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Abstract: In this paper, a building extraction method is proposed based on a stacked sparse 

autoencoder with an optimized structure and training samples. Building extraction plays an 

important role in urban construction and planning. However, some negative effects will reduce the 

accuracy of extraction, such as exceeding resolution, bad correction and terrain influence. Data 

collected by multiple sensors, as light detection and ranging (LIDAR), optical sensor etc., are used 

to improve the extraction. Using digital surface model (DSM) obtained from LIDAR data and 

optical images, traditional method can improve the extraction effect to a certain extent, but there 

are some defects in feature extraction. Since stacked sparse autoencoder (SSAE) neural network can 

learn the essential characteristics of the data in depth, SSAE was employed to extract buildings 

from the combined DSM data and optical image. A better setting strategy of SSAE network 

structure is given, and an idea of setting the number and proportion of training samples for better 

training of SSAE was presented. The optical data and DSM were combined as input of the 

optimized SSAE, and after training by an optimized samples, the appropriate network structure 

can extract buildings with great accuracy and has good robustness. 
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1. Introduction 

Nowadays, aerial optical images and digital surface model (DSM) obtained from Light 

detection and ranging (LIDAR) are main high resolution data for citizien remote sensing 

applications [1–4]. 

As the most typical features of artificial landscapes, buildings play an important role in urban 

planning, urban development and military affairs [5].  

How to extract buildings quickly and accurately from high-resolution remote sensing data has 

become the primary problem that needs to be studied. With the rapid development of remote 

sensing technology, multiple sensors remote sensing data also show high-resolution features. This 

provides a good condition for the analysis of interested objects [6]. However, complex information in 

the images brings negative effects to building extraction. The traditional remote sensing image 

building extraction methods can be summarized as the following three categories [7]: (1) The line 

and corner extraction-based methods. These methods usually first draw straight lines on the basis of 

the straight line, and then the lines are grouped, merged and removed, and finally screens out the 

exact outline of the building [8–10]; (2) Region segmentation—based methods-these methods extract 

the image characteristics, and then get the building areas. For example, the texture feature of the 

building can be obtained by using the gray level co-occurrence matrix, the gray-difference matrix 

and the Gabor filter of the extracted image, and the extraction of the building is realized by the 
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segmentation of the texture feature [11]; (3) Methods based on auxiliary features or information 

[12–14]. Due to the apparent height difference between the building areas and the ground, the 

building areas are judged by the height between the buildings and other surrounding objects. These 

traditional building extraction methods typically utilize a single optical image or DSM data, and 

these methods have their own limitations. The methods based on geometric boundaries have the 

problem of not making full use of texture features and spatial features [15], which leads to extraction 

errors, and these methods construct polyhedral building models to judge the building or to fit the 

building, but this model for the appearance of continuous or complex building adaptability is not 

strong, and the robustness is poor [16].  

The region segmentation-based methods depend on the accuracy of segmentation, and the error 

is difficult to avoid which is caused by the stacking and shadowing of the buildings. Also there are 

some classification based methods as image fitting methods, random forests supervised hierarchical 

classification were also used and obtained an good results [17–19]. Building extracts based on DSM 

auxiliary data are highly expensive for data acquisition [2,18,19]. The large-scale acquisition cost of 

such data is too high and the update cycle is uncertain. 

In addition to the above method, after the gradual development, some methods from the 

building model have been proposed. These methods are based on multi-dimensional 

high-resolution remote sensing data, starting from the semantic model of buildings. The 

model-driven building extraction methods mainly includes the method based on semantic model 

classification with a prior knowledge model. 

With the introduction of the Bayesian network and probability graph model, some researchers 

also use probabilistic latent semantic analysis (PLSA) [20] and latent Dirichlet allocation (LDA) 

theme models [21] to carry out the work. On the other hand, the Markov Random Field (MRF) [22], 

Conditional Random Field (CRF) [23], and multi-scale random field, etc., are based on image 

primitives (pixels or split regions). The spatial relationship between the building models was used 

for high-resolution remote sensing image building object extraction. In addition, many researchers 

have attempted to use the curve evolution technique, including snakes or active contour models, 

snakes deformation model, and level set, based on a priori model for building extraction. 

Based on the classification of the semantic model, the spatial relationship between objects and 

the background is still insufficient. The precision of the extraction needs to be improved. Due to the 

variety of artificial buildings, the dependence on the prior knowledge is large when the building 

model is established. It is difficult to find a pervasive model to describe; based on the “wide range of 

priority” of the visual cognitive theory of the method is currently only stay in the simple object 

recognition and extraction. 

