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Abstract: Energy harvesting, which offers a never-ending energy supply, has emerged as a prominent
technology to prolong the lifetime and reduce costs for the battery-powered wireless sensor networks.
However, how to improve the energy efficiency while guaranteeing the quality of service (QoS) for
energy harvesting based wireless sensor networks is still an open problem. In this paper, we develop
statistical delay-bounded QoS-driven power control policies to maximize the effective energy
efficiency (EEE), which is defined as the spectrum efficiency under given specified QoS constraints per
unit harvested energy, for energy harvesting based wireless sensor networks. For the battery-infinite
wireless sensor networks, our developed QoS-driven power control policy converges to the Energy
harvesting Water Filling (E-WF) scheme and the Energy harvesting Channel Inversion (E-CI) scheme
under the very loose and stringent QoS constraints, respectively. For the battery-finite wireless sensor
networks, our developed QoS-driven power control policy becomes the Truncated energy harvesting
Water Filling (T-WF) scheme and the Truncated energy harvesting Channel Inversion (T-CI) scheme
under the very loose and stringent QoS constraints, respectively. Furthermore, we evaluate the outage
probabilities to theoretically analyze the performance of our developed QoS-driven power control
policies. The obtained numerical results validate our analysis and show that our developed optimal
power control policies can optimize the EEE over energy harvesting based wireless sensor networks.

Keywords: energy harvesting; quality of service (QoS); power control; energy efficiency optimization;
wireless sensor networks

1. Introduction

Energy harvesting offers a promising solution to prolong the lifetime of battery-powered wireless
sensor networks. Different from the conventional energy supplies that suffer from limited lifetime,
energy harvesting can provide the never-ending supply of energy for wireless sensor networks [1–4].
A large number of renewable energy sources, i.e., radio frequency (RF) signal, thermoelectric generator,
vibration absorption device, etc. [5,6], can be exploited to harvest energy for wireless sensor nodes.
Due to the random distribution and mobility of harvested energy powered sensor nodes, the energy
harvesting often intermittently occurs, resulting in the very low energy efficiency for wireless sensor
networks [7,8]. Therefore, it is very important to significantly increase the energy efficiency for energy
harvesting based wireless sensor networks.

Recently, the energy efficiency in energy harvesting based wireless communications and networks
were studied [9–11]. The authors of [9] developed the power allocation scheme to maximize the
energy efficiency of orthogonal frequency division multiple access (OFDMA) based wireless powered
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communications. In order to improve energy efficiency, the authors of [10] jointly exploited full-duplex
and massive multiple-input multiple-output (MIMO) technologies in energy harvesting based small
cell networks. The joint energy allocation and energy cooperation scheme is proposed in [11] to
maximize the energy efficiency for macro-small wireless networks, where each small-cell harvest
energy from the energy sources. These works mainly optimize the energy efficiency under the
short-term causal energy constraint. However, in practice, the harvested energy for the transmitter is
sporadic and fluctuated [12]. The energy needs to be eventually accumulated up to a certain amount in
the rechargeable battery for future data transmissions [8]. Hence, it is needed to resort to the long-term
energy harvesting model [7,13–16]. In [7], a distributed power allocation, power splitting and relay
selection algorithm is proposed to maximize the energy efficiency for cooperative clustered wireless
sensor networks. The authors of [13,14] optimized the energy efficient resource allocation for the RF
energy harvesting based collaborative mobile clouds. The authors of [15] maximized the cumulated
throughput for RF based harvest-and-use and harvest-store-use schemes, respectively. Based on the
Markov decision process framework, the net bit rates are maximized in [16]. However, how the
battery capacity limitation impacts the resource allocation is not well studied in this literature. In fact,
conservative or overly aggressive use of the harvested energy will either fail to utilize the excess
energy or run out of the energy stored in the battery [3,4]. Even though some literature considered the
battery-less energy harvesting sensor networks [17], the battery-less often needs the specific hardware
design or the assumption for continuous energy supply. The energy harvesting based wireless sensor
networks we considered are often intermittent and sporadic. Thus, it is imperative to optimize the
energy efficiency under the long-term statistical energy constraint for battery-infinite and battery-finite
energy harvesting based wireless networks, respectively.

Furthermore, we need to not only optimize energy efficiency alone, but also guarantee the QoS for
energy harvesting based wireless sensor networks [18,19]. By integrating the information theory with
statistical QoS provisioning principle, a great deal of effort has been made to maximize the effective
capacity [20–23], which is defined as the maximum constant arrival rate that can be supported by the
service rate under specified QoS requirements. However, only a few research works focus on QoS
provisioning in energy harvesting based wireless sensor networks [24–28]. The magazine paper [24]
reviewed the techniques that provide QoS guarantees for energy harvesting based wireless networks.
The authors of [25,26] employed the deterministic QoS metric to evaluate the energy harvesting based
wireless sensor networks. However, in 5G energy harvesting powered communications, statistical
QoS guarantee, which is ignored in these works, is practical but more challenging. For statistical
delay-bounded QoS provisioning, the authors of [27] maximized the effective capacity based on the
state transition model while the authors of [28] analyzed the battery-outage and buffer-overflow
probabilities to characterize the effective capacity of energy harvesting based wireless networks.
However, due to the unreliable nature of energy harvesting, how the energy arrival rate affects the
energy harvesting based wireless networks, which is not taken into account in both [27,28], is still an
open problem.

To remedy the above deficiencies, in this paper, we propose the statistical delay-bounded
QoS-driven power control policies to maximize the effective energy efficiency (EEE), which is defined as
the achieved effective capacity per unit harvested energy, under the statistical average constraints and
the battery capacity constraints for energy harvesting based wireless sensor networks. First, we convert
the causality constraints into long-term statistical average constraints. Second, we formulate the EEE
maximization problems for the battery-infinite and battery-finite energy harvesting based wireless
sensor networks, respectively. Third, we develop the optimal power control policies to maximize the
EEE of energy harvesting based wireless sensor networks. Our developed optimal power control policy
in battery-infinite energy harvesting based wireless sensor networks varies from the Energy harvesting
Water Filling (E-WF) scheme (under the very loose QoS requirement) to the Energy harvesting Channel
Inversion (E-CI) scheme (under the very stringent QoS requirement), while our developed optimal
power control policy in battery-finite energy harvesting based wireless sensor networks varies from
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the Truncated energy harvesting Water Filling scheme (T-WF) (under the very loose QoS requirement)
to the Truncated energy harvesting Channel Inversion (T-CI) scheme (under the very stringent QoS
requirement). For battery-finite energy harvesting based wireless sensor networks, we derive and
analyze the statistical QoS-driven power control policies under the following three scenarios: (i) the
average harvested energy constraint dominated optimal power control policy, (ii) the battery capacity
constraint dominated optimal power control policy, and (iii) both the average harvested energy
constraint and the battery capacity constraint dominated optimal power control policy. Furthermore,
we analyze the outage probability for our developed optimal power control policy. The numerical
obtained results validate our analyses and show that our proposed QoS-driven power control polices
can maximize the EEE for energy harvesting based wireless sensor networks, thus enabling efficient
and QoS-guaranteed energy harvesting wireless communications in wireless sensor networks.

