP (GZIP) compression using Nginx. * HTTP handshake for HTTP, Transport
Layer Security (TLS) and HTTP handshakes for ECDSA and RSA.

As an example, and using the Apache results, if we take the Maximum Transmission Unit
(MTU) of our network (1514 bytes of frame length), each TCP frame contains 1448 bytes of payload.
For HTTP, only one package of data is sent, corresponding to the 128 kilobyte JSON. This results in
approximately 91 TCP segments. Taking into account the handshake (five frames) and FIN message
(three frames), a total of 190 frames should be sent if, for each TCP frame, an ACK is also sent, but only
160 frames are transmitted. Using the ECDSA cipher suite, the 128 kilobyte JSON is divided into
partitions of 16 kilobytes, corresponding to the TLS Record size, and then each of these partitions
is sent over TCP. Since the MTU is 1448 bytes, each partition will need 12 frames to be transmitted
(i.e., 16, 384/1448 = 11.31 rounded up to 12 whole frames, since no partial frames can be sent),
leaving a total of 96 TCP segments. Once again, taking into account the TLS handshake in this
case (10 frames) and the FIN message (six frames), 208 frames would be needed, but only 158 are
transmitted. With HTTP, 61 ACKs are sent, and with ECDSA, only 46 are sent, which results in an
average of 0.63 ACKs per TCP frame in HTTP and 0.48 ACKs per TCP frame in ECDSA.

Using GZIP compression for a 512 byte payload presents some data reduction and heavily
reduces the data and number of frames transferred for a 128 kilobyte payload, but, as it was seen
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before, these gains in network traffic do not compensate for the cost of compression and decompression
in terms of power efficiency.

Figure 23. Time elapsed until each main step of the Transport Layer Security (TLS) handshake, start and
end of the data transmission. * The frame contains several messages besides the Server Hello/Client
Key Exchange/Handshake Messages.

Table 6. Total data and frames transmitted using GNU ZIP (GZIP) and no compression for 512 byte
and 128 kilobyte payloads.

No Compression GZIP

512 Bytes 128 Kilobytes 512 Bytes 128 Kilobytes

Server and Cipher 1 Bytes Frames Bytes Frames Bytes Frames Bytes Frames

Apache RSA 4206 16 142,303 127 4141 16 85,777 90
Nginx RSA 4104 15 142,428 129 3957 15 85,177 91

Apache ECDSA 3626 16 143,770 158 3561 16 85,395 93
Nginx ECDSA 3524 15 143,366 152 3438 16 84,598 91
Apache HTTP 1613 10 142,081 160 1519 10 83,272 95
Nginx HTTP 1531 9 144,263 163 1450 9 83,346 98

1 Cipher or plain HTTP.

4.6. Comparison to Previous Studies in Terms of Energy Consumption

In this subsection, previous similar studies are analyzed, taking into consideration the results
obtained and the testing methodology employed. Main references are presented in Table 7. For each
reference, the closest results to our test experiments are presented. Moreover, the table presents a brief
description of the used hardware, the algorithms that each solution compares, the energy consumption
results and, finally, an evaluation of the methodology employed. In the last column, the resemblance
and dissimilarity with our analysis and testing methodology are remarked on in order to perform a
fair comparison for each reference.
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Table 7. Analysis of the main RSA and ECC comparisons available.

Ref. Hardware Algorithms Main Results Methodology EvaluationCharacteristics

[84]
Compaq iPAQ H3670
SA-11000 @ 206
MHz/64 MB RAM

RSA-RC5-SHA1 and
ECC-AES-MD5

Energy consumption savings of 16.7 % for a
7.9KB payload when using the ECC cipher
suite compared to the RSA one.

Outdated cipher suites, key sizes are not explicitly specified.

[24]

Mica2dot sensor
platform,
ATmega128L @
4 MHz

Handshake protocol
based on 1024-bit
RSA and 160-bit ECC

Energy consumption savings of 76.2 %
when using ECC-160 compared to
RSA-1024.

Insecure key sizes. Ad-hoc and simplified key-exchange
algorithm and certificates.

[82]

BeagleBoard, Dual
Core ARM Cortex-M3
@ 200 MHz/
512 MB RAM

192, 224 and 521-bit
ECC and 192, 256 and
512-bit RSA

Up to 93.02 % reduction of energy
consumption when using ECC compared
to RSA.

