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Abstract: The goal of this research work is to improve the accuracy of human pose estimation using
the Deformation Part Model (DPM) without increasing computational complexity. First, the proposed
method seeks to improve pose estimation accuracy by adding the depth channel to DPM, which was
formerly defined based only on red—green-blue (RGB) channels, in order to obtain a four-dimensional
DPM (4D-DPM). In addition, computational complexity can be controlled by reducing the number
of joints by taking it into account in a reduced 4D-DPM. Finally, complete solutions are obtained by
solving the omitted joints by using inverse kinematics models. In this context, the main goal of this
paper is to analyze the effect on pose estimation timing cost when using dual quaternions to solve
the inverse kinematics.

Keywords: DPM; 4D-DPM; dual quaternions; Kalman filter; polishphere; pose estimation;
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1. Introduction

Human pose estimation has been extensively studied for many years in computer vision.
Many attempts have been made to improve human pose estimation with methods that work mainly
with monocular red—green-blue (RGB) images such as [1-5].

With the ubiquity and increased use of depth sensors, methods that use red—green—blue-depth
RGB-D imagery are fundamental. One of the methods that used such imagery, and which is currently
considered the state of the art for human pose estimation, is Shotton et al. [6], which was commercially
developed for the kinect device (Microsoft, Redmond, WA, USA). Shotton’s method allows real-time
joint detection for human pose estimation based solely on depth channel. Despite the state-of-the-art
performance of [6] and the commercial success of kinect, the many drawbacks of [6] make it difficult
to be adopted in any other type of three-dimensional (3D) computer vision system.

Some of the drawbacks of [6] include copyright and licensing issues, which restrict the use and
implementation of the algorithm for working on any other devices. Another drawback of the algorithm
is the large number of training examples (hundreds of thousands) that are required to train its deep
random forest algorithm, and which could make training cumbersome. Another drawback of [6] is that
its model is trained only on depth information, and thus discards potentially important information
that could be found in the RGB channels and could help approach human poses more accurately.
To alleviate these and other drawbacks in [6], we propose a novel approach that takes advantage of
both RGB and depth information combined in a multi-channel mixture of parts for pose estimation in
single frame images coupled with a skeleton constrained linear quadratic estimator (Kalman filter) that
uses the rigid information of a human skeleton to improve joint tracking in consecutive frames. Unlike
kinect, our approach makes our model easily trainable even for nonhuman poses. By adding depth
information, we increase the time complexity of the proposed method. For this reason, to speed up the
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proposed method, we reduced the number of points modeled in the proposed method compared with
the original deformation part model DPM. Finally, we propose an inverse kinematics method for the
inference of the joints not considered initially, which cuts the training time.

The main contribution of our method extends to: (i) a multi-channel mixture of parts model that
allows the detection of parts in RGBD images; (ii) a linear quadratic estimator (KF) that employs rigid
information and connected joints of human pose; (iii) a model for unsolved joints through inverse
kinematics that allows the model to be trained with fewer joints and in less time. In our previous
work, [7,8], it is shown that computational cost is too high. This is the reason why in this paper
a dual quaternion solution is introduced to improve the computational cost of the previously proposed
method. Our results show significant improvements over the state of the art in both the publicly
available CAD60 data set and our own data set.

Related Work

Human pose estimation has been intensely studied for decades in the field of computer vision
due to its wide applications. Some of the methods in the literature that attempt to solve this problem
date back to the use of pictorial structures (PS) introduced by [9]. More recent methods improve the
concept of PS with improved features or inference models, as in [3,10-13]. Recently, the launch of
low-cost RGB-D sensors (e.g., kinect) has further triggered a large amount of research due to their
good performance from extra depth information whose intensities depict an inversely proportional
relationship between the distance of the objects to the camera. The existing algorithms can be roughly
categorized into three groups, i.e., using only RGB sensor, using only Depth sensors, or using both
RGB and Depth sensors. Some approaches in the first group are [1,14-18]. Some approaches in the
second group are [6,19-38]. Some approaches in the third group are [39,40].