In order to improve the effectiveness of building extraction, it is possible to extend and integrate 

the existing methods or models of training by means of incremental learning. It is worth noting that 

the intelligent algorithm of machine learning can be used to optimize and adapt the model 

parameters. With the rapid development of theoretical methods of machine learning, such as the 

emergence of manifold learning and sparse expression, the depth of learning theory and other 

methods in the field of image processing and artificial intelligence has been widely used. 

As a result, properly combining an optical image with DSM data can be a better choice. The 

sparse autoencoder network has a very good feature learning ability. We present a Stacked Sparse 

Autoencoder (SSAE) framework [24] to extract the buildings in the high-resolution remote sensing 

images. However, training sample selection and network structure settings of the SSAE have a 

significant impact on its accuracy. For better building extraction using optical images and DSM 

together, our contributions are these: (1) a better setting strategy of SSAE network structure is given; 

(2) an idea of setting the number and proportion of training samples for better training of SSAE is 

presented. The optical data and DSM were combined as an input of the optimized SSAE, and after 

training by an optimized samples, the appropriate network structure can extract buildings with 

great accuracy and has good robustness. The following of the paper is set as: Section 2 reports the 

theory and method of the optimized SSAE. In Section 3, experimental analysis and results are 

shown. In Section 4, the work is concluded and discussed. 
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2. Methods 

2.1. The Framework 

The framework is shown in Figure 1. First, the three bands of optical data and DSM data were 

input into a stacked sparse autoencoder, and then the training samples were analyzed and studied to 

determine the appropriate size and proportion of training samples. After obtaining the appropriate 

training samples, analysis the influences of the number of hidden neurons and the number of hidden 

layers on the accuracy. Then the appropriate training samples and structure of SSAE is obtained 

which can be used for better building extraction. 

IR, R, G 

band

DSM 

data

Optimizing 

structure of 

network 

SSAE

Optimized 

training 
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results

 

Figure 1. The framework of the building extraction method. 

The greedy layer wise approach was employed for pre-training stacked sparse autoencoder by 

training each layer in turn [25]. After the pre-training, the trained stacked sparse autoencoder will be 

employed to building and non-building patches extraction in testing set. All layers were combined 

together to form a stacked sparse autoencoder with hidden layers and a final softmax to extract 

buildings pixels from high-resolution remote sensing images and DSM. 

2.2. Stacked Sparse Autoencoder 

The stacked sparse autoencoder is an unsupervised feature learning algorithm. Stacked sparse 

autoencoder has all the advantages of the depth network and more powerful expression, tends to 

learn the characteristic representation of the input data. For a stacked sparse autoencoder, the first 

layer can learn the first-order features, the second can learn second-order features, etc. 

 

Figure 2. A simple example of an autoencode. 
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Basically, training an autoencoder is to find the optimal parameters by minimizing the 

discrepancy between input x and its reconstruction xˆ. As shown in Figure 2. The encoder is the 

input x to the implicit representation of the mapping of h, expressed as 

         fh f x S Wx b    (1) 

Here S() is activation function which are defined by the sigmoid logistic function: 
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The final expression is represented by  l
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(5) 

The first term in the above formula is the mean square error term, and the second term is the 

regularization term (also called the weight attenuation term). 

We use the bulk gradient descent method to solve the objective function. Each iteration in the 

gradient descent method is required to update the parameters. The reverse derivative algorithm is 

used to calculate the partial derivative, after obtaining the loss function and its partial derivative, the 

gradient reduction algorithm is used to solve the optimal parameters of the network. 

The stacked sparse autoencoder neural network is a neural network composed of multi-layer 

sparse self-encoders, the outputs of each layer is wired to the inputs of the successive layer, and the 

same method to train all the hidden layer, with the output of the last hidden layer as a 

multi-classifier soft-max input with the original data tag to train the soft-max classifier network 

parameters. Finally these network parameters as the entire neural network parameters, including all 

the hidden layers and a soft-max output layer, then find the minimum value for the price function 

parameters, and this is the entire network of the optimal parameter values. 

As shown in Figure 3, we use such a stacked sparse autoencoder, with optical image and DSM 

data as the input, to extract the buildings. 

 

Figure 3. The illustration of the stacked sparse autoencoder used in this work. 

