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Abstract: A number of landmark-based navigation algorithms have been studied using feature
extraction over the visual information. In this paper, we apply the distance information of the
surrounding environment in a landmark navigation model. We mount a depth sensor on a mobile
robot, in order to obtain omnidirectional distance information. The surrounding environment is
represented as a circular form of landmark vectors, which forms a snapshot. The depth snapshots at
the current position and the target position are compared to determine the homing direction, inspired
by the snapshot model. Here, we suggest a holistic view of panoramic depth information for homing
navigation where each sample point is taken as a landmark. The results are shown in a vector map
of homing vectors. The performance of the suggested method is evaluated based on the angular
errors and the homing success rate. Omnidirectional depth information about the surrounding
environment can be a promising source of landmark homing navigation. We demonstrate the results
that a holistic approach with omnidirectional depth information shows effective homing navigation.

Keywords: landmark navigation; homing navigation; distance sensor; distance-estimated landmark
vector; landmark vector; arrangement order matching

1. Introduction

A number of methods have been developed for the challenging issue of autonomous navigation
of mobile robots [1–5]. The methods vary widely, from landmark-based navigation [6,7], which is
inspired by insect homing behavior, to complex algorithms that require intensive computation and
continuous tracking of the information about the environment [1,8–10]. In homing navigation methods,
the agent can assess an environmental feature obtained at the current position and can compare it to
that at a target position. By comparing the feature information at two locations, the agent can determine
which direction to move in to reach the target position. This concept has been proposed as the ‘snapshot
model’ [11–13]. A snapshot taken at the current location is compared with a snapshot at the home
location to obtain the direction from the current position to the home location. Various methods have
been suggested for homing navigation, and among them, we focus on homing algorithms that are
based on the snapshot model.

One snapshot method, the warping method [14,15], distorts the current snapshot image in order
to best match the target snapshot image. The agent predicts a new image for every possible direction
that it could move from the current location by warping the snapshot image. Each warped image is
compared to the target image by searching for the one with the smallest discrepancy. The warped
image with the smallest difference indicates the direction in which to move in order to reach the target
location. The performance of the predictive warping method is largely affected by the characteristics
of the environment and the existence of a reference compass; however, the method is simple and does
not require any pre-processing of feature extraction in the snapshot image.
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The Descent in Image Distance (DID) method extends the concept from the warping method.
The DID method was introduced by Zeil et al. and was investigated from various perspectives [16,17].
While the one-dimensional warping method only searches for the minimum difference from the home
image among the candidate images, the DID method monitors variations of the image difference
between a pair of locations. The difference between snapshots decreases as the location becomes closer
to the home point. By applying a gradient descent method, the navigation algorithm successfully finds
the direction to the goal location [15,18].

One of the simplest homing navigation methods is the Average Landmark Vector (ALV) model [6].
At each location, the mobile robot takes a snapshot image, and each landmark in the view composes
a landmark vector. Each landmark vector has a unit length with an angle as the corresponding
angular position of the landmark. The ALV is computed by averaging all of the landmark vectors.
The ALV computed at an arbitrary position is compared to that at the home location. By comparing
only two averaged landmark vectors, the agent can determine the appropriate direction to the home
location. Therefore, this navigation method has a small computing time and requires a small amount
of memory. This method shows good homing navigation performance using a simple representation
of the surrounding environment [19].

The Distance-Estimated Landmark Vector (DELV) model is another landmark-based homing
navigation algorithm [20]. While the ALV model produces and compares two ALVs at different
positions, the DELV method compares two sets of landmark vectors in order to determine the homing
direction. These two navigation algorithms share similar concepts of landmark vectors, pointing to
landmarks at a given position. However, while the landmark vectors in the ALV model have a unit
length, DELV includes the length of the vector as the estimated distance to each landmark. Thus,
the DELV method possesses more detailed information about the surrounding environment around
the agent through the use of distance-estimated landmark vectors, and as a result, the agent estimates
the current location with respect to the home location. In addition, the matching process of the
landmark vectors in the DELV model does not require the reference compass information, while the
ALV model necessarily does.

The DELV model was initially tested using vision sensors, so an additional distance estimation
process is required for selected landmarks [21,22]. Based on the visual information, variations in
the landmark position between snapshots obtained at a sequence of robot positions can lead to
the computation of the landmark distance. However, by exploiting the depth sensor, the distance
information to each landmark can be given along with the landmark selection. Extracting the landmark
feature may be a painful procedure, since in some cases, the accurate identification of each landmark
and the determination of what landmarks should be selected in a real environment are non-trivial
problems. The homing performance with DELV or ALV becomes much worse in a real environment
than in an artificial environment with clearcut landmarks.

The localization issue is a challenging issue, even in modern Simultaneous Localization And
Mapping (SLAM) technology. Information about the environment can also be obtained from several
types of sensors. The global localization map can be obtained with a global positioning system
(GPS) and a laser-ranging sensor. The laser range sensor can also be tested for human robot
interaction [5] or industrial applications [23]. In addition to the distance information about the
environment, the Monte Carlo approach with an elevation map of objects or three-dimensional
features commonly observed from the air and ground can be used to provide better localization
information [24,25]. The landmark-based methods described above collect particular features called
landmarks, and the snapshot model simplifies the navigation issue into the homing navigation.
A mobile robot needs no localization map with the landmark-based method and thus the method
efficiently determines the homing directions without identifying the current location. However,
a high level of knowledge such as the environmental map cannot be obtained. In contrast, the SLAM
method can utilize the localization map to guide a specific goal position with more computing time
and memory.
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Visual information has been most widely applied to navigation algorithms, since it can provide
a lot of information about the position, brightness, color, and shape of objects. Many navigation
algorithms are developed with feature extraction using vision [26–28], often with a complex filtering
process [29]. Even simple landmark-based navigation methods, including the ALV model, have been
applied to a mobile robot with vision sensors, and a feature extraction process to identify landmarks is
also required [26]. In contrast, the DID method is a holistic approach for comparing a pair of snapshot
images pixel by pixel to calculate the image distance [15–17]. It has no feature extraction process;
however, computing the gradient of the image distance is needed to determine the homing direction.