The rest of this paper is organized as follows. Section 2 gives our QoS-guaranteed energy
harvesting based wireless sensor network model and introduces the principle of effective energy
efficiency. Sections 3 and 4 develop the QoS-driven power control policies to maximize the effective
energy efficiency for battery-infinite and battery-finite energy harvesting based wireless sensor
networks, respectively. Section 5 analyzes the energy outage probabilities and the data-transmission
outage probabilities. Section 6 numerically evaluates our developed QoS-driven power control polices
for battery-infinite and battery-finite energy harvesting based wireless sensor networks, respectively.
The paper concludes with Section 7.

2. System Model

We consider an energy harvesting based wireless sensor network model, as shown in Figure 1,
where the energy harvesting enabled sensor nodes (SNs) communicate with the access point (AP).
We concentrate on a discrete time system with a point-to-point link between the SN and WAP. Time
division multiple access (TDMA) is employed for the SN-AP communications. In such scenario,
incremental energy is harvested by the SN from the ambient energy sources and stored in the battery
for data transmission.

A first-in-first-out (FIFO) data queue buffer is implemented at the SN, which contains the data
packets from the upper-protocol-layer, as illustrated in Figure 1. The packets are divided into frames at
the data-link layer and split into bit-streams at the physical layer. The channel state information (CSI)
is estimated at the AP and reliably fed back to the SN. The SN needs to find the optimal power control
policy based on the QoS constraint requested by the service, the CSI fed back from the AP, and the
available energy harvested from the environments.

We denote by B, EH , and P[i] the total bandwidth of one SN-AP link, the average harvested energy,
and the instantaneous transmit power, respectively, where i is the time index of the frame. The additive
white Gaussian noise (AWGN) is denoted by N0. The channel power gains, denoted by g[i], follow the
stationary block fading channel model, where they keep unchanged within the time duration of one
frame, but vary independently across different frames. The instantaneous channel signal-to-noise ratio
(SNR), denoted by γ[i], can be expressed as γ[i] = EH g[i]/N0B. Moreover, we employ Nakagami-m
fading channel model, which is very general and often best fits the land-mobile and indoor mobile
multi-path propagations. The probability density function (PDF) of instantaneous channel SNR,
denoted by pΓ(γ), can be expressed as follows:

pΓ(γ) =
γm−1

Γ(m)

(
m
γ

)m
exp

(
−m

γ
γ

)
, γ ≥ 0, (1)

where Γ(·) denotes the Gamma function, m represents the fading parameter of Nakagami-m
distribution, and γ is the average received signal-to-noise ratio.
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Figure 1. The system model for energy harvesting wireless sensor network.

2.1. The Statistical Delay-Bounded QoS Guarantees

Based on large deviation principle (LDP), the author of [29] showed that, for a queueing system
with stationary and ergodic arrival and service process, the queue length process Q(t)(t ≥ 0) converges
in distribution to a finite random variable Q(∞) that satisfies

− lim
x→∞

log Pr(Q(∞) ≥ x)
x

= θ, (2)

which states that the probability of the queue length exceeding the queue length bound x decays
exponentially as the bound x increases. The parameter θ (θ > 0), which is called QoS exponent [21],
indicates the exponential decay rate dominated by the queue length bound. A large θ leads to a fast
decay rate, which implies that a stringent QoS demand is supported. A small θ corresponds to a slow
decay rate, which means that the system can provide a loose QoS requirement [30].

The sequence {R[i], i = 1, 2, . . .} is defined as a discrete-time stationary and ergodic stochastic

service process, and S[t] ,
t

∑
i=1

R[i] is the partial sum of the service process over time sequence of

i = 1, 2, . . . , t. The Gartner–Ellis limit of S[t], expressed as ΛC(θ) = limt→∞(1/t) log(E{e−θS[t]}),
is a convex function differentiable for all real θ [29]. The instantaneous service rate R[i] can be derived
as follows [31]:

R[i] = Tf B log2(1 + µ[i]γ[i]), (3)

where µ[i] is the power control policy. We define the power control policy as the proportion of transmit
power in the average harvested energy. Thus, the instantaneous transmit power can be written as
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P(η[i]) = µ(η[i])EH . When the service rate sequence R[i] is stationary and time-uncorrelated, we can
derive the effective capacity as follows [21]:

C(θ) , −ΛC(−θ)

θ
= −1

θ
log
(
E
{

e−θR[i]
})

. (4)

2.2. Effective Energy Efficiency in Energy Harvesting Based Wireless Sensor Networks

The SN harvests energy from the environments and stores it in the battery. The energy arrives at
discrete time intervals with various amounts. We assume that the energy arrival process is stationary
and ergodic, and thus can be modeled as the Poisson process with the arrival rate λe [4,32]. Therefore,
according to the Poisson process based energy arrival [4,32], the average harvested energy, denoted by
EH , is equivalent to the energy arrival rate and can be derived as follows:

EH = E {H[i]} = λe, (5)

where H[i] is the harvested energy during the ith time frame.
We aim to maximize the energy efficiency under the statistical delay-bounded QoS provisioning

for energy harvesting based wireless sensor networks. Thus, we define the effective energy efficiency
(EEE), denoted by Ee, as the achieved effective capacity per unit harvested energy. Then, we can derive
the EEE for energy harvesting based wireless sensor networks as follows:

Ee ,
C (θ)
EH

. (6)

Without loss of generality, we normalize the observation time interval. Thus, the terms of power
and energy can be interchangeably used.

3. QoS-Driven Optimal Power Control Policy with Infinite Battery Capacity

In this section, we assume that the battery capacity is large enough to store the harvested
energy without energy overflow. Conventionally, the power control schemes are functions of the
instantaneous SNR γ[i]. However, for battery-infinite energy harvesting based wireless sensor
networks, our QoS-driven power control policy, denoted by µ(η[i]), needs to be adaptive to
the instantaneous SNR γ[i], the QoS exponent θ, and the energy arrival rate λe. The variable
η[i] , (γ[i], θ, λe) is defined as the QoS and energy based state information (QSI).

3.1. Average Harvested Energy Constraint

We assume that the harvested energy is only used for transmission, i.e., energy required for
processing is not taken into account [3,4]. Then, the instantaneous transmit power in energy harvesting
based wireless sensor networks cannot exceed the available harvested energy, which can be formulated
as follows:

t

∑
i=1

P(η[i]) ≤
t−1

∑
i=0

H[i], ∀t, (7)

where P(η[i]) is the transmit power during the ith frame and the symbol notation H[0] denotes the
amount of energy available in the battery at the initial time. The right-hand of Equation (7) is the
summation of harvested energy from the initial time to (t− 1)th frame because the harvested energy
in the tth frame cannot be used for transmission at the same time. Since the discrete-time channel and
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the energy arrival process are both stationary and ergodic, the time average is equal to the statistical
average for the harvested energy [33], which is shown as follows:

1
t

t
∑

i=1
P(η[i]) = lim

t→∞
1
t

t
∑

i=1
P(η[i]) = Eγ{P(η[i])};

1
t−1

t−1
∑

i=0
H[i] = lim

t→∞
1

t−1

t−1
∑

i=0
H[i] = EH .