2.3. Evaluation 
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The extraction results of different methods were evaluated as ‘Accuracy’. ‘Accuracy’ is a measure 

of the correct point to all points: 

  
T

Accuracy
N

  (6) 

T is the point that is correctly extracted, including the number of building pixels that had been 

correctly extracted and the number of non-building pixels that had been correctly extracted. N 

represents all the points in this image. 

The extraction results of different methods were also evaluated in terms of ‘Completeness’ 

‘Correctness’ and ‘quality’, defined as in Equations (7)–(9): 
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In these equations, TP, FN, and FP are the numbers of true position, false negative, and false 

positive, respectively. 

Here the true position is the number of building pixels that had been correctly extracted based 

on the ground truth. False negative, and false positive are defined in similar ways. 

3. Experiments and Analysis 

3.1. The Generation of Training and Testing Sets 

In this experiment, several groups of optical images and DSM were collected as the input data 

to a stacked sparse autoencoder. Digital aerial images are used as experimental data. This digital 

aerial images are a part of the high-resolution DMC block of the German Association of 

Photogrammetry and Remote Sensing (DGPF) test. Including the near infrared (IR) spectral band, 

red (R) spectral band and green (G) spectral band, the spatial resolution is 9 cm. At the same time 

provide matching DSM data and real orthographic projection (standard true map), which DSM data 

spatial resolution of 9 cm. The ground truth map has a spatial resolution of 9 cm and a data 

quantization of eight bits. 

We selected digital aerial images and their DSM data in Area 30 and Area 37 as the training data 

set. The luminance of buildings in Area 30 is in the low range, while the luminance of the buildings 

in Area 37 color is high. The size of each image is 1500 pixels × 1500 pixels. In the first layer or input 

layer, the input is the raw pixel intensity of square patch which is represented as column vectors of 

pixel intensity its size is 2,250,000 pixels × 4 floors. The four bands include the IR, the R, the G, and 

the DSM, and all are normalized. 

Area 34 was selected as test data, since the buildings in Area 34 are of various luminance. The 

digital aerial images and DSM were also used. The size of this images is 2500 pixels × 1000 pixels, 

and is represented as column vectors of pixel intensity whose size is 2,500,000 pixels × 4 floors. 

Likewise, the four layers include the IR band, the L band, the G band, and the DSM, and all are 

normalized. Moreover, it can be found in the contours of each areas that the terrains have ups and 

downs, as shown in Figures 4c and 5e,f, and some ground in the high-altitude areas have larger 

values of DSM than the roof of the buildings that in low-altitude areas. This can be used to verify 

the performance of our methods in different cases of terrain. 
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(a) (b) (c) (d) 

Figure 4. The Vaihingen test area: (a) Area 34; (b) the ALS DSM data of Area 34; (c) the contour of the 

Area 34; and (d) the ground truth map of Area 34. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 
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(g) (h) 

Figure 5. The Vaihingen test area: (a) Area 30; (b) Area 37; (c) the DSM of Area 30; (d) the DSM of 

Area 37; (e) the contour of the Area 30; (f) the contour of the Area 37; (g) the ground truth map of 

Area 30; and (h) the ground truth map of Area 37. 

3.2. Impact of the Different Proportion of Training Samples 

A total of 100,000 training samples were randomly selected from the 30th and 37th regions, and 

the neural networks were trained according to different proportions. Each image has 225,000 pixels, 

and the 30th and 37th regions have a total of 4,500,000 pixels. The selected building pixels to 

non-building pixels ratio was different for the next experiment. Using a network structure with two 

hidden layers. The first and second hidden layers have 200 and 100 hidden units, respectively. 

The results show a striking effort of the ratio of building pixels to non-building pixels on 

performance in test. From Figure 6, it can be intuitively seen that when the ratio of building pixels to 

non-building pixels is 4 to 6, the result of the experiment is the best. Less than this ratio, the building 

pixels are not extracted, and larger than the ratio is a large number of non-building pixels are 

divided into building pixels. This is because the encoder network fully learns the characteristics of 

the building area and non-building areas. Consistent results can also be obtained from in Table 1. 

   
(a) (b) (c) 
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(d) (e) (f) 

Figure 6. Different proportions of extraction results: (a) the ratio of buildings to non-buildings is 2 to 

8; (b) the ratio of buildings to non-buildings is 3 to 7; (c) the ratio of buildings to non-buildings is 4 to 

6; (d) the ratio of buildings to non-buildings is 5 to 5; (e) the ratio of buildings to non-buildings is 6 to 

4; and (f) the ratio of buildings to non-buildings is 7 to 3. 

Table 1. Different proportions of extraction results. 