Using RGB sensors, Yang et al. [1] uses a mixtures of parts model based on a robust joint
relationships, Sapp et al. [14], in turn, uses a multimodal decomposable model, Bourdev et al. [16]
addresses the classic problems of detection, segmentation and pose estimation of people in images with
a novel definition of a part, a poselet, and Wang et al. [15] considers part-based models by introducing
hierarchical poselets. Ionescu et al. [17] describes automatic 3D human pose reconstruction from
monocular images, based on a discriminative formulation with latent segmentation inputs.

Using depth sensor, Shotton et al. [6], which was developed for the kinect algorithm, has become
the state of the art for performing human pose estimation that predicts 3D positions of body joints from
a single depth image. As mentioned in [26], to capture the human pose efficiently from multi-view
video sequences, a sum of Gaussian (SoG) model was developed in [32]. This simple yet effective
shape representation provides a differentiable model-to-image similarity function, allowing a fast
and accurate full body pose estimation. The SoG model was also used in [33,36,40] for human or
hand pose estimation. Extended from SoG, a generalized SoG model (GSoG) was proposed in [34],
where it encapsulated fewer anisotropic Gaussians for human shape modeling, and a similarity
function between GSoG and SoG was derived in 3D space. Meanwhile, a sum of anisotropic Gaussians
(SAG) model [37] shared the similar spirit with GSoG for hand pose estimation, and it provided
an overlap measurement between projected SAG and SoG/SAG in 2D image. Although GSoG and
SAG based approaches have improved the pose estimation performance with better model adaptability,
their similarity functions are specifically designed for different situations/applications. In addition,
the clamping function that aims to handle the model intersection problem in previous SoG-based
approaches [32,34,36] leads to a discontinuous energy function that could hinder the gradient-based
optimization. In [26], inspired by the classical Kernel Correlation-based algorithm [38], generalizes
previous SoG-based methods and derives a unified similarity function from the perspective of Gaussian
kernel correlation. Ding et al. [26] embeds a kinematical skeleton into the kernel correlation, which
enables us to achieve a fast articulated pose estimation.
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Using both RGB and depth sensors, object detection has been done using RGB-D with Markov
Random Fields (MRFs) and features from both RGB and Depth [39]. Ding et al. [40] defines a method
that can capture a broad range of articulated hand motions at interactive rates.

The proposed method uses both RGB and Depth information and a discriminative method using
a deformable parts model combined with a generative method using Kalman filter for tracking the
human pose.

We first explain the proposed method, Section 2, using the pre-processing step, Section 2.1, for the
depth channels in which the background was removed to improve the accuracy of our algorithm
(see Figure 1). Section 2.2 explains the formulation of our four dimensional (4D) mixture of parts model.
Section 2.3 explains our structured quadratic linear estimator for correcting joints in consecutive frames.
Section 2.4 explains the polisphere model used. Finally, the Section 2.5 describes the strategy to reduce
the computational complexity of our proposed method using dual quaternions. Finally, Section 3
shows us the results obtained comparing the proposed method (4D-DPM) with the original method
DPM in Section 3.1 and a time complexity analysis in Section 3.2.
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Figure 1. Outline of our method.

2. Proposed Method

2.1. Data Pre-Processing

As a processing step of RGB channels, we isolate significant foreground areas in these channels
from background noise. This is done by removing regions in the depth images that are most unstable
to different thresholds that belong to the background. Such a foreground and background template
is then transferred to the RGB images to thus remove noise or conflicting object patterns that would
confuse foreground and background features in our method, and would hinder detection accuracies.