(8)

In the following, we omit the time-index i for simplicity. When t is large enough, we substitute
Equation (8) into Equation (7) and rewrite Equation (7) as follows:

Eγ[P(η)] ≤ EH , (9)

which shows that the power control policy is constrained by the average harvested energy.

3.2. The Effective Energy Efficiency Maximization for Battery-Infinite Energy Harvesting Based Wireless
Sensor Networks

We formulate the energy efficient optimization problem, denoted by P1, to maximize
EEE in battery-infinite energy harvesting based wireless sensor networks as follows by using
Equations (4) and (6):

P1 : arg max
µ(η)

{
− 1

θ log
∫ ∞

0 e−θTf B log2(1+µ(η)γ)pΓ(γ)dγ

EH

}
, (10)

subject to Equation (9) and µ(η) ≥ 0.
Since log(·) is a monotonically increasing function, the numerator of objective function in problem

P1 can be simplified as follows:

− 1
θ

log
∫ ∞

0
e−θTf B log2(1+µ(η)γ)pΓ(γ)dγ = −1

θ
log

∫ ∞

0
(1 + µ(η)γ)−θTf B pΓ(γ)dγ. (11)

Due to the monotonicity of log(·) function and linearity of (1 + µ(η)), the numerator of objective
function in problem P1 is strictly concave with respect to µ(η). However, the problem P1 is still a
non-convex optimization problem because of the variable in the denominator. In order to convert the
problem P1 into a convex optimization problem, we assume the energy arrival rate λe to be fixed for
the energy harvesting based wireless sensor network. This kind of assumption is practical because the
energy sources for the energy harvesting based wireless sensor networks are relatively stable during
the short period and variable across the whole energy harvesting process. Therefore, we can solve
problem P1 with fixed λe and the solution of problem P1 is adopted to the energy harvesting based
wireless networks with different values of λe. Since log(·) is a monotonically increasing function,
problem P1 can be simplified as the new problem P2, which is formulated as follows:

P2 : arg min
µ(η)

{∫ ∞

0
(1 + µ(η)γ)−β pΓ(γ)dγ

}
, (12)

subject to Equation (9) and µ(η) ≥ 0. The term β = (θTf B)/ log 2 is defined as the normalized QoS
exponent. It is clear that the objective function of P2 is strictly convex and the item Eγ(P(η)) in
Equation (9) is linear with respect to µ(η). Thus, problem P2 is a strictly convex optimization problem
and the optimal solution for problem P2 is given by the following Theorem 1.
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Theorem 1. The optimal power control policy for the battery-infinite energy harvesting based wireless sensor
networks, denoted by µ∗(η), which is the solution of problem P2, is determined by

µ∗(η) =


λ
− 1

β+1
e

γ

1
β+1

in γ
β

β+1

− 1
γ , γ ≥ γin;

0, γ < γin,

(13)

where γin is defined as the cut-off SNR threshold in the battery-infinite energy harvesting based wireless sensor
networks and can be numerically obtained by substituting µ∗(η) into the following constraint:∫ ∞

γin

µ∗(η)pΓ(γ)dγ = 1. (14)

Proof. The Lagrangian function of problem P2 is formulated as follows:

L =
∫ ∞

0
(1 + µ(η)γ)−β pΓ(γ)dγ + κ (Eγ[P(η)]− λe) , (15)

where κ is the Lagrange multiplier. Then, the Karush–Kuhn–Tucker (KKT) conditions of problem P2
can be written as follows[34]:

−βγ(1 + µ(η)γ)−β−1 pΓ(γ) + κλe pΓ(γ) = 0;

κ (Eγ[P(η)]− λe) = 0;

κ ≥ 0.

(16)

Defining γin , κ/β and solving Equation (16), we can obtain the optimal power control policy as
shown in Equation (13), where γin can be numerically obtained from Equation (14).

Theorem 1 gives the QoS-driven power control policy for battery-infinite energy harvesting based
wireless sensor networks. To better understand the insights of Theorem 1, we plot the instantaneous
transmit power control policy in Figure 2. Observing Figure 2, we have: (i) given energy arrival rate,
when QoS exponent is very small, more power is assigned to the better channel and less power to
the worse channel. However, when QoS exponent is very large, more power is assigned to the worse
channel and less power to the better channel. (ii) The allocated power increases as the energy arrival
rate increases. In addition, we can observe that the cut-off SNR threshold depends on λe. Furthermore,
we discuss two specific cases of Theorem 1 in following Remarks 1 and 2, which are the optimal power
control policies under the very loose QoS constraint and the very stringent QoS constraint, respectively,
for battery-infinite energy harvesting based wireless sensor networks.

Remark 1. Under the very loose QoS constraint (θ → 0), the optimal energy harvesting power control policy
for µ∗(η) converges to

lim
θ→0

µ∗(η) =

{
1

λeγin
− 1

γ , γ ≥ γin;

0, γ < γin,
(17)

which is referred to the Energy harvesting Water-Filling (E-WF) scheme. When the QoS constraint is very loose,
our developed optimal power control policy converges to the E-WF scheme, where the water levels are dominated
by the energy arrival rate and cut-off SNR threshold. The conventional staircase water-filling scheme [3] is the
special case (θ = 0) of the E-WF scheme.
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Figure 2. The QoS-driven power control policy for battery-infinite energy harvesting based wireless
sensor networks with m = 2 and γ = 5 dB.

Remark 2. Under the very stringent QoS constraint (θ → ∞), the optimal power control policy for energy
harvesting based wireless networks µ∗(η) converges to

lim
θ→∞

µ∗(η) =
σin

γ
, (18)

where σin = limθ→∞[(λeγin)
− 1

β+1 − 1]. We call the power control policy specified in Equation (18) the Energy
harvesting Channel Inversion (E-CI) scheme.

As illustrated in Figure 2, when θ varies from 0 to ∞, reflecting different delay-bounded QoS
constraints, our developed QoS-driven energy harvesting power control policy swings between
the E-WF scheme and the E-CI scheme. Using our developed optimal power control policy for
battery-infinite energy harvesting based wireless sensor networks, we can derive the maximum EEE,
denoted by E∗e (θ, λe), as follows:

E∗e (θ, λe) = −
1

θλe

log

γ(m,
m
γ

γin) +

[
λemγin

γ

] β
β+1

Γ(m− β

β + 1
,

mγin

γ
)

− log [Γ(m)]

, (19)

where γ(·, ·) and Γ(·, ·) denote the lower and upper incomplete Gamma functions, respectively.