It is a direct comparison between both algorithms using the same
key sizes. The relative security levels are not taken into account.
Energy consumptions are aggregated for each algorithm, without
presenting individual results for the different key sizes employed.
Only key generation is measured.

[101]
STRONGARM CPU @
206 MHZ

2240-bit RSA and
233-bit ECDSA

ECDSA key generation found to be more
than 73 times faster than RSA. Total time of
generation and verification found to be
almost 16 times faster for ECDSA
compared to RSA.

It is focused on time measurements, no power consumption
metrics presented.

[102]
Personal Computer
with Core 2 Duo CPU
@ 2.0 GHz/4 GB RAM

2048-bit RSA and
163-bit ECDSA

Up to 4 times faster TLS-OBC [103]
certificate generation when using ECDSA
compared to RSA.

Only client authentication times are measured. Personal
computer environment. No energy consumption
metrics presented.

[104]

Intel XScale PXA250 @
400 MHz/64 MB
RAM and Intel XScale
PXA270 @ 624
MHz/64 MB RAM

2048-bit RSA and
224-bit ECDSA

Up to 78 % energy consumption reduction
when using ECDSA compared to RSA for
PXA250. Only 18 % energy consumption
savings for PXA270.

This solution tests cryptographic algorithms but no actual
network transactions involving them are conducted. Power
consumption is estimated with reference values obtained from
battery status information using a software approach without
external hardware. Battery status information is obtained using
the same device that runs the cryptographic algorithm.
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After analyzing all of them, it can be concluded that none of the references present a fair
comparison of ECC and RSA valid for current and future IoT scenarios. The hardware platforms
presented were not chosen having an IoT scenario in mind. Some references use outdated
algorithms, insecure key sizes, or make unfair comparisons without taking into account security
levels. Other authors employ ad hoc implementations that are not useful in real IoT deployments.
Various references do not present energy consumption metrics, or the power consumption values are
estimated and not measured with precise hardware. Moreover, the vast majority perform isolated tests
where no network communications are taken into account.

Contrarily, the tests presented in this paper take into account all of these details. The hardware
testbed was chosen to remain comparable with future platforms in the years to come. Furthermore,
the cipher suites and the key sizes employed guarantee acceptable security levels for current and
future IoT gateway developments. The chosen security library is OpenSSL, an open and widely used
implementation of the TLS standard. For instance, the two most extensively used web servers (Apache
and Nginx) are employed and compared, and the network communications are carried out over a real
network environment. On top of that, energy measurements are performed using isolated and precise
hardware with a dedicated SBC.

5. Conclusions

In this article, the suitability and possible gains of using ECC digital signing algorithms, instead
of the extensively used RSA for securing IoT fog computing gateway communications, was evaluated.
It can be stated that even a small difference in energy consumption and computational load results in a
huge impact on IoT gateways, especially on the ones with a constrained power supply, so determining
the best way of securing their communications is a critical step for a successful and broad deployment.

Therefore, this article made three main contributions aimed at fostering security in
resource-constrained IoT gateways. First, in order to establish the basics, it presented a detailed
review of the current security, performance capabilities and the problems related to IoT gateways
for fog computing. Such a review analyzed the hardware limiting factors, the current state-of-the
art hardware platforms and security mechanisms, and its estimated evolution for the near-future,
using a general IoT fog computing architecture as a reference. The review was completed with a clear
description of TLS. Moreover, the main cipher suites for IoT applications and the state-of-the-art of
performance and energy consumption comparisons between ECC and RSA were analyzed. Special care
was taken to identify the main limitations when applying the power consumption and performance
analysis techniques available in the literature to IoT environments. A detailed explanation of these
limitations, and how they are sorted out by the suggested testbed, was also presented.

Second, a hardware testbed was created that allows for using the latest TLS implementations
and cipher suites, and performing energy consumption and data throughput tests in a real scenario.
The power consumption measurement system guarantees precise and unbiased samples, since it is fully
isolated from the rest of the elements being measured. At the same time, the low power consumption
and computing capabilities of the Orange Pi PC employed represent the current and short-term future
of the energy-efficient IoT gateways that will be essential in low-latency fog computing networks.
Moreover, the baseline power consumption test performed proved the suitability of the testbed.