 2:8 3:7 4:6 5:5 6:4 7:3 

Accuracy 86.79% 93.01% 93.93% 89.52% 68.33% 67.03% 

quality 48.49% 73.40% 77.07% 68.49% 43.23% 42.51% 

3.3. Impact of the Different Size of Training Samples 

The ratio of building and non-building training samples was randomly selected according to 

the proportion of 4 to 6 constituting the training data, and the size of the training data was changed 

to discuss the effect of the training data on the experimental results. The experimental data were 

selected in different cases (from 1000, 6000, 10,000, 150,000, 30,000, 100,000, 150,000, and 300,000 

training sample points). As shown in Figure 7 and Table 2, the size of the training sample has a 

certain effect on the detection. From 1000 training sample points and 300,000 training sample points 

in Figure 8, it can be seen that excessive training samples can cause some non-building pixels to be 

divided into building pixels, and training samples that are too small can cause the building pixels to 

be divided into non-building pixels. A suitable training sample can obtain the best results. 

Table 2. The results of different sizes of training samples. 

 1000 6000 10,000 15,000 30,000 100,000 300,000 600,000 

Accuracy 75.8% 94.3% 94.5% 95.3% 95.1% 93.9% 91.4% 87.2% 

quality 6.22% 78.9% 79.7% 81.6% 82.6% 77.5% 68.7% 58.7% 
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(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

Figure 7. Results of different size of extraction: (a) 1000 points; (b) 6000 points; (c) 10,000 points; (d) 

15,000 points; (e) 30,000 points; (f) 100,000 points; (g) 150,000 points; and (h) 600,000 points. 
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Figure 8. The effect of the size of the training sample on the results 

3.4. Impact of the Different Network Structure 

In order to get a more obvious result, the use of a group of poor results of the data, the 

experiment was carried out under adverse conditions. 

As shown in the Figure 9, the entire Area 30 is divided into two parts, the left part of the steps 

are in accordance with the above steps to build the training samples: that is, according to the ratio 4 

to 630,000 points are selected, and the right part of the whole map as a test sample. 

Table 3 shows the comparison about the different number of layers of the neural network. 

When the numapoch and batchsize are the same, the greater number of hidden layers of the neural 

network show better results. 

Table 4 shows the effect of the trend of neuronal changes in the hidden layer on the results 

when the number of hidden layers is the same. When the number of neurons in the hidden layer 

decreases by layer, the result is the better. When the number of neurons in the hidden layer is 

constant, and the number of neurons in the hidden layer is increasing, the effect is not good. 

Table 3. Different proportions of extraction results. 

Network Structure Numepochs Batchsize Accuracy Quality 

[160 100 40 20] 50 100 92.12% 70.0% 

[160 100 40] 50 100 90.87% 67.2% 

[100 40 20] 50 100 90.40% 66.3% 

[160 40 20] 50 100 91.08% 65.6% 

[160 100] 50 100 90.39% 65.0% 

[160 40] 50 100 84.80% 55.7% 

[100 40] 50 100 90.36% 64.7% 

[40 20] 50 100 89.31% 62.9% 

[160] 50 100 86.93% 57.7% 

[100] 50 100 88.04% 59.6% 

[40] 50 100 87.68% 58.9% 

[20] 50 100 87.99% 60.1% 
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(a) (b) 

Figure 9. The area of the experiment data is selected: (a) the training data is selected on the left side 

of Area 30; and (b) the test data is selected on the right side of zone 30. 

Table 4. Different proportions of extraction results. 

Network structure Numepochs Batchsize Accuracy Quality 

[160 100 40 20] 50 100 92.12% 70.0% 

[20 40 100 160] 50 100 89.27% 63.8% 

[40 40 40 40] 50 100 88.35% 61.6% 

[100 100 100 100] 50 100 88.35% 61.3% 

[160 40 20] 50 100 91.08% 65.6% 

[20 40 160] 50 100 89.54% 63.6% 

[160 100 40] 50 100 89.87% 67.2% 

[40 100 160] 50 100 88.62% 62.2% 

[160 160 160] 50 100 87.07% 59.1% 

[100 100 100] 50 100 89.20% 63.2%  

[40 40 40] 50 100 88.15% 61.1% 

[20 20 20] 50 100 88.82% 62.1% 

3.5. Comparison of Different Methods 

We compare stacked sparse autoencoder with a deep Belief Network (DBN) and Support 

Vector Machine (SVM) to verify that the selected samples and network structures are appropriate. 