4. QoS-Driven Optimal Power Control Policy with Finite Battery Capacity

In this section, we aim to maximize the EEE of energy harvesting based wireless sensor networks
with finite battery capacity. Let µ̃(η[i]) denote by the QoS-driven power control policy in the ith
frame and P̃(η[i]) = µ̃(η[i])EH denote by the transmit power in the ith frame for the SNs with finite
battery capacity.
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4.1. The Effective Energy Efficiency Maximization for Battery-Finite Energy Harvesting Based Wireless
Sensor Networks

We denote by Bmax the maximum battery capacity for the SN. Then, the causality constraint for
battery-finite energy harvesting based wireless sensor networks is formulated as follows [4]:

P̃(η[t]) ≤
t−1

∑
i=0

H[i]−
t−1

∑
i=1

P̃(η[i]), ∀t; (20a)

t−1

∑
i=0

H[i]−
t−1

∑
i=1

P̃(η[i]) ≤ Bmax, ∀t. (20b)

Based on Equation (20a,b), we can obtain that P̃(η[t]) needs to satisfy: P̃(η[t]) ≤
t−1
∑

i=0
H[i]−

t−1
∑

i=1
P̃(η[i]), ∀t;

P̃(η[t]) ≤ Bmax, ∀t.
(21)

Thus, when t approaches ∞, we can further simplify Equation (21) to the average harvested
energy constraint and the battery capacity constraint as follows:{

Eγ(P̃(η)) ≤ EH ;

P̃(η) ≤ Bmax.
(22)

Now, we formulate the effective energy efficiency maximization problem for the battery-finite
energy harvesting based wireless sensor networks as follows:

P3 : arg max
µ̃(η)

{
− 1

θ log
∫ ∞

0 e−θTf B log2(1+µ̃(η)γ)pΓ(γ)dγ

EH

}
, (23)

subject to Equation (22).
It is hard to solve problem P3 since it is a non-convex optimization problem. Thus, we convert

problem P3 into the equivalent problem P4, which is a convex optimization problem, as follows:

P4 : arg min
µ̃(η)

{∫ ∞

0
(1 + µ̃(η)γ)−β pΓ(γ)dγ

}
, (24)

subject to Equation (22).
Since the average harvested energy EH is variable in energy harvesting based wireless sensor

networks, in order to solve the problem P4, we need to analyze the cases that the optimal policy
is determined by only the average harvested energy constraint (Eγ(P̃(η)) ≤ EH), only the battery
capacity constraint (P̃(η) ≤ Bmax), and both constraints specified in Equation (22).

4.2. The Optimal Power Control with QoS Provisioning in Battery-Finite Energy Harvesting Based Wireless
Sensor Networks

If the battery capacity is large enough to store harvested energy without overflow, the optimal
power control policy is not limited by the battery capacity. We denote by f̂θ(λe) the threshold to judge
whether the battery capacity constraint is always satisfied or not (We will derive the closed-form
expression for f̂θ(λe) in Section 4.3.). For fixed θ, if Bmax ≥ f̂θ(λe) holds, the battery capacity constraint
is always satisfied. In the case of Bmax ≥ f̂θ(λe), the optimal power control policy is only determined
by average harvested energy constraint. Thus, the effective energy efficiency maximization problem
P3 becomes problem P1. Then, we give the following Proposition 1.
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Proposition 1. If Bmax ≥ f̂θ(λe) is satisfied, the optimal power control policy in battery-finite energy
harvesting based wireless sensor networks is given as follows:

µ̃∗(η) =


λ
− 1

β+1
e

γ

1
β+1

in γ
β

β+1

− 1
γ , γ ≥ γin;

0, γ < γin.

(25)

Proof. The proof of Proposition 1 is very similar to the proof of Theorem 1. We omit the details here.

If the transmitter always harvests energy more than the battery capacity, the energy overflowed
will be wasted. In this case, the optimal power control policy is only determined by the battery capacity
constraint. Thus, we have the following Proposition 2.

Proposition 2. If Bmax ≤ λe, the optimal power control policy in battery-finite energy harvesting based
wireless sensor networks is given as follows:

µ̃∗(η) =
Bmax

λe
. (26)

Proof. If the optimal power control policy is only determined by the battery capacity constraint,
the maximum available instantaneous power, denoted by P̃(η) = Bmax, will be always optimal. Thus,
in this case, the optimal power control policy is µ̃∗(η) = Bmax/λe.

For the region λe < Bmax < f̂θ(λe), the optimal power control policy is the solution of problem
P4. In this case, we solve problem P4 and have the following Theorem 2.

Theorem 2. If λe < Bmax < f̂θ(λe) is satisfied, the optimal power control policy in battery-finite energy
harvesting based wireless sensor networks is given by

µ̃∗(η) =


0, γ < γfn;

λe
− 1

β+1

γ

1
β+1

fn γ
β

β+1

− 1
γ , γ ≥ γfn and f (η) ≤ Bmax;

Bmax
λe

, γ ≥ γfn and f (η) > Bmax,

(27)

where f (η) , λe
β

β+1 /(γfn
1

β+1 γ
β

β+1 )− λe/γ is defined for simply expression and γfn is the cut-off SNR in
battery-finite energy harvesting based wireless sensor networks. The parameter γfn can be numerically obtained
by substituting Equation (27) into: ∫ ∞

γfn

µ̃∗(η)pΓ(γ)dγ = 1. (28)

Proof. We formulate the Lagrangian function of problem P4 as follows:

L =
∫ ∞

0
(1 + µ(η)γ)−β pΓ(γ)dγ + κ1 (Eγ[P(η)]− λe) + κ2 (λeµ(η)− Bmax) , (29)

where κ1 and κ2 are the Lagrange multipliers corresponding to the constraints specified in Equation (22).
Then, the corresponding KKT conditions can be expressed as follows:

−βγ(1 + µ(η)γ)−β−1 pΓ(γ) + κ1λe pΓ(γ) + κ2λe = 0,

κ1
(∫ ∞

0 λeµ(η)pΓ(γ)dγ− λe
)
= 0,

κ2 (λeµ(η)− Bmax) ≥ 0,

κ1 ≥ 0, κ2 ≥ 0.

(30)
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Solving Equation (30), we can obtain the optimal power control policy in Equation (27), where
γfn , κ1/β and can be determined by the constraint Equation (28).

Theorem 2 gives the QoS-driven power control policy for battery-finite energy harvesting based
wireless sensor networks. According to the optimal power control policy given by Theorem 2,
we plot the instantaneous power control policy corresponding to Equations (27) and (28) in Figure 3.
As illustrated in Figure 3, for fixed energy arrival rate, the power control policy allocates more power
to the better channel and less power to the worse channel when the QoS exponent is very small.
When the QoS exponent is very large, the power control policy allocates more power to the worse
channel and less power to the better channel. The allocated power increases as the energy arrival rate
increases. Meanwhile, the cut-off SNR threshold γfn varies as the energy arrival rate varies. However,
the maximum power is limited by the battery capacity. To further analyze the effect of QoS exponent
on the optimal power control policy in battery-finite energy harvesting based wireless networks,
we discuss two special cases of Theorem 2 in Remarks 3 and 4, which correspond to the optimal energy
harvesting power control policies under the very loose QoS constraint and the very stringent QoS
constraint, respectively.