Third, several tests were conducted to evaluate the impact of TLS in IoT communications (between
gateways and between the cloud and a gateway), in order to measure the differences between RSA and
ECC in terms of security, scalability, power consumption, and data throughput. To make a rigorous
comparison in a real-world scenario, the two cipher suites compared (i.e., ECC and RSA) were selected
following the NIST guidelines. Nevertheless, the key size used for the ECC cipher suites provides
greater level of security than the key size selected for RSA (256-bit ECC provides a strength of 128
while 2048-bit RSA provides a strength of 112).

The experiments made use of two different HTTP servers, with the aim of eliminating any
possible bias introduced by the particular server implementation considered. As it is shown in the
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experiments, there is a small difference in power consumption and throughput between both servers,
but a substantial difference can be observed between RSA and ECC across all the tests performed.

ECC greatly outperformed RSA in terms of both power efficiency and communications
throughput. In an IoT fog scenario as the one described in Figure 1, the gateways can act both
as servers and clients since data requests can be horizontal and vertical, involving IoT nodes or other
fog devices. The tests performed allowed for accurately determining the impact of each cipher suite
on both sides of the communications. The server-side power consumption when using RSA doubles
the one obtained with ECC, while the client-side presents a 15–20% lower power consumption for the
ECC scheme. It is important to note that in the tests performed only the server was using a certificate
(i.e., only Server Authentication was used), but in most IoT scenarios, client authentication would be
also needed. In terms of throughput, ECC is always better than RSA, being able to double the number
of requests per second when moderate levels of concurrency are reached.

IoT end devices are usually treated as clients, since the embedded hardware used to
implement them is not able to accommodate the necessary certificates and the ciphering algorithms,
while maintaining reduced power consumption and reasonable response times. By using ECC, the new
emerging hardware platforms for end devices could overcome these limitations and perform as servers
or implement client authentication. More work has to be performed to determine the feasibility of
using ECC certificates on such devices.

The tests also demonstrated that in the case of transmitting payloads of less than 128 bytes, the use
of compression causes larger amounts of data to be transmitted, and, for any of the payload sizes
tested, slower transactions and higher power consumption.

A detailed frame analysis showed that the handshake takes more time in the RSA cipher suite than
in the ECC one, with remaining data transmission time unaffected. This was the expected result, since
both cipher suites only differ in the public key algorithms, the symmetric key and hash algorithms
being exactly the same. Therefore, once the TLS Handshake protocol finishes, the TLS Record protocol
will perform the same in both cases. Moreover, the total data transmitted is almost the same between
both cipher suites, although they differ in the number of frames exchanged due to cumulative ACKs.

After all the experiments were performed, it can be concluded that, in specific resource-constrained
IoT scenarios where energy efficiency and throughput are essential, ECC cipher suites should replace
RSA cipher suites. Moreover, for the security levels required nowadays, measurements indicate that
ECC obtains power consumption reductions of up to 50% and a data throughput that doubles RSA
in most scenarios. Furthermore, considering the near-term prospects of more secure levels, the key
sizes needed in RSA will make it impractical not only for IoT fog computing applications, but for any
secure connection.
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Abbreviations

ACPI Advanced Configuration and Power Interface
AES Advanced Encryption Standard
CA Certification Authority
DH Diffie–Hellman
DHE Ephemeral Diffie–Hellman
DSA Digital Signature Algorithm
DTLS Datagram Transport Layer Security
ECC Elliptic Curve Cryptography
ECDHE Elliptic Curve Diffie–Hellman Ephemeral
ECDSA Elliptic Curve Digital Signature Algorithm
FTPS File Transfer Protocol over SSL
GCM Galois/Counter Mode
HMAC Hash Message Authentication Code
IMAPS Internet Message Access Protocol over SSL
IoT Internet of Things
KDF Key Derivation Function
MAC Message Authentication Code
MitM Man-in-the-Middle Attack
NIST National Institute of Standards and Technology
PFS Perfect Forward Secrecy
PUF Physical Unclonable Functions
RSA Rivest–Shamir–Adleman
RTSP Real Time Streaming Protocol
SBC Single Board Computer
SHA Secure Hash Algorithm
SMTPS Simple Mail Transfer Protocol Secure
SSL Secure Socket Layer
TDES Triple Data Encryption Standard
TDEA Triple Data Encryption Algorithm
TLS Transport Layer Security
WSN Wireless Sensor Network
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