The intuition behind this approach is that objects or people in the foreground seen through the
depth sensor share areas with similar pixel intensities. The reason for this is that the infra red (IR) rays
being reflected from the objects in the foreground are reflected more or less at the same time and with
the same intensity. Other objects or areas that are much farther away from the IR camera unevenly
reflect such rays, and these areas appear noisier and with varying intensities. Figure 2 shows the
different intensities reflected from the IR sensor that represents the depth coordinates of the objects.

Due to this property of the pixel intensities in the depth images, our background removal method,
which is used for depth and later applied to the RGB images, uses a maximally stable extremal regions
(MSER) based approach [41]. These regions are the most stable ones within a range of all possible
threshold values being applied to them. A stability score ¢ of each region in the depth channels is
calculated so that 6 = |AI‘{R_|R‘ , where |R| represents the area of the region in question and A represents
the intensity variation for the different thresholds. Hence, we remove those MSER regions in which
areas are above a T threshold. We train the parameters for MSER based on a subset of the training set.
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We can see in Figure 2 the results from our background subtraction method. Note that most of the
noisy pixels in the background have been removed.

(d)

Figure 2. Pre-Processing: (a) original depth; (b) depth after applying maximally stable extremal regions (MSER);
(c) original RGB; (d) combining image (c, b).

2.2. Multi-Channel Mixture of Parts

Until recently, Yang and Ramanan’s method [1] has been a state-of-the-art method for pose
estimation in monocular images. Yang and Ramanan’s method performs poorly on images that vary
from those in its training set, and their method only improves by a small margin even after retraining.

Although there have been other algorithms that have improved Yang and Ramanan’s model,
such as [2,3,5], all of these methods, including Yang and Ramanan’s, use a mixture of parts for only the
RGB dimension of channels. Conversely, our method uses a multi-channel mixture of parts model that
allows us to extend the number of mixtures of parts to the depth dimension of RGBD images.

The depth channel increases time complexity, but this disadvantage has been solved by cutting
the number of joints modeled in our 4D-DPM method. On [7,8,42], we can find the main equations
changed to introduce the new dimension, depth channel.

2.3. Point Detection in Consecutive Frames

To date, we have dealt only with pose estimation for each single frame independently. However,
most of the joint movement performed in normal circumstances displays uniform and constant changes
of displacement and velocity. Hence, we can use joint velocity and acceleration to predict where joints
would most likely be, given their past history. This motion-based prediction could help us validate our
frame-based prediction.

One way of predicting joint location based on previous detections is by using a linear quadratic
estimator (LQE). Using a simple LQE works well when the joints being tracked are independent of
each other and their movement does not correlate. However, in our case, our joints are connected to
each other through limbs, which are rigid connections and allow the movement of one joint related to
the other one to be connected; e.g., the foot joint movement would be relative to a parent joint like as
a knee or hip.

Using the same algorithm as [7,8,42], a Kalman filter is used for tracking the points of interest.

2.4. Geometric Model

In the case of improving the results of the Kalman filter, we introduce some restrictions using the
geometric model. To do that, we use a polisphere to represent the human body. This representation
allows us to detect collisions between the different parts of the body.

In Figure 3, we can see the geometric model used. Green parts are the principal spheres used and
delimit each part of the body.
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Figure 3. Geometric model using polispheres.

2.5. Model Simplification

The additional depth images included in our formulation add computational cost to our training
and testing phases.

In this section, we explain a simplification technique that uses inverse kinematic equations in
order to infer shoulder and knee joints. The original DPM model calculates the full body parts with
14 joints. By using inverse kinematics, we can lower that number of points to 10. The joints modeled in
our proposed 4D-DPM method were reduced, as were the variables to be predicted with KF.

e Human body model: In order to track the human skeleton, we model it as a group of kinematic
chains, where each part and joint in the human body corresponds to a link and joint in a kinematic
chain. Given the joint positions predicted by the KF, inverse kinematics are used to obtain all of
the joints using Dual Quaternions (DQ).