10
−5 10

−4 10
−3 10

−2 10
−1 10

0

−10

0

10

20

0

0.5

1

1.5

2

QoS exponent

Instantaneous SNR(dB)

T
ra

n
sm

it
 p

o
w

er
 (

m
W

)

T−CI scheme

T−WF scheme

λe = 1, 2, 3 mJ

Figure 3. The QoS-driven power control policy for battery-finite energy harvesting based wireless
sensor networks with m = 2, γ = 5 dB, and Bmax = 2 mJ.

Remark 3. Under the very loose QoS constraint (θ → 0), the optimal power control policy µ̃∗(η) in Theorem 2
converges to

µ̃∗(η) =


0, γ < γfn;

1
λeγfn

− 1
γ , γfn ≤ γ < γ̂;

Bmax
λe

, γ̂ ≤ γ,

(31)

where γ̂ = λeγfn/(1− Bmaxγfn) is the solution of 1/(λeγfn)− 1/γ = Bmax/λe. As θ varies to 0, the optimal
power control policy in battery-finite energy harvesting based wireless sensor networks converges to the Truncated
energy harvesting Water Filling (T-WF) scheme. In the T-WF scheme, both the energy arrival rate and the cut-off
SNR threshold dominate the water level while the power is constrained by the battery capacity. The traditional
directional water-filling scheme [4] is the special case (θ = 0) of the T-WF scheme.
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Remark 4. Under the very stringent QoS constraint (θ → ∞), the optimal power control policy µ̃∗(η) in
Theorem 2 converges to

µ̃∗(η) =


0, γ < γfn;
Bmax

λe
, γfn ≤ γ < γ̃;

σfn
γ , γ̃ ≤ γ,

(32)

where σfn = limθ→∞[(λeγfn)
− 1

β+1 − 1] and γ̃ = σfnλe
Bmax

. Equation (32) represents that as θ approaches to ∞ the
optimal power control policy in battery-finite energy harvesting system becomes the Truncated energy harvesting
Channel Inversion (T-CI) scheme.

As depicted in Figure 3, when the QoS exponent θ varies between 0 and ∞, the corresponding
optimal power control policy for battery-finite energy harvesting based wireless sensor networks
swings between the T-WF scheme and the T-CI scheme. Substituting Equations (27) and (28) into
Equation (6), we can derive the maximum effective energy efficiency for battery-finite energy harvesting
based wireless sensor networks, denoted by Ẽ∗e (θ, λe), as follows:

Ẽ∗e (θ, λe) =−
1

θλe
log

{
γ(m, m

γ γfn)

Γ(m)

+


(

λemγfn
γ

) β
β+1 Γ(m− β

β+1 , mγfn
γ )

Γ(m)
,
∫ ∞

γfn

[
1 +

Bmax

λe
γ

]−β

pΓ(γ)dγ


+}

, (33)

where {a, b}+ , max{a, b}.

4.3. The Analysis for the Threshold of Energy Constraints f̂θ(λe)

Based on the analyses of Section 4.2 for battery-finite energy harvesting based wireless sensor
networks, if the optimal power control policy is only determined by the average harvested energy
constraint, it needs to satisfy

f (η) =
λe

β
β+1

γfn
1

β+1 γ
β

β+1

− λe

γ
≤ Bmax. (34)

To derive the maximum value of f (η), which is f̂θ(λe), we first check the convexity of function

f (η) = λe
β

β+1 /(γfn
1

β+1 γ
β

β+1 ) − λe/γ by setting its secondary derivation with respect to γ to be 0
as follows:

∂2 f (η)
∂γ2 =

β(2β + 1)λe
β

β+1 γ
− 3β+2

β+1

(β + 1)2γfn
1

β+1
− 2λeγ−3 = 0. (35)

Solving Equation (35), we can obtain γ =
[

2(β+1)2

β(2β+1)

]β+1
λeγfn. For the region

γ <
[

2(β+1)2

β(2β+1)

]β+1
λeγfn, ∂2 f (η)/∂γ2 is less than zero corresponding to the low SNR region. When

γ ≥
[

2(β+1)2

β(2β+1)

]β+1
λeγfn, ∂2 f (η)/∂γ2 is larger than or equal to zero corresponding to the high SNR

region. Thus, f (η) is concave in the low SNR region and convex in the high SNR region. We set the
first derivation to zero as follows:

∂ f (η)
∂γ

= − βλe
β

β+1 γ
− 2β+1

β+1

(β + 1)γ
1

β+1
fn

+ λeγ−2 = 0, (36)
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solving which, we can obtain the stationary point as follows:

γ =

(
β + 1

β

)β+1
λeγfn. (37)

Because of
[

β+1
β

]β+1
λeγfn <

[
2(β+1)2

β(2β+1)

]β+1
λeγfn, the stationary point falls into the low SNR

region. Therefore, the maximum of f (η) in the low SNR region corresponds to the stationary

point γ =
(

β+1
β

)β+1
λeγfn. Then, substituting Equation (37) into the function of f (η) specified in

Equation (34), we can obtain that, in the low SNR region, f (η) needs to satisfy

f (η) ≤ ββ

γfn(β + 1)β+1 . (38)

In the high SNR region, since f (η) is convex, the maximum of f (η) can be obtained between the
following two boundary points: γ =

[
2(β+1)2

β(2β+1)

]β+1
λeγfn;

γ = ∞.
(39)

Substituting the two functions in Equation (39) into Equation (34), respectively, we can derive
that in the high SNR region f (η) needs to satisfy:

f (η) ≤ max

{
ββ(2β + 1)β(3β+2)

γfn[2(β + 1)2]β+1 , 0

}
=

ββ(2β + 1)β(3β+2)

γfn[2(β + 1)2]β+1 . (40)

Then, based on Equations (38) and (40), the upper bound of f (η) is given as follows:

f (η) ≤ max

{
ββ

γfn(β + 1)β+1 ,
ββ(2β + 1)β(3β+2)

γfn[2(β + 1)2]β+1

}
=

ββ

γfn(β + 1)β+1 , (41)

where the equality holds for the reason that function f (η) is continuous and, in the low SNR region,
the value at the stationary point is larger than the value at the inflection point. Therefore, we can
obtain the closed-form of f̂θ(λe) as :

f̂θ(λe) =
ββ

γfn(β + 1)β+1 . (42)

As a result, if Bmax ≥ ββ/γfn(β + 1)β+1 holds, the battery capacity constraint is always satisfied.

5. Outage Probability Analyses

For energy harvesting based wireless networks, there exits the energy outage probability and
the data-transmission outage probability [35,36]. The energy outage probability is the probability that

harvested energy is not sufficient enough to keep the power consumption, i.e.,
t

∑
i=1

P(η[i]) ≥
t−1
∑

i=0
H[i].