The main contribution of this paper is in suggesting a holistic approach with the omnidirectional
depth information including the background for homing navigation in a real environment, which is
called H-DELV. It is a landmark-based navigation with distance information, but an effort of extracting
landmark features can be omitted with the suggested approach. We assume that the environment
roughly has an isotropic landmark distribution where the frequency of landmarks are independent
of the viewing direction and the majority of landmarks are commonly observed irrespective of the
view. We explore the efficient and robust landmark-based navigation of a mobile robot without prior
knowledge of landmarks such as the colors or shapes of landmarks. We will show that one-dimensional
panoramic distance information is sufficient to localize the agent in the environment to guide the
homing performance. We suggest a holistic approach of reading landmarks using omnidirectional
depth information for homing navigation in a real environment. In our experiments, we test the
homing navigation based on landmark segmentation over the depth information, as well as that based
on a holistic view of the depth information.

We analyze the effect of landmark vector strategies using data from various experiments, changing
the weight of landmark vectors, using the reference compass or not, varying the number of landmark
vectors, and adding the feature extraction or clustering process. Our paper seeks answers to the
following questions: What are important factors that influence the homing performance in the snapshot
model as a bio-inspired model? What kind of landmark vector strategies will be useful if the distance
sensor readings are available? What strategies will be helpful in an environment assuming an isotropic
landmark distribution? Which strategy, a holistic view of landmarks or a landmark distribution
involved with the feature extraction, will be more effective in real environments? Is the robotic homing
model similar to the model for insect navigation?

2. Methods

Initially, we explain the robotic configuration for homing navigation. From the depth sensor,
omnidirectional depth information as the depth snapshot is obtained by following the snapshot model.
How landmarks are extracted in the snapshot determines which landmark vector strategies can be
used. We will introduce two new approaches based on the landmark distance vectors, C-DELV and
H-DELV and compare those with the conventional DELV method. In this section, we will explain the
three methods one by one.

2.1. Mobile Robot with a Depth Sensor

For our navigation experiments, a mobile robot was used with a distance sensor as shown in
Figure 1a. The mobile robot (Roomba, Create 4400, iRobot, Bedford, MA, USA) is a two-wheeled
robot that can control the motor speed. A laptop computer processing the sensor readings from a laser
sensor or vision sensor was connected to the robot via serial port for motor control. Depth information
was obtained with a laser sensor device (URG-04LX-UG01, HOKUYO, Osaka, Japan)mounted on
top of the Roomba with an acrylic support. The laser sensor can read distance information from
the environment, which is then transmitted to a laptop computer on the robot. Figure 1b shows an
example of distance sensor readings, where red x marks with an interval of angular resolution indicate
detection points. In addition, one object makes some occlusion area on the wall which is marked in
pink. The depth sensor has a distance accuracy of 5 mm (within a range of 60–1000 mm) or 30 mm
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(within a range of 1000–4095 mm) and an angular resolution of about 0.36◦. We collect omnidirectional
distance information for one snapshot at a given location, that is, a set of distances for the whole range
of angles.

(a) (b)

Figure 1. Mobile robot and sensor reading example (a) a mobile robot Roomba robot mounted with
a laser sensor as the depth sensor; (b) an example of sensor readings with the laser sensor (red x marks
show the distance readings for given angles).

The computer processes a landmark-based algorithm and transfers the appropriate motor actions
to the robot. For a panoramic image (depth map) of the surrounding environment, the mobile robot
takes two snapshots at a given location using the laser sensor, since the laser sensor has a limited
viewing angle, 240◦ for a snapshot. The 360◦ omni-directional depth information was obtained by
overlapping the two snapshots. The mobile robot Roomba runs with its own battery pack and it can
sustain for a period of 1.5 h (on a hard floor with no payloads or attachments) when the robot constantly
moves. The laptop computer has a separate battery pack that also supplies power (about 2.5 Watts)
for the depth sensor with USB connection. The laptop computer uses MATLAB software (MATLAB,
2014b, MathWorks, Natick, MA, USA) to run the control algorithm and consumes 7–11 watts. With the
batteries, the whole system can operate for about an hour.

To check the performance in terms of the homing direction, we used a regular grid of points
on the floor as well as additional random positions to see the performance, where small markers
were placed for easy detection. The robot was manually positioned at each of those points to sense
the surrounding environment and the robot estimated the homing directions, using the suggested
snapshot model algorithm.

2.2. Depth Information Processing

The experimental environment is a 3 m × 3 m area containing objects such as a desk, drawer,
and trash bin. The panoramic depth information obtained with a mobile robot is shown in Figure 2.
By using the depth information for a certain height of the view, we obtain a one-dimensional depth
snapshot. Only this one-dimensional snapshot will be used as the environmental information for our
navigation experiments. Figure 3 shows examples of the depth snapshot, which has 720-pixel width
with a resolution of 0.5◦. Since we only sample distance information at a certain height, it may not
represent all of the information about every landmark in the environment. However, we assume that it
can give sufficient information about the landmarks in terms of the mobile robot’s view, especially for
our navigation experiments.
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(a)

(b)

Figure 2. Test environments (a) environment env1 (left: environment, right: distance map at the home
location with a laser sensor, *: home location); blue lines: top-view of objects, green dashed rectangle:
interest zone for test points, called Region 2, black arrow: the reference direction (zero degree). The laser
sensor collects the range data in a counterclockwise direction, and red x marks indicate detection points
read by the laser sensor; (b) environments, env2 (left) and env3 (right) (O1, ..., O5: objects).
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Figure 3. Example of depth snapshot (left: depth snapshot for env1 and the derivative of the
depth, right: close landmark objects (blue circles with labels) extracted from the depth snapshot).
Black rectangles with label ‘Region 1’ and ‘Region 2’ (green dashed rectangle in Figure 2) include
testing points.
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In our experiment, the DELV method [21] will be tested for landmark-based navigation.
In order to use the DELV method, certain ‘landmarks’ should be selected. A set of landmarks can
be obtained from segmenting the depth information. This pre-processing for a set of landmarks
has been tested with vision [21]. Using visual information, objects can be found with image pixels
based on similar color and the brightness, that is, by a feature extraction algorithm with clustering.
Using the depth information, two main criteria were used for the landmark extraction. The first
criterion is based on the difference of the depth values. The differences of the distance value between
neighboring points in the panoramic snapshot are calculated. Since the boundaries of the landmarks
would have large variations in their depth values, we set points with large difference as the preliminary
landmark boundaries. Assuming continuity of the depth values in each landmark, candidate areas
for the landmarks are selected. The second criterion is the threshold value of the depth information.
Within the preliminary landmark area set by the first criterion, several regions with small depth values
(small distances) are selected as landmarks.