To attain these aims, the most appropriate training data were used in Area 30, Area 34 and Area 37, 

respectively, and the whole graph was tested for comparison. 
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(a) (b) (c) 

Figure 10. The result of Area30: (a) The result of DBN; (b) The result of SSAE; (c) The result of SVM. 

Table 5. Different methods of extraction results Area 30. 

 Accuracy Completeness Correctness Quality Time 

DBN 92.46% 89.49% 83.20% 75.79% 21.30 s 

SSAE 94.20% 86.90% 90.73% 79.81% 23.60 s 

SVM 73.63% 100% 73.63% 73.63% 3650.33 s 

SVM parameters were set to c = 3.0314; g = 84.4485. DBN chose two hidden layers of the network, 

the first and second hidden layers have 200 and 100 hidden units, respectively. In more than two 

hidden layers of the moment, DBN will be a fitting phenomenon. The stacked sparse autoencoder 

network structure contains five hidden layers, the hidden layers have 160, 100, 40, 20 and 10 hidden 

units, respectively. 

   
(a) (b) (c) 

Figure 11. The result of Area37: (a) the result of DBN; (b) the result of SSAE; and (c) the result of 

SVM. 

Table 6. Different methods of extraction results. 

 Error rate Completeness Correctness Quality Time 

DBN 94.36% 92.56%  86.65%  81.01%  18.73s 

SSAE 95.45% 90.71%  90.98%  83.22%  18.61s 

SVM 75.20% 100% 75.20% 75.20% 4247.86s 

Using the same settings of data, training data and test data from the same image, the size of the 

training data is 30,000, the size of test data is 2,500,000. In the training data, the ratio between the 

building and the non-building is 4 to 6. 
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(a) (b) (c) 

Figure 12. The result of Area 34: (a) the result of DBN; (b) the result of SSAE; and (c) the result of 

SVM. 

The results of Area 30 and Area 37 were shown in Tables 5 and 6 and Figures 10 and 11, it 

could be found that with above settings, SSAE and DBN could get a good accuracy, but SVM will 

be the whole image to determine the non-buildings though parameters optimization were done. The 

reason could be over-fitting. SVM in the treatment of such data will appear such an unstable 

situation. Table 7 and Figure 12 show the comparison of the DBN, SSAE, and SVM in Area 34, 

respectively. We can see that the results of SVM is the best, but it takes almost five times the time of 

SSAE. The DBN method works the worst. SSAE results better than DBN, and spend almost the same 

time. 

Table 7. Different methods of extraction results of Area 34. 

 Accuracy Completeness Correctness Quality Time 

SSAE 96.23% 94.71%  91.07%  86.66% 21.47 s 

DBN 94.28% 85.38%  92.37%  79.76%  22.21 s 

SVM 97.49% 98.18% 98.43% 96.66% 110.21 s 

4. Discussion and Conclusions 

In this paper, we proposed a remote sensing building extraction method, based on an effective 

stacked sparse autoencoder network, which combines the original optical and DSM data as input 

and extract the buildings in the high-resolution data. Although there are many feature-based or 

fusion methods might obtain better performance than SSAE, we believe SSAE can find more abstract 

and unusual features. Moreover, finding an optimized using idea of SSAE is far-reaching 

significance. As a result, we mainly focused on discussing two problem on remote sensing building 

extraction: (1) the suitable size and proportions of training samples for deep learning based 

methods; (2) the better structure of SSAE based methods. According to our experiments, we found 

appropriate settings of the training sample size was 15,000 points, and the better proportion 

between the building and the non-building was 4:6. For the structure of SSAE, according to our 

experiments, the number of neurons in the hidden layer should be decreased set layer by layer, and 

the most suitable number of layers is 5, with 160-100-40-20-10 hidden units, respectively. 
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In our idea, the units composing different structure of SSAE are not only highly isolated 

abstract features, but can also be considered as a method of thinking to do one specific thing, the 

layers can be the levels of thinking, and the values of each unit is the weight of one of some unsure 

factor. In the experiments, better results were obtained by the decreased set structure, so it could be 

deduced that sub-total way of thinking is suitable for building detection with LIDAR DSM and 

optical images, and the sub-total way of thinking can be thought as the unusual features of this 

application. Moreover, five levels of thinking with corresponding weights of each factors is an ideal 

trade off. Furthermore, it is also important that not each isolated factor itself determine the result 

directly, but the way of thinking constructed by the SSAE which can lead to an ideal processing for 

some specific applications, with some appropriate number and proportions of prior samples to 

train the way of thinking. 
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