The data-transmission outage probability is the probability that instantaneous service rate cannot
support the required target data rate. Let Pe

out and Pd
out denote by the energy outage probability

and data-transmission outage probability, respectively. In the following, we analyze the energy
outage probability and data-transmission outage probability, respectively, to theoretically evaluate the
performance for energy harvesting based wireless sensor networks.
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5.1. Energy Outage Probability

For energy harvesting based wireless sensor networks, we have the following Lemma 1 regarding
the energy outage probability.

Lemma 1. When t approaches to ∞, Pe
out converges to 0.

Proof. Using our developed optimal power control policies, the energy outage probability for energy
harvesting based wireless sensor networks can be derived as follows:

Pe
out = Pr

{
t

∑
i=1

P∗(η[i])−
t−1

∑
i=0

H[i] ≥ 0

}
= Pr

{
t

∑
i=1

P∗(η[i])−
t−1

∑
i=1

H[i] ≥ H[0]

}
, ∀t, (43)

where P∗(η[i]) = µ∗(η[i])λe denotes the optimal power allocation in the ith frame. According to
Equations (14) and (28), P∗(η[i]) needs to satisfy

Eγ [P∗(η)] = EH . (44)

Thus, when t approaches to ∞, the expectation of
t

∑
i=1

P∗(η[i]) is equivalent to the expectation of

t
∑

i=1
H[i] and can be written as follows:

E
[

t

∑
i=1

P∗(η[i])

]
= E

[
t

∑
i=1

H[i]

]
. (45)

Based on Equations (43) and (45), and the law of Chebyshev large numbers [37], we can obtain

lim
t→∞

Pr

{
1
t

t

∑
i=1

P∗(η[i])− 1
t

t

∑
i=1

H[i] ≥ ε

}
= 0. (46)

Let ε , limt→∞
1
t (H[0]− H[t]). We can convert Equation (46) as follows:

lim
t→∞

Pe
out= lim

t→∞
Pr

{
1
t

[
t

∑
i=1

P∗(η[i])−
t−1

∑
i=0

H[i]

]
≥ 0

}
= 0, (47)

which shows the energy outage probability converges to zero as t approaches to ∞.

Now, we have derived that Pe
out converges to zero when t approaches to infinity. Next, when t

is not infinite, we can derive the upper-bound for the energy outage probability according to the
Chebyshev inequality [37] as follows:

Pe
out = Pr

{
t

∑
i=1

P∗(η[i])−
t

∑
i=1

H[i] ≥ H[0]− H[t]

}
≤

D
{

t
∑

i=1
P∗(η[i])

}
(H[0]− H[t])2 , ∀t, (48)

where D[a] represents the variance of a.
Observing Equation (48), we find that Pe

out decreases as H[0] increases. Moreover, according to
Lemma 1, Pe

out converges to 0 when t approaches to ∞. Practically, it always needs to take a relatively
long time to cumulate energy from the energy sources before starting communications. Therefore,
the energy outage probability can be regarded as zero by charging the battery for a while in reality.
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5.2. Data-Transmission Outage Probability

Using our developed optimal power control policies, the data-transmission outage probability for
energy harvesting based wireless sensor networks can be formulated as follows [38]:

Pd
out = Pr

{
Tf B log2(1 + µ∗γ) ≤ Rth

}
= Pr

γ ≤ 2
Rth
Tf B − 1

µ∗

 , (49)

where Rth is the required target service rate. Based on the work of [39,40], the data-transmission outage
probability in Equation (49) can be converted as follows:

Pd
out = 1− exp

−
2

Rth
Tf B − 1

µ∗


α
2
 , (50)

where α is the parameter controlling the severity or the diversity of the channel fading. Then,
we analyze the data-transmission outage probabilities in battery-infinite and battery-finite energy
harvesting based wireless networks, respectively.

5.2.1. Battery-Infinite Energy Harvesting Based Wireless Sensor Networks

The optimal power control policy for battery-infinite energy harvesting based wireless networks
has been shown in Theorem 1. Plugging Equation (13) into Equation (50), we can obtain the
data-transmission outage probability, denoted by Pdi

out, for battery-infinite energy harvesting based
wireless sensor networks as follows:

Pdi
out = 1− exp

−
 (2

Rth
Tf B − 1)γ

1
β+1
in γ

(λ−1
e γ)

1
β+1 − γ

1
β+1
in


α
2
 , γ ≥ γin. (51)

To further evaluate the data-transmission outage probability, we obtain Lemma 2 regarding Pdi
out

under two specified cases, i.e., when QoS constraint is very loose and QoS constraint is very stringent.

Lemma 2. When the QoS constraint is very loose (θ → 0), the data-transmission outage probability for
battery-infinite energy harvesting based wireless sensor networks converges to

Pdi
out =


1, γ→ 0;

1− exp

((2
Rth
Tf B − 1

)
λeγin

) α
2
 , γ→ ∞.

(52)

When the QoS constraint is very stringent (θ → ∞), the data-transmission outage probability for
battery-infinite energy harvesting based wireless sensor networks converges to

Pdi
out =

{
0, γ→ 0;

1, γ→ ∞.
(53)

Proof. Based on Equation (51), we analyze Pdi
out in the following two cases corresponding to the

data-transmission outage probabilities, under the very loose QoS constraint and the very stringent
QoS constraint, respectively.



Sensors 2017, 17, 1933 16 of 25

Case I: Under the very loose QoS constraint (θ → 0), the data-transmission outage probability for
battery-infinite energy harvesting based wireless sensor networks converges to

Pdi
out = 1− exp

−
 2

Rth
Tf B − 1

(λeγin)−1 − γ−1


α
2
 , γ ≥ γin. (54)

In this case, Pdi
out converges to 1 as γ approaches to zero. Pdi

out becomes 1− exp[((2
Rth
Tf B − 1)λeγin)

α
2 ]

as γ approaches to ∞.
Case II: Under the very stringent QoS constraint (θ → ∞), the data-transmission outage probability

for battery-infinite energy harvesting based wireless sensor networks becomes

Pdi
out = 1− exp

−
2

Rth
Tf B − 1

σinγ−1


α
2
 , γ ≥ γin. (55)

Observing Equation (55), we find that Pdi
out converges to zero as γ approaches to zero. Meanwhile,

Pdi
out becomes 1 as γ approaches to ∞.

Therefore, comprehensively considering both Cases I and II, we have Lemma 2.

Based on the proof of Lemma 2, we can also obtain that under the very loose QoS constraint,
Pdi

out decreases as γ increases. Meanwhile, under the very stringent QoS constraint, Pdi
out increases as

γ increases.