e State variables: The human body model is divided into four main kinematic chains (KC) that
perform collision detection with their correspondent state variables, in essence: one KC for each
arm and one for each leg. Figure 4 shows the state variable for each KC.

right left

X6 Z5 X4 X3

X4 X3 X6 Z5
z

71

X2

X3
X4

z5
X6

Figure 4. Coordinate systems used.

e DQ model: We use DQ to model each KC. In this sense, we use six joints for each KC for
shoulders, hips, hands, and feet (see Figure 4).

o DH model: We use the Denavit-Hartenberg (DH) method to obtain the base coordinate system
for each joint. After that, we will apply the dual quaternion method. First, we establish the
base coordinate system (Xo, Yo, Zg) at the supporting base with the Z; axis lying along the axis
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of motion of joint 1. We have four base coordinate systems (Xj, Yy, Zo), each one located at
(X1,Y1,Z1) from each KC. Then, we establish a joint axis and align the Z; with the axis of motion
of joint7 + 1.

We also locate the origin of the iy, coordinate at the intersection of the Z; and Z;_4 or at the intersection
of a common normal between the Z; and Z; 1. Then, we establish X; = 4+ (Z; 1 X Z;) / ||Z;_1 X Z;|| or
along the common normal between the Z; and Z;_; axes when they are parallel. We also assign Y; to
complete the right-handed coordinate system. Finally, we find the link and joint parameters: 6; (angle
of the joint with respect to the new axis), d; (offset of joint along the previous axis to the common
normal), a; (length of the common normal), and «; (angle of the common normal with respect to the
new axis).

For each KC, we have six variable joints g;. Each g; is placed on the z; axis in Figure 4. (the left leg
in Figure 4 has the same coordinate systems as the right leg.)

Once we have the coordinate systems for each joint, a dual quaternion method is explained.
First, we introduce a DQ representation and then we explain the kinematics. A DQ is:

q=1(3s,G0) or g=q+eq, @
where g is a dual scalar, §, is a dual vector, g and ¢° are two quaternions and ¢ is a dual unit. We define
the next expressions:

_ ~_ |94 495 g6 47
7= (90,91,92,93) q LIS o 0o qH]
Gs = qs + €49 Go = qo + €4 )
V{a} = q0 = [91, 92,93 S{q} =45 =40

S{R{G}} =qs =q4 S{D{a}} = 4° = [45,96,97]
VIR{a}} = g0 =498  V{D{a}} = 4% = [99, 910,911

These equations represent different parts of quaternions product: V{g} is a vectorial part, S{g} is
a scalar part, S{R{j}} is a scalar part of real part, S{D{j}} is a scalar part of dual part, V{R{7}} is
a vectorial part of real part and V{D{g}} is a vectorial part of dual part.

All the movements of the rigid body in the 3D space, with the exception of pure translation, are
equivalent to the screw movements, that is, the rotation on the line together with the translation on
the line.

If the line passes over the origin, the movement of screw can be written as:

T= 3)

R(8,d) Lpd
0 1|’

where R(6,d) represents the 3 x 3 rotation matrix on the axis in the direction of the unit vector d
through an angle 6.
If the axis of the screw movement does not pass over the origin, it can be written as:

7 |Bo p||ROM) Lpd| [ —p| _ |R(O,d) Fpd+ (I —R(0,d))p @
0 1 0 1 0 1 0 1 '
We can represent a screw movement as dual quaternions as follows:
, 0 AP
g = cos <2> + sin <2> d, 5)
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where 8 = 6 + ek and d = d + em. 0 is the rotation of screw angle, and d = [0,d] is the movement of
screw axis. The moment of the axis is m = [0, p x d]. The point p is in the direction of d. And k = d - t.

In a Pliicker coordinates, each line can be fully represented by an ordered set of two vectors.
The first point is a vector p that indicates the position of an arbitrary point on the line, and the second
point is the direction vector d, which gives us the direction of the line. The Pliicker coordinate can be
represented as follows:

L, (mr d)r (6)

where m = p x d is the vector moment of d with respect to the reference origin selected.