An example of depth snapshot and the corresponding landmark extraction results are shown in
Figure 3. Left figures of Figure 3 show the depth values for the 360◦ surroundings of a mobile robot at
the home location and its derivatives (for edge detection). The candidates were selected based on the
points with large depth derivatives. Comparing the position of the selected landmarks and the depth
information, we can observe large variations at the boundaries of the landmarks and comparatively
small variations inside the landmark areas. The objects closer to the agent were selected prior to
the background areas, using the thresholding value in the second criterion. If the location is closer to
the wall than to the other objects, the agent could regard the wall area as one of the landmarks.

2.3. Navigation Algorithm: DELV

For the snapshot navigation, we initially tested the Distance-Estimated Landmark Vector (DELV)
model [21], which is an efficient landmark-based homing navigation algorithm. Each landmark vector
in the DELV method has information about an angular position of the landmark, given as the angle
of the vector, with the distance to the landmark as its length. The landmark vectors obtained at
the home location create a reference map. The set of landmark vectors at an arbitrary location is
projected on the reference map with an appropriate arrangement order and direction (see Figure 4).
The landmark vector order and the heading direction are estimated by rotational projection of vectors.
When the landmark vectors are appropriately matched with the corresponding ones in the reference
map, that is, with the right order of landmark vectors, the end points of the projected landmark
vectors would converge to the current location. In other words, we can find the appropriate landmark
arrangement order by monitoring the deviation of the projected end points. The arrangement order
with the minimum deviation of end points would indicate the appropriate matching. In the same
way, we can project the landmark vectors by rotating the heading direction and estimate the current
heading direction in the reference map, if there is no reference compass available. Ultimately, the above
landmark arrangement process determines the homing direction. Here, we suggest two new methods,
C-DELV and H-DELV that have different landmark vectors from the depth snapshot.
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Figure 4. Projecting landmark vectors onto the reference map in different arrangement orders, and the
correct order can be determined with the deviation of end points of projected landmarks ((a) for the
best matching case, and (b,c) for other matching cases).

2.4. Navigation Algorithm: C-DELV Method

The DELV method collects landmarks by assigning one representative landmark vector for each
landmark area or segmented region. The centroid of the angular positions of points in the landmark
area and the average of the depths of the points are the angle and the distance for a landmark vector.
In this way, we obtain one landmark vector for each selected landmark area. For example, in Figure 3a,
there would be four landmark vectors at a given position. Here, the size of landmark areas is not
considered for the landmark representations.

Now, we consider another type of landmark representation from a depth snapshot. The landmark
representation defines every point in the landmark area as the individual landmark vector, but the
background area is ignored. Only dominant landmarks near the robot are collected, and we will use
this set of landmark vectors for homing navigation. We call it the C-DELV method (with cloud-like
landmark vectors). Since the landmark areas are composed of several points of similar but slightly
different distances, each point is considered as a landmark vector in this representation of landmarks
and a set of landmark vectors point to a segmented object.

In Figure 5a, large dotted circles indicate selected landmark areas while small red circles indicate
the landmark vector points that belong to a selected landmark area from the home location H,
according to the C-DELV method. Therefore, the reference map is given by the red circles in the figure
area. Black arrows are the perceived landmark vectors at the current new location P. In rotational
landmark vector matching, each vector set should be projected appropriately on the reference map.
However, in the rotation, the number of landmark vectors for the landmark area may not be the same as
that of the same landmark area in the reference map. As shown in Figure 5b, the number of landmark
vectors included in the same area, for example, nH and nP, can vary depending on the viewing position
H and P. Therefore, the matching procedure was modified to appropriately distribute the landmark
vectors to the reference map as shown in Figure 5b. In this way, each landmark area yields its projected
end points to estimate the current location. Large-sized landmark features contribute more to estimates
of the current position. When projecting one perceived landmark area to the one in the reference map,
different numbers of landmark vectors should be matched. An example of the diagram is shown
in Figure 5.
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Figure 5. Landmark vector matching in the C-DELV method (a) landmark vectors at a position P;
(b) vector matching example with np = 4 (top: nh > np, bottom: nh < np).

2.5. Navigation Algorithm: H-DELV Method

For another representation of landmarks, we can consider all distance points or sampled points
from the omni-directional depth snapshot as landmarks. The distance points cover background areas as
well as landmark areas. We call it the H-DELV method (with a holistic view of environment landscape).
The method simply uses all the points or a set of uniformly sampled points from the depth snapshot.
The panoramic depth snapshot from a laser sensor has 0.5 degree resolution and a total of 720 pixel
depth information for the omnidirectional view. By sampling the panoramic depth information at
preset angle intervals, the number of depth measurements is reduced, but we still maintain the same
overall information about the environment. For example, if we sample the depth panorama at 4◦

intervals, a set of distance information of the environment with 90 samples is obtained. The whole
set of distances are represented as landmark vectors. This procedure is a holistic approach without
any landmark segmentation procedure. Unlike the image-warping method [14], the H-DELV method
estimates the current position with a collection of landmark distances by calculating the relative
distance from the home location.

2.6. Characteristics of the Navigation Algorithms and Weighted Landmark Vectors

The above methods, the DELV, C-DELV and H-DELV methods, have a difference in terms of how
they choose landmarks or landmark features from a collection of depth information. Any possible
approaches can be available for the extraction of landmark features. Here, the DELV method includes
a clustering process using a set of depth information, but removes the background area. The C-DELV
method is similar to the DELV, but it uses each depth point as a landmark. The H-DELV method
considers all of the depth information, including the background. We will compare the DELV and
the C-DELV to see if the clustering process from the depth image is more effective. The comparison
of the C-DELV and the H-DELV will check whether or not the background depth information improves
the homing performance.

In the original DELV method, the end points of the projected vectors were averaged to estimate
the current location. However, as we use the depth sensor to obtain the landmarks in the environment,
its accuracy depends on the measuring distance. It can be assumed that the farther the landmark
is, the lower the accuracy of the estimated distance becomes. Based on this assumption, the end
points of the projected vectors in the reference map can be weighted differently when calculating
the current location. Instead of averaging each projected point equally, the points from the shorter
landmark vector are weighted more than the others. The weight for each point was computed as
the inverse of the length of the landmark vectors. Therefore, the projected points from closer objects
are considered to be more important than those from farther objects. By weighting the end points in



Sensors 2017, 17, 1928 9 of 24

the current position estimation, the position estimation may be expected to be more accurate. We apply
the weighted landmark vectors to the above three methods.

3. Experimental Results

The three different methods described above are applied to the omni-directional depth
information. We use the collected landmarks in the navigation method and show a homing vector for
each location. In order to show the performance of the method, we took panoramic depth snapshots at
many locations in the environment. Figure 2 shows the experimental environment for the depth image.
The size of the environment is about 3 m × 3 m with objects such as a desk, a chair, drawers, and a trash
bin. We chose a set of locations across Regions 1 and 2 from the regular grid pattern on the floor of
the environment (see Figure 1) that were not too close to any of the objects in the three environments
(see Figure 2). Eleven test points were located within Region 1 and 31 points were located within
Region 2. Vector maps show the homing vector determined for each point. The performance of each
method is evaluated using the angular error of the homing vector and the success rate of homing from
each starting point. We test each method both with and without the reference compass to see if the
suggested method can estimate the homing direction effectively even without the reference compass,
but only depending on the depth snapshot. In addition, we test the three methods, DELV, C-DELV and
H-DELV, using the distribution of weights as the inverse of the distances over landmark vectors.

3.1. The DELV Method

The DELV method has landmark vectors composed of representative centroids of selected
landmark areas. It requires segmentation of the landmark areas and then one landmark vector
is assigned for each area. The corresponding landmark vector for each area is composed of the centroid
angle of the points included in the area, and the average distance of the points.

The circles in the vector maps shown in Figure 6 indicate selected landmark vectors at the home
location, which is then stored as the reference map. The center of each circle indicates the end point of
the actual landmark vector from home and the radius of the circle is arbitrarily set for the graphical
representation. At each location, the landmarks were extracted and represented as the corresponding
landmark vectors in order to estimate the homing vector. The direction of the arrows in the vector map
indicates the decided homing direction at each point while the red square at (500, 500) indicates the
home location. Blue and red arrows in the vector maps indicate angular errors with a positive sign to
return home [−90◦, 90◦] and errors with a negative sign (greater than 90◦), respectively.

The vector map in Figure 6 shows the results of homing navigation using the DELV method.
Figure 6a,c,e show the results with the reference compass while Figure 6b,d,f show the result without
the reference compass. The homing navigation algorithm requires estimating the heading direction
and the arrangement order among all possible heading directions and arrangement orders. With the
reference compass, the method can reduce the computational cost to estimate the current heading
direction using the distance map, and one task of finding the appropriate landmark arrangement order
still remains. The vector maps shown in Figure 7 show the results with the weighted landmark vectors.
It has similar results compared to those in Figure 6. The homing performance greatly depends on the
environment, that is, the landmark distribution. They show smaller angular errors in homing vectors,
which may lead to higher success rates of homing (more detailed analysis will be described later)

In fact, there is no significant difference between the DELV method and its weighted vector method
as shown in the vector map results. The DELV method may lose some landmarks in an environment in
the feature extraction process. If a landmark area is relatively small (i.e., the angular size is smaller
than 5◦), it is filtered out. If the landmark area has a distance larger than 550 cm, it is regarded as
a wall, and it is not selected as a landmark.
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Figure 6. Vector map results with the DELV method (from the omni-directional depth snapshot,
left column: with reference compass, right column: without reference compass); (a,b) env1; (c,d) env2;
(e,f) env3 (blue and red arrows indicate small and large homing errors, respectively, and circles
represent close landmark objects obtained after segmentation).
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Figure 7. Vector map results with the DELV method but weighted landmark vectors applied for the
position estimation (left column: with the reference compass, right column: without the reference
compass); (a,b) env1; (c,d) env2; (e,f) env3.
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3.2. The C-DELV Method

The C-DELV method is similar to the DELV method, but it considers points belonging to
the selected landmark area as landmarks. After segmentating landmarks based on the omni-directional
depth information, all the points included in the landmark area are represented as landmark vectors.
The background area, which is not the landmark area, will not be considered as landmarks. While only
one landmark vector was assigned for each landmark area in the DELV method, the C-DELV method
has several landmark vectors in a single landmark area. Therefore, the matching process of landmark
vectors to the reference map also needs to be modified. In the C-DELV method, each landmark area is
rotated and projected onto the reference map.

We tested the C-DELV method in the same environments: env1, env2, and env3. The vector map
results with the C-DELV method are shown in Figure 8. The points marked with ‘x’ are the landmark
vectors stored in the reference map that correspond to small red circles in Figure 5a. From the figures,
we observe that the C-DELV with a reference compass is often better than the DELV method. Better
homing directions are observed at many test positions. With the C-DELV, the weighted landmark
vectors have no positive effect on the performance, but rather decrease the performance (not shown
here). Detailed evaluations will be given in the Performance Evaluation section with the angular
homing errors and the homing rate.
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Figure 8. Cont.
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Figure 8. Vector map results with the C-DELV method (left column: with the reference compass,
right column: without the reference compass); (a,b) env1; (c,d) env2; (e,f) env3 (x marks indicate depth
sensor readings before segmentation of depth snapshot).

3.3. The H-DELV Method

In the H-DELV method, all distance points or same points including the background areas from
the omni-directional depth snapshot are considered as landmark vectors. This type of landmark
selection does not require the segmentation process needed in the DELV method. Every sampled
point is considered as a landmark vector. Once we fix the number of samples for the landmark
vectors, the same number of landmarks is taken in the reference map as well as at other locations.
However, the computing time for estimating the homing vector is inversely proportional to the
number of samples in the depth snapshot. An appropriate number of samples would be desirable,
since snapshots that are too sparsely sampled may not reflect the environment closely.

We tested again the H-DELV method in the same environments. Figure 9 shows the vector map
results with the H-DELV method. The points marked with an ‘x’ in Figure 9 are the 90 landmarks stored
in the reference map, which were sampled at 4◦ intervals in the panoramic depth snapshot. The red
square indicates the home location and the arrows show the decided homing vectors at each point
with the given algorithm. Since this method uses 90 landmark vectors, the landmark arrangement
matching is iterated 90 times.

It seems that weighted position estimation does not largely affect the result with the H-DELV
method, since the results with the H-DELV method are similar to those with the weighted landmark
vectors (not shown here). More detailed evaluation will be given in the following subsection along
with the angular error of the homing vectors and the success rate of homing at each location.
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Figure 9. Vector map results with the H-DELV method (left column: with the reference compass,
right column: without the reference compass); (a,b) env1; (c,d) env2; (e,f) env3 (red x marks indicate
landmarks for H-DELV, which uses a uniform distribution of depth samples including far background
areas not shown, although they are used.
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3.4. Performance Evaluation

For each task over three different environments, we can evaluate the homing performance based
on the angular error of the decided homing vectors and evaluate the success rate of homing based on
the homing vector sequence. The angular errors of the homing vectors are defined as the difference
between the decided homing direction and the ideal homing direction. From each point on a mobile
robot, we can draw a straight line to the home location, and the angular difference between the line and
the homing vector from the point is considered to be the angular error. The performance of the homing
navigation algorithm may vary depending on the distance from the home location. We thus assess
the angular error by dividing the environment into two regions. Region 1 is the region close to home
location, and Region 2 is the zone that surrounds the landmark but is farther from home than Region 1.
The two regions for each environment are shown in Figure 3. Outside Region 2, some landmarks may
be occluded, and this degrades the homing performance (not shown here).

3.4.1. Performance with Angular Errors

The angular errors for each method are displayed in Figure 10. Different landmark types (weighted
or not weighted) and their homing method are applied to three environments shown in Figure 2.
For each method, the angular errors for points in each region were averaged and plotted as a bar graph.
In most of the methods, the angular error increases as the robot gets further from the home location, and
they show slightly larger angular errors without a reference compass than with a reference compass.
Generally, even without a reference compass, each method can find homing vectors effectively under
a reasonable limit. This indicates that the depth snapshot image alone may be sufficient to guide
the homing navigation. The H-DELV method mostly shows smallest angular errors in Region 1
(near the home location). In addition, even without a reference compass, the H-DELV method shows
comparatively steady performance. When the robot is far from home location, the performances of the
three methods vary depending on the environment.

In Figures 6–9, each method has many test points, leading to reasonable homing directions,
but there are a small number of points with incorrect homing directions. Those points significantly
affects the averaged angular error performance. For example, Figure 6a has an angular error of almost
180 degrees near the point (510, 520). Thus, we counted the number of robot positions with relatively
small angular errors, that is, within the range of [−45◦, 45◦] in angular errors, and the rates of those
desired angular errors were shown in Table 1. We can see that the H-DELV method shows the best
performance in terms of the angular errors at many test points in the three environments (see the best
results in bold fonts in Table 1). The DELV and C-DELV methods have some points with large angular
errors, which degrades the performance in terms of the averaged angular errors.

Table 1. Percentage of test points with small angular errors (errors are in the range of [−45◦, 45◦] and
(w) indicates the method with weighted landmark vectors).

Unit : % DELV DELV (w) C-DELV C-DELV (w) H-DELV H-DELV (w)

Env1 with compass 83.9 83.9 77.4 80.7 96.8 80.7
no compass 74.2 77.4 80.7 77.4 80.7 74.2

Env2 with compass 80.7 71.0 77.4 67.7 90.3 80.7
no compass 74.2 71.0 67.7 67.7 80.7 74.2

Env3 with compass 83.9 38.7 77.4 51.6 96.8 96.8
no compass 48.4 54.8 80.7 61.3 87.1 87.1
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The angular errors greatly depend on a set of landmarks that have been selected from the depth
image. At some test points, the homing directions were estimated incorectly. So far, we have tested
the methods in a restricted zone near the home position. If the robot moves far away from the home
position, the landmarks in the environment can be changed, and the landmark matching process may
not be effective. Similar results can be expected in some environments with occlusions.
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Figure 10. Angular errors for three different methods in Regions 1 and 2 (left column: with the reference
compass, right column: without the reference compass); (a,b) env1; (c,d) env2; (e,f) env3.

3.4.2. Performance with Homing Success Rate

The success rate is the ratio of starting points that could finally reach the target location. That is,
it corresponds to the percentage of the catchment area to the goal position. We calculate the distance
error between the current position and the home position, and if the distance is smaller than a threshold
(10 cm), then we take the trial as a success. If the robot does not reach the target zone in less than 30 s,
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it is counted as a failure. As with the angular error assessment, the area is divided into two regions
and the homing rate is evaluated for each region. The results are shown in Figure 11. The angular error
increases as the distance from home increases. As a result, the success rate decreases as the robot is
farther away from home location. Interestingly, the H-DELV method shows the highest success rate in
homing. The DELV and C-DELV methods do not show good performance in homing even though
they have similar level of angular errors in Figure 10. This result is due to a single trap point near
home. For example, in Figure 7b, the homing vectors collide at the point (475, 550). This one trap
point leads to the most of the failing cases in the methods. The success rate alone cannot represent
the performance of the method sufficiently and therefore we show two other types of evaluations,
the vector maps and angular errors.
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Figure 11. Success rate of homing for three different methods in Regions 1 and 2 (left: with the
reference compass, right: without the reference compass); (a,b) env1; (c,d) env2; (e,f) env3.



Sensors 2017, 17, 1928 18 of 24

Among those three methods, a holistic approach, that is, the H-DELV method was the most
effective in the performance evaluation. The DELV method needs a feature extraction process in
which the landmarks are identified from the depth information. The C-DELV method also needs
a process of disciminating landmarks from the background. At some robot positions, landmarks that
are found at the home location may not be selected in the filtering process, which significantly affects
the performance of the landmark arrangement process. In addition, the number of landmarks may be
changed depending on the position of the robot or a different set of landmarks may be selected from
the depth image. In contrast, the H-DELV method uses more information regarding the background
distances. A holistic view of the whole omnidirectional information regards all of the depth information
as a set of landmarks with a landmark for each sensor reading, which is why the H-DELV method is
more powerful and more robust than the DELV and C-DELV methods.

3.4.3. Missing or Added Objects

In the above experiments, we assume an isotropic landmark distribution where most of landmarks
available at the home location are observed at other locations, although the viewing direction tends
to change the landmarks and the size of landmark objects. If a robot is positioned outside the
Regions 1 and 2, the robot sees very different landscapes and the snapshot model cannot be applied,
since it violates the isotropic condition. Environmental changes, such as a new object added or one of
objects missed, severely influence the landmark distribution. Here, we consider that kind of change in
env1 as shown in Figure 12. Figure 12a,b show the situation where a new object is added (three large
objects observed at home location, but four large objects during testing) and partial occlusion occurs.
The homing performance becomes worse, as expected, than in the isotropic environment shown in
Figure 9. Especially at positions far from the home, large homing errors are found. Figure 12c,d show
the situation where an object is missing (five large objects observed at home location, but four objects
during testing). Large homing errors are observed at positions close to the missing object. Generally,
the homing performance with the reference compass is much better than that without the reference
compass in both situations.
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Figure 12. Cont.
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Figure 12. Experiments with missing landmarks or added landmarks (left column: with the reference
compass, right column: without the reference compass) (a,b) env1 with an object removed at home
location and (c,d) env1 with an object added at home location; black circles (at the right side) in
(a,b) indicate landmarks removed only at the home position and black x marks (at the lower right
corner) in (c,d) indicate landmarks added only at the home position (red x marks represent landmarks
observed at any position except the home position and far background areas not shown, although they
are used).

The homing errors become large when landmarks change in the environment, but robots can
return home at many positions and the suggested method has a potential to return home without
further sophisticated algorithm. More knowledge about the environment or landmarks could
possibly improve the performance rather than only memorizing a snapshot at a target position.
In many non-isotropic environments, the snapshot model may experience landmark mismatch
at a pair of locations, which degrade the homing performance. A holistic view of landmarks
covering the background area has a higher probability to compensate for missing or added objects.
Interestingly, some insects show homing errors when the landmark distribution is changed or
landmarks disappear [11,19]. The snapshot model is still valid among biological animals.

3.4.4. Resolution of Samples in the H-DELV Method

Figure 13 shows that with the H-DELV method the performance depends on the resolution
of the distance sensor readings. Interestingly, once the number of samples is greater than 30, then the
performance is not much improved in terms of success rate by additional samples. Instead, a relatively
reasonable number of samples to cover the environmental characteristics is sufficient for achieving
good homing performance. We also tested the entire set of 720 omnidirectional distance readings
(0.5 degree resolution), and the performance result is only a little different from that with 90 samples
(4 degree resolution). Even only 20 samples (18 degree resolution) provide a perfect homing rate for
all the three environments. Uniformly distributed samples including the background area affect the
homing performance, when we compare the DELV or C-DELV with the H-DELV method. From the
result, we infer that a global view of the environment with a holistic approach can be useful to handle
real environment problems.
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Figure 13. Performance vs. resolution in the H-DELV method (a) angular error vs. resolution;
(b) success rate vs. resolution.

4. Discussion

We tested three landmark-based methods with the omnidirectional depth image. The difference
of the methods depends on how to extract candidate landmarks from the depth image. The original
DELV (distance-estimated landmark vector) method as a landmark-based method is based on feature
extraction over visual images. The DELV method chooses a small number of landmarks based on
a clustering process, and the C-DELV method selects objects near a given robot position, and regards
the depth pixels of those objects as landmarks. The H-DELV method uses a holistic view of the
omnidirectional depth information, including the background depth. As a result, the H-DELV method
takes a given environment as an isotropic environment by collecting all of the surrounding depth
information. In the isotropic environment, the suggested H-DELV approach is very effective. If the
background depth is not available and only isolated landmarks are available, then the H-DELV
method becomes similar to the C-DELV method. From Table 1, it is difficult to say whether or not the
DELV method is better than the C-DELV method. Their homing performance varies depending on
the environment.

If there are measurement errors with the depth information, it may degrade the performance.
The DELV and C-DELV methods are more heavily influenced by the errors. Some missing landmarks or
no mismatched landmarks degrade the performance. In contrast, the H-DELV method uses uniformly
distributed samples over the omnidirectional depth information, and some small errors in a part of
samples do not influence the homing performance significantly. According to the DELV method [21],
there is a global convergence of the homing vector to reach the home location. That is, an agent can
ultimately reach the home location, if the same landmarks are observed. Some trap points can be found
with measurement errors, especially in the DELV and the C-DELV method. To handle this problem,
a holistic approach over landmarks is suggested in this paper. The suggested method has no need to
consider the shape, size, and density of obstacles, and only the depth information from a mobile agent
is sufficient to estimate the homing directions. However, visual navigation may be influenced by the
factors of the shape or size of obstacles.

4.1. Resolution of Samples

The DELV and C-DELV methods have a feature extraction process over n samples in the
one-dimensional depth image, and an arrangement matching process over m landmarks, if m landmark
features are selected from n samples. Then, the computational complexity can be represented as
O(n + m2). The H-DELV method has time complexity O(n2), since it has no feature extraction process.
The number of samples in the H-DELV method can be reduced to 30 as Figure 13 shows resolutions
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not affecting the performance. As a result, the above methods take a little time to determine the
homing direction.

4.2. Comparison with SLAM

Our experiments show that the laser sensor information is more powerful than a vision sensor.
The laser sensor has a high cost compared to a vision camera. Many SLAM methods use laser
sensors with high accuracy. The methods focus on localization of a mobile robot in a complex
cluttered environment. Most of the researchers use Kalman filtering of laser sensor readings to obtain
highly accurate localization information. Actually, it requires the computationally intensive process
of probability estimation. Our approach has a goal of reaching the home position at an arbitrary
position. The method shows that the robot can return home without localizing the current position
and the home position in a given environment. The algorithm simply compares the landmark vectors
and determines the homing direction in a short time, without accumulating the map information of
the environment in memory. This is an advantage of the suggested approach for homing navigation.
In a complex cluttered environment including many landmarks or objects, the suggested approach
may need more computation using the landmark vectors for an accurate homing direction.

4.3. Connection with Bio-Inspired Model

The above homing navigation approaches follow the snapshot model, which compares the two
snapshot images at a pair of positions. The model assumes that the majority of landmarks are observed
commonly to guide the navigation and the environment is almost isotropic. Complex cluttered
environments with many occlusion points no longer follow the assumption, and the method would
need several waypoints as a set of target positions [30]. For each waypoint, local homing navigation
can then be applied. A series of waypoint searches may ultimately lead to the final goal position.

As mentioned in the Introduction section, bio-inspired homing navigation methods can be
roughly divided into two categories: holistic methods such as the warping and DID methods,
and landmark-based methods such as the ALV and DELV methods. The holistic method uses the
information in the snapshot as a whole, and does not require any pre-processing on the snapshot
information whether it is from vision or depth sensors. However, the landmark-based navigation
methods require a collection of selected landmark information from the snapshot, and therefore the
performance heavily relies on the landmark extraction. The landmark-based methods, if landmarks
are correctly identified and matched, usually provide much better homing results than the holistic
methods, but performance degradation may happen in real environments, due to errors in landmark
identification and matching. The H-DELV method as a holistic approach actually possesses nearly all
the environment information, including the background area. There would be some mismatch points
between depth snapshots, but the majority of samples point to the same landmark area, which can
reduce the homing error.

The holistic approach is more useful in a static environment that has no symmetries, but has
a sufficient number of landmarks. If a set of distance vectors are all regarded as landmarks,
more landmarks would be helpful to guide homing. Omnidirectional depth information can lead
to more successful homing. That is, in the environment where landmarks are distributed over the
whole angle directions, better estimation of homing direction is possible. If landmarks on one side are
observed and other landmarks are too far (out of the sensor range), the environment may experience
relatively large homing errors.

We note that ants can memorize key objects in their visual field using features of the skyline,
for example, tree tops as a navigation guide, and, on later trips, they can compare the snapshot
memories with the currently observed view [31–34]. That is, they can estimate their distance from
landmarks by the change of the skyline. Inspired by the snapshot model with distance information,
we explored a homing navigation strategy based on the distance of landmarks. We argue that the
holistic model suggested above might resemble the snapshot model observed in ants. Even a low
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resolution of snapshots are sufficient to guide the homing navigation. Our model with various angular
resolutions ranging from 0.5 degree to 10 degrees showed a perfect homing rate.

5. Conclusions

In this paper, we tested homing navigation based on the snapshot model in real environments,
where the mobile robot is positioned at an arbitrary position in isotropic-like environments and is
supposed to return home. Here, two new methods, C-DELV and H-DELV, were applied to a homing
navigation model and compared with the DELV method. In addition, we tested weighted landmark
vectors in the homing navigation approach, where objects that are closer to a given position have larger
weights for estimating the current position. To evaluate the performance, we measured the angular
error of the homing direction and the success rate of the homing.

The H-DELV algorithm, a holistic approach with the omnidirectional depth information,
showed the smallest angular error and highest success rate. Even a low resolution of depth samples
covering the background estimate the homing directions more accurately. With the H-DELV method,
the reference compass is greatly helpful for reducing homing errors. We argue that a holistic view of
landmark distances without landmark segmentation process provides better homing performance
than a landmark distribution processed with the feature extraction process. In natural landscapes
of the environment, the holistic approach can lead to robust homing navigation. The above results
may indirectly support the hypothesis that the insect navigation might use the snapshot model with
a holistic view of distance vectors [31,32]. Interestingly, the results show that a new order (weight) of
landmark vectors does not have much impact on the homing performance.

Our homing navigation method can be applied to cleaning robots or exploration robots in
industry that need a battery recharging system or that have a goal to move towards a target position.
For successful homing navigation in large areas with many objects or in a complex non-isotropic
environment with many occlusions, the suggested method needs several waypoints like homing
positions. Robot homing toward a sequence of waypoints may guide the agent to the home position.
We leave that study as a future work.

Acknowledgments: This work was supported by a National Research Foundation of Korea (NRF) grant funded
by the Korea government (Ministry of Education, Science and Technology (MEST)) (No. 2014R1A2A1A11053839).

Author Contributions: Changmin Lee and Seung-Eun Yu performed the experiements and analyzed the data,
and DaeEun Kim provided suggestions for the paper; the manuscript was written by Changmin Lee and
Seung-Eun Yu and revised by DaeEun Kim.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Goedemé, T.; Tuytelaars, T.; Van Gool, L.; Vanacker, G.; Nuttin, M. Feature based omnidirectional sparse
visual path following. In Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 2005), Edmonton, AB, Canada, 2–6 August 2005; pp. 1806–1811.

2. Chung, W.; Kim, S.; Choi, M.; Kim, H.; Moon, C.; Song, J. Safe Navigation of a Mobile Robot Considering
Visibility of Environment. IEEE Trans. Ind. Electron. 2009, 56, 3941–3950.

3. Sasaki, T.; Brscic, D.; Hashimotor, H. Human-Observation-Based Extraction of Path Patterns for Mobile
Robot Navigation. IEEE Trans. Ind. Electron. 2010, 57, 1401–1410.

4. Kang, Y.; Kim, H.; Ryu, S.; Doh, N.; Oh, Y.; You, B. Dependable Humanoid Navigation System Based on
Bipedal Locomotion. IEEE Trans. Ind. Electron. 2012, 59, 1050–1060.

5. Chung, W.; Kim, H.; Yoo, Y.; Moon, C.; Park, J. The Detection and Following of Human Legs through
Inductive Approaches for a Mobile Robot with a Single Laser Range Finder. IEEE Trans. Ind. Electron. 2012,
59, 3156–3166.



Sensors 2017, 17, 1928 23 of 24

6. Lambrinos, D.; Moller, R.; Labhart, T.; Pfeifer, R.; Wehner, R. A mobile robot employing insect strategies for
navigation. Robot. Auton. Syst. 2000, 30, 39–64.

7. Weber, K.; Venkatesh, S.; Srinivasan, M. Insect-inspired robotic homing. Adapt. Behav. 1999, 7, 65–97.
8. Gilg, A.; Schmidt, G. Landmar-Oriented Visual Navigation of a Mobile Robot. IEEE Trans. Ind. Electron.

1994, 41, 392–397.
9. Davison, A. Real-time simultaneous localisation and mapping with a single camera. In Proceedings of the

9th IEEE International Conference on Computer Vision, Nice, France, 13–16 October 2003; pp. 1403–1410.
10. Hwang, S.; Song, J. Monocular Vision-Based SLAM in Indoor Environment Using Corner, Lamp, and Door

Features from Upward-Looking Camera. IEEE Trans. Ind. Electron. 2011, 58, 4804–4812.
11. Cartwright, B.; Collett, T. Landmark learning in bees. J. Comp. Physiol. A 1983, 151, 521–543.
12. Cartwright, B.; Collett, T. Landmark maps for honeybees. Biol. Cybern. 1987, 57, 85–93.
13. Collett, T. Insect navigation en route to the goal: Multiple strategies for the use of landmarks. J. Exp. Biol.

1996, 199, 227–235.
14. Franz, M.; Schölkopf, B.; Mallot, H.; Bülthoff, H. Where did I take that snapshot? Scene-based homing by

image matching. Biol. Cybern. 1998, 79, 191–202.
15. Labrosse, F. Short and long-range visual navigation using warped panoramic images. Robot. Auton. Syst.

2007, 55, 675–684.
16. Zeil, J.; Hofmann, M.; Chahl, J. Catchment areas of panoramic snapshots in outdoor scenes. J. Opt. Soc.

Am. A 2003, 20, 450–469.
17. Möller, R.; Vardy, A. Local visual homing by matched-filter descent in image distances. Biol. Cybern. 2006,

95, 413–430.
18. Stürzl, W.; Zeil, J. Depth, contrast and view-based homing in outdoor scenes. Biol. Cybern. 2007, 96, 519–531.
19. Möller, R. Insect visual homing strategies in a robot with analog processing. Biol. Cybern. 2000, 83, 231–243.
20. Yu, S.E.; Kim, D. Analyzing the effect of landmark vectors in homing navigation. Adapt. Behav. 2012,

20, 337–359.
21. Yu, S.E.; Kim, D. Landmark vectors with quantized distance information for homing navigation. Adapt. Behav.

2011, 19, 121–141.
22. Yu, S.E.; Kim, D. Image-based homing navigation with landmark arrangement matching. Inf. Sci. 2011,

181, 3427–3442.
23. Kim, Y.K.; Kim, Y.; Jung, Y.S.; Jang, G.; Kim, K.S.; Kim, S.; Kwak, B. Developing Accurate Long-Distance

6-DOF Motion Detection with One-Dimensional Laser Sensors: Three-Beam Detection System. IEEE Trans.
Ind. Electron. 2013, 60, 3386–3395.

24. Kwon, T.; Song, J.; Joo, S. Elevation Moment of Inertia: A New Feature for Monte Carlo Localization in
Ourdoor Environment with Elevation Map. J. Field Robot. 2010, 27, 371–386.

25. Kwon, T.; Song, J. A New Feature Commonly Observed from Air and Ground for Outdoor Localization
with Elevation Map Built by Aerial Mapping System. J. Field Robot. 2011, 28, 227–240.

26. Zhu, Q.; Liu, C.; Cai, C. A Robot Navigation Algorithm Based on Sparse Landmarks. In Proceedings of the
6th International Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China,
26–27 August 2014.

27. Aranda, M.; Lopez-Nicolas, G.; Sagües, C. Sinusoidal input-based visual control for nonholonomic vehicles.
Robotica 2013, 31, 811–823.

28. Aranda, M.; Lopez-Nicolas, G.; Sagües, C. Angle-Based Navigation Using the 1D Trifocal Tensor. In Control
of Multiple Robots Using Vision Sensors; Springer: New York, NY, USA, 2017; pp. 19–51.

29. Chen, S.Y. Kalman Filter for Robot Vision: A Survey. IEEE Trans. Ind. Electron. 2012, 59, 4409–4420.
30. Argyros, A.A.; Bekris, K.E.; Orphanoudakis, S.C.; Kavraki, L.E. Robot homing by exploiting panoramic

vision. Auton. Robot. 2005, 19, 7–25.
31. Graham, P.; Collett, T. View-based navigation in insects: How wood ants (Formica rufa L.) look at and are

guided by extended landmarks. J. Exp. Biol. 2002, 205, 2499–2509.
32. Wystrach, A.; Beugnon, G.; Cheng, K. Ants might use different view-matching strategies on and off the

route. J. Exp. Biol. 2012, 215, 44–55.



Sensors 2017, 17, 1928 24 of 24

33. Reid, S.; Narendra, A.; Hemmi, J.; Zeil, J. Polarised skylight and the landmark panorama provide night-active
bull ants with compass information during route following. J. Exp. Biol. 2011, 214, 363–370.

34. Basten, K.; Mallot, H. Simulated visual homing in desert ant natural environments: Efficiency of skyline
cues. Biol. Cybern. 2010, 102, 413–425.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methods
	Mobile Robot with a Depth Sensor
	Depth Information Processing
	Navigation Algorithm: DELV
	Navigation Algorithm: C-DELV Method
	Navigation Algorithm: H-DELV Method
	Characteristics of the Navigation Algorithms and Weighted Landmark Vectors

	Experimental Results
	The DELV Method
	The C-DELV Method
	The H-DELV Method
	Performance Evaluation
	Performance with Angular Errors
	Performance with Homing Success Rate
	Missing or Added Objects
	Resolution of Samples in the H-DELV Method


	Discussion
	Resolution of Samples
	Comparison with SLAM
	Connection with Bio-Inspired Model

	Conclusions