5.2.2. Battery-Finite Energy Harvesting Based Wireless Sensor Networks

Substituting Equation (27) into Equation (50), we can obtain the data-transmission outage
probability, denoted by Pdf

out, for battery-finite energy harvesting based wireless sensor networks
as follows:

Pdf
out =



1− exp

−
 (2

Rth
Tf B −1)γ

1
β+1

fn γ

(λ−1
e γ)

1
β+1−γ

1
β+1

fn


α
2
 , γ ≥ γfn and f (η) < Bmax;

1− exp

−
 (2

Rth
Tf B −1)λe

Bmax


α
2
 , γ ≥ γfn and f (η) > Bmax.

(56)

Then, we obtain the upper and lower bounds of Pdf
out under the very loose QoS constraint and the

very stringent QoS constraint, respectively, in Lemma 3.

Lemma 3. When the QoS constraint is very loose (θ → 0), the data-transmission outage probability for
battery-finite energy harvesting based wireless sensor networks converges to

Pdf
out =


1, γ→ 0;

1− exp

−
 (2

Rth
Tf B −1)λe

Bmax


α
2
 , γ→ ∞.

(57)
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When the QoS constraint is very stringent (θ → ∞), the data-transmission outage probability for
battery-finite energy harvesting based wireless sensor networks converges to

Pdf
out =


1− exp

−
 (2

Rth
Tf B −1)λe

Bmax


α
2
 , γ→ 0;

1, γ→ ∞.

(58)

Proof. The expression of Pdf
out has been specified in Equation (56). Then, we analyze the

data-transmission outage probability for battery-finite energy harvesting based wireless sensor
networks in two specific cases corresponding to the data-transmission outage probabilities under the
very loose QoS constraint and the very stringent QoS constraint, respectively.

Case 1: Under the very loose QoS constraint (θ → 0), the data-transmission outage probability for
battery-finite energy harvesting based wireless sensor networks converges to

Pdf
out =



1− exp

−
 2

Rth
Tf B −1

(λeγfn)−1−γ−1

 α
2
 , γfn ≤ γ < γ̂;

1− exp

−
 (2

Rth
Tf B −1)λe

Bmax


α
2
 , γ̂ ≤ γ.

(59)

Observing Equation (59), we find that Pdf
out turns to 1 when γ approaches to zero. Pdf

out converges

to 1− exp[−((2
Rth
Tf B − 1)λe/Bmax)

α
2 ] when γ approaches to ∞.

Case 2: Under the very stringent QoS constraint (θ → ∞), the data-transmission outage probability
for battery-finite energy harvesting based wireless sensor networks converges to:

Pdf
out =



1− exp

−
 (2

Rth
Tf B −1)λe

Bmax


α
2
 , γfn ≤ γ < γ̂;

1− exp

−
 2

Rth
Tf B −1

σfnγ−1

 α
2
 , γ̂ ≤ γ.

(60)

Based on Equation (60), we can obtain that Pdf
out converges to 1− exp[−((2

Rth
Tf B − 1)λe/Bmax)

α
2 ]

when γ approaches to zero. Meanwhile, Pdf
out turns to 1 when γ approaches to ∞.

Thus, based on the analyses for Cases 1 and 2, we have Lemma 3.

Equations (59) and (60) show that under the very loose QoS constraint, Pdf
out decreases as γ

increases. Under the very stringent QoS constraint, Pdf
out increases as γ increases.

Since the energy outage probability can be treated as zero, the outage probability for energy
harvesting based wireless sensor networks can be entirely determined by the data-transmission outage
probability, which is calculated based on Equations (51) and (56). Both Equations (51) and (56) show
that the outage probabilities are functions of instantaneous SNR γ, QoS constraint θ, and energy arrival
rate λe. Based on Equations (51) and (56), we can derive the outage probability corresponding to the
specified instantaneous SNR, QoS constraint, and energy arrival rate.
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6. Performance Evaluation

In this section, we conduct numerical analyses to evaluate the performance of our proposed
QoS-driven power control policies for energy harvesting based wireless sensor networks. Throughout
the simulation, we use normalized effective energy efficiency and normalized effective capacity (EC),
which are defined as the EEE and EC per Hz per second, respectively, to evaluate the performance
of the energy harvesting based wireless networks. We also set the bandwidth, the time frame length,
the maximum battery capacity and the parameters of Nakagami-m channel model to be B = 1 MHz,
Tf = 0.2 ms, Bmax = 2 mJ, γ = 5 dB, and m = 2.

In order to numerically analyze the threshold f̂θ(λe) for energy constraints, we plot the transmit
power curves versus the instantaneous SNR in Figures 4 and 5, where the QoS constraint θ is set
to be 0.01 and 0.1, respectively. Observing Figures 4 and 5, we find that the transmit power curves
are concave when γ is very small and convex when γ is very large. This validates our analyses for
threshold f̂θ(λe) of energy constraints in Section 4.3. The maximum value of transmit power, which
corresponds to the thresholds f̂θ(λe), can be obtained at the stationary points in Figures 4 and 5, i.e.,
when θ = 0.01 and λe = 2, f̂0.01(2) = 1.406, which represents that if Bmax ≥ 1.406, the optimal power
control policy is dominated only by the average harvested energy constraint under this circumstance.
Figures 4 and 5 also illustrate that, for different energy arrival rates and under different QoS constraints,
we can obtain different energy constraints’ thresholds f̂θ(λe). This verifies that f̂θ(λe) depends on the
energy arrival rate λe and QoS constraint θ.
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Figure 4. The transmit power curves versus instantaneous SNR to show the threshold f̂θ(λe) under
θ = 0.01.

Figures 6 and 7 depict the normalized EEE and the normalized EC of our developed optimal
power control policy versus energy arrival rate λe. As illustrated in Figures 6 and 7, EEE decreases as
energy arrival rata increases while EC increases as energy arrival rate increases. This indicates that
there is a trade-off between the EEE and EC. Also illustrated in Figures 6 and 7, for λe ≤ λe1 (under
the QoS constraint θ = 10−3) and λe ≤ λe2 (under the QoS constraint θ = 10−2), respectively, both the
optimal power control policies in battery-infinite and battery-finite energy harvesting based wireless
sensor networks have the same EEE and EC. This is because the instantaneous power control policy
given by Proposition 1 is only limited by average harvested energy in the low energy arrival rate region.
Therefore, when λe ≤ λe1 (under the QoS constraint θ = 10−3) and λe ≤ λe2 (under the QoS constraint
θ = 10−2), the EEE and EC are not limited by the battery capacity. However, the battery capacity limits
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the EEE and EC in the high energy arrival rate region. For this reason, the optimal power control
policy for battery-infinite energy harvesting based wireless sensor networks achieves much larger EEE
and EC than that for battery-finite energy harvesting based wireless sensor networks when λe > λe1

(under the QoS constraint θ = 10−3) and λe > λe2 (under the QoS constraint θ = 10−2). We can also
observe from Figures 6 and 7 that, under the QoS constraint θ = 10−1, both the the battery-infinite and
battery-finite energy harvesting based wireless sensor networks have the same EEE and EC when λe is
less than 4. This indicates that, when the QoS constraint is very stringent, the optimal power control
policy for battery-finite energy harvesting based wireless sensor networks is not limited by battery
capacity until the networks have a relatively large energy arrival rate.
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Figure 5. The transmit power curves versus instantaneous SNR to show the threshold f̂θ(λe) under
θ = 0.1.
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Figure 6. The normalized effective energy efficiency of our developed QoS-driven power control
policies versus energy arrival rate for battery-infinite/finite energy harvesting based wireless
sensor networks.
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Figure 7. The normalized effective capacity of our developed QoS-driven power control policies versus
energy arrival rate for battery-infinite/finite energy harvesting based wireless sensor networks.