We can represent one line on Pliicker coordiante as 1, = 1, + em,, and we can transform that
expression to i; = §®I, ® §* using the dual quaternion unit.

The representation of the Pliicker coordinates is not minimal since it uses six parameters for the
representation of the line. The main advantage of the representation of the Pliicker coordinates is that
it is homogeneous. L, (m,d) represents the same line as Ly (km, kd), where k € R.

To solve the forward and inverse kinematics using dual quaternions, we use Paden-Kahan
subproblems. We have three sub-problems of Paden—Kahan, and Figure 5 shows graphically the three
sub-problems.

Figure 5. Paden—-Kahan sub-problems: (a) sub-problem 1; (b) sub-problem 2.; (c) sub-problem 3.

To solve the sub-problem 1, we have ¥ = q® x ® q° as the general movement equation,
where 6 = arctan2(S{l@x @y'},5{x ®y'}), ¥ = x+S{l®ox},andy = y+S{I®y}, [ = [0,1] is
the director vector of I.

To solve the sub-problem 2, we have y = q; ® g2 ® x ® q; ® q] as the general movement equation,
z=c—r,z=[0,z]. If I, I, 1 xI; are linearly independent, and we have z = al; + Bl + v[0, V{1 ® b }],

_ S{hab}s{bex}-Ss{heyt 5 _ S{heb}S{hay}l-S{hax} — xP—e?—p2—20pS{, 0D}
wherea = “PGucpyt P = T (spenirr Y= T wgagyE - Then
we can calculate 6; and 6, using the sub-problem 1.

To solve the sub-problem 3, we have ||y — g ® x ® g*|| = ||7|| as the general movement
equation, where 6y = arctan2(S{I @ x @y },${x ®y'}); then 6 = 6y + cos? <W>,

where ¥’ = x+ S{l@x},y =y+S{I®@y},v2 =2 +[S{I® (a—b)}|.

For forward kinematics, given the six variable joints (41, 42, 43, 44, g5, ¢ ), we obtain the coordinates
of end effector (x,y,z) with respect to the base of the KC.

As Equation (1), the transformation operators DQ can be obtained as follows:

4; = (gs;,qv;) or G = q+eqy, @)
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where for prismatic joints g; = [1,0,0,0] and 47 = [0,4°, ¢, 93], for revolute joints g; = [cos(%),sin(%)di]
and¢) = 1(pi—q:®@pi®qF) ®g;0rqg? = [0, sin(%)mi]. In addition, where d; is the rotation axis vector,
m; is the vector moment, and 6; is the angle of rotationand i = 1,2, ...n.

The general rigid body transformation operation is given by:

JIn=10pOgO - Ofgn, 8)

where §1, = g1, + €4°. §1,, transform vectors and positions from 1 to 1.

The orientation and position of the end effector can be found as follows: I, = I, + elg and
Lig =1+ el | are the representations of the Pliicker coordinates n'" and (n — 1), respectively.
We also have 7:1 = l,/q + el,;0 =411 © I, ® 41,, and 7:1_1 = l;_l + el:ﬂ1 =J1p-1© I,_10 q;,_q are the
representations of the Pliicker after transformation. The orientation of the end effector is 7/6. The end
effector position can be found as follows:

pn = (V{R{g1, ©1, ©43,}}) x (V{D{41, © 1, ©87,}})
F((V{R{g10—1 © L1 © 87,1 3}) ¥ (V{D{d1n—1 © i1 © 831, 11}))
(V{R{g1, © 1, ©47,}1)) * (V{R{f1n © 1, @37, } }). €)

We can obtain Equation (9) using the intersection of two orthogonal unit line vectors given by:

r=dy X my+ (dy X mg - dp)dy, (10)
r= dﬂ X My + (db X mb . dg)dﬂ. (11)

For inverse kinematics, given the coordinates of end effector, pg, and the orientation, 7’6, in Euler
parameters, (x,Y,z,¢,0,1), we can obtain the six variable joints, (41, 92,43, 94,95, 96 ), as we show below.

We have as input parameters:
= || = %), (12)
Tin Pe

where g;, = (90,91, 92, 93], end effector orientation, is a real part of dual quaternion §;,. In addition,
7% = (45,49, 49, 43], end effector position, and dual part of dual quaternion 4;,.

We have then:
Is = R{fe ©ls © &6} = qins (13)
pe = (V{R{416 © 16 © 36 }}) x (V{D{d16 ©l6 © 416 }})
H((V{R{g15© 5 © 475} }) x (V{D{g15 © 15 ©® 415} }))
(V{R{16 © 16 ©@ 876} })) * (V{R{f16 © 16 © 16 }}) = G- (14)

An inverse kinematics problem has been solved using the appropriate problems of Paden-Kahan.
Wrist position depends only for the first three joints and wrist orientation depends for the rest
of the joints. For this reason, the first joint to calculate is 63. We define two points, the first point py
allocated on the intersections of axis 5 and 6, and the second point p; on the intersection of axes 1 and 2:

(V{R{t13 © 16 ©4i3}}) x (V{D{i13 ©ls ©di3}})
+((V{R{t13 015 @ 4i3}}) x (V{D{i13 © 15 @ 4j3}}))
(V{R{g13 0l ©413}})) * (VIR{413 0 s © 813} }) = 4y (15)
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(V{R{i12 0 ©415}}) x (V{D{i12 0, ©415}})
+(V{R{g12 © 1 © 412} }) x (V{D{a2 © 1 © 835} 1))
(V{R{g1 0L 41,3 })) * (VIR{42 © L © 855} }) = g (16)

Doing the subtraction of both points and using the property of the distance between two
preservation points by the rigid movements, we obtain sub-problem 3 of Paden-Kahan. The parameters
of this sub-problem are:

a = (V{R{ls}}) x (V{D{Ie}}) + (V{R{Is}}) x (V{D{I5}})) - (V{R{I6}}))  (V{R{Js}})
b= (V{R{2}}) x (V{D{L}}) + (V{R{h}}) x (V{D{I1}})) - (V{R{L}})) = (V{R{]2}}),  (17)

and where [ is the joint 3 and 6 = 47, — p;,. Using these parameters and using the sub-problem 3, we
can find 6.
If we know 63 in Equation (15), we can obtain:

(VIR{12 016 © 72}}) x (V{D{4n2 016 © 47,}})
F((V{R{h2 © 15 © 412} }) x (V{D{d12 © 15 © 412 }}))
{(V{R{12 016 ©71})) * (VIR{12 © s ©012}}) = 4y (18)
where 7é =301 ® g5 and 7:,,-, =50l 08.
With Equation (18), we obtain the sub-problem 2 of Paden-Kahan, where the parameters are:

a = (V{R{Ig}}) x (V{D{l}}) + (VIR{Is}}) x (V{D{I5}})) - (V{R{Ig}}) * (VIR{Ic}}),  (19)

and where /; is the joint 1, dy; parameter I is the joint 2, dp; value b = q?n. With these parameters and
the sub-problem 2, we can found 61 and 6,.

To find the angles of the wrist, we have to consider a new point p; = pg + Ads, initial point,
allocated over joint axes d¢. To find the final point p,, we need two imaginary axes so that this point is
the position of point p; after rotation of angles 04 and 65. Point p; is the intersection of imaginary axes.
This leads us to:

(V{R{4s5 © I ® 335 }}) x (V{D{us 015 © g5} })
H(V{R{gss © 1 © g5} 1) x (VID{ass © 1 © 35} 1))
(V{R{Gas 