Figure 8 depicts the normalized EEE of the optimal power control policy versus the QoS exponent,
where the energy arrival rate λe is fixed to 2 and 3, respectively. As shown in Figure 8, the normalized
EEE decreases as the QoS exponent θ increases. This indicates that the looser the traffic QoS constraint
is, the larger EEE we can achieve. In addition, the optimal power control policy in battery-infinite
energy harvesting based wireless sensor networks can achieve larger EEE than that in battery-finite
energy harvesting based wireless sensor networks when the QoS constraint is very loose or very
stringent. This is due to the reason that the QoS-driven power control policy in battery-finite energy
harvesting based wireless sensor networks is limited by the battery capacity in the high SNR region
when the QoS requirement is very loose and in the low SNR region when the QoS constraint is very
stringent. When the QoS constraint is not very loose or not very stringent, both the QoS-driven power
control policies for the battery-infinite and battery-finite energy harvesting based wireless sensor
networks have the same EEE. This is because the maximum instantaneous transmit power is always
less than the battery capacity when the QoS constraint is not very loose or not very stringent.

Figure 9 compares the performance of our developed optimal power control policy with
other existing schemes, i.e., the related research works [25], E-WF scheme, and constant power
allocation scheme. We find that both the power control policies with QoS provisioning specified
in this paper and [25] can achieve better performance than the power control policies without QoS
provisioning, i.e., the E-WF scheme and the constant power allocation. In addition, Figure 9 also
shows that our developed optimal power control policy in Theorem 1 can achieve larger EC than
the power control policy in [25]. This is because in [25] the data rate QoS requirement is considered,
which is deterministic QoS, while our developed optimal power control policy provides the statistical
QoS guarantees, which is adaptive to diverse delay-bounded QoS constraints, thus achieving the
maximum EC. To further verify the analyses in this paper, we plot normalized EEE of the optimal
power control polices developed in Theorems 1 and 2, constant power allocation, E-WF scheme, T-WF
scheme, E-CI scheme, and T-CI scheme in Figure 10. We can observe that our developed QoS-driven
power control policies, which are the solution of Theorems 1 and 2, can achieve larger EEE than other
schemes for energy harvesting based wireless sensor networks. When the QoS constraint is very
loose, our developed QoS-driven power control policy for battery-infinite energy harvesting based
wireless sensor networks converges to the E-WF scheme and our developed QoS-driven power control
policy for battery-finite energy harvesting based wireless sensor networks converges to the T-WF
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scheme. When the QoS requirement is very stringent, our QoS-driven optimal power control policy
for battery-infinite energy harvesting based wireless sensor networks converges to the E-CI scheme
and the QoS-driven power control policy for battery-finite energy harvesting based wireless sensor
networks converges to the T-CI scheme.
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Figure 8. The normalized effective energy efficiency of our developed QoS-driven power control
policies versus QoS exponent in battery-infinite and battery-finite energy harvesting based wireless
sensor networks.
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related scheme, E-WF scheme, and constant power allocation scheme.
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Figure 10. The comparison between our developed QoS-driven optimal power control policies,
the constant power allocation scheme, the E-WF scheme, T-WF scheme, E-CI scheme, and T-CI scheme.

Figures 11 and 12 illustrate the outage probabilities of our developed optimal power control
policies. As depicted in Figure 11, when the QoS exponent θ is very small, the outage probability
for battery-infinite energy harvesting based wireless sensor networks converges to 1 in the low
SNR region and P1 in the high SNR region, while the outage probability for battery-finite energy
harvesting based wireless sensor networks converges to 1 in the low SNR region and P2 in the
high SNR region. In addition, when the QoS exponent θ is very large, the outage probability for
battery-infinite energy harvesting based wireless sensor networks converges to zero in the low
SNR region and 1 in the high SNR region, while the outage probability for battery-finite energy
harvesting based wireless sensor networks converges to P2 in the low SNR region and 1 in the

high SNR region. Note that the corresponding lower bounds P1 = 1 − exp[((2
Rth
Tf B − 1)λeγin)

α
2 ]

and P2 = 1− exp[−((2
Rth
Tf B − 1)λe/Bmax)

α
2 ] can be obtained from Lemmas 2 and 3, respectively.

In Figure 12, we plot the outage probability curves versus the instantaneous SNR under the QoS
constraint θ = 10−4, where the energy arrival rate is set to be 1, 2, and 3, respectively. As depicted
in Figure 12, when energy arrival rate is 1, the battery-infinite outage probability is the same as
battery-finite outage probability. When energy arrival rate is 2 or 3, the battery-infinite energy
harvesting based wireless sensor networks achieve a smaller outage probability than the battery-finite
energy harvesting based wireless sensor networks. This is because the optimal power control policy
is not constrained by the battery capacity when energy arrival rate is 1. Thus, both battery-infinite
and battery-finite energy harvesting based wireless sensor networks have the same outage probability.
When energy arrival rate is 2 or 3, the optimal power control policy is limited by the battery capacity
in battery-finite energy harvesting based wireless sensor networks. Thus, the battery-finite energy
harvesting based wireless sensor networks have the larger outage probability than the battery-infinite
energy harvesting based wireless sensor networks.
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Figure 11. The outage probability of our developed optimal power control policy with α = 4, λe = 3 mJ,
and Bmax = 1.5 mJ.
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Figure 12. The outage probability versus instantaneous SNR under different energy arrival rates with
θ = 10−4.

7. Conclusions

In this paper, we developed the statistical delay-bounded QoS-driven power control policies for
energy harvesting based wireless sensor networks to maximize the effective energy efficiency. First, we
analyzed the available energy constraints for the battery-infinite and battery-finite energy harvesting
based wireless sensor networks, respectively. Then, we formulated the EEE maximization problems,
solving which, we derived the optimal power control policies. Our analyses identified the key fact
that, under various QoS constraints, the optimal power control policy for battery-infinite energy
harvesting based wireless sensor networks varies between the E-WF scheme and E-CI scheme while
the optimal power control policy for battery-finite energy harvesting based wireless sensor networks
varies between the T-WF scheme and T-CI scheme. We also derived the threshold of the energy arrival
rate to judge whether the EEE is limited by the battery capacity constraint or not. In addition, we
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analyzed the outage probabilities for energy harvesting based wireless sensor networks using our
developed optimal power control policies. The obtained numerical results validated our analyses and
showed that our developed QoS-driven power control policies can achieve the maximum EEE for
energy harvesting based wireless sensor networks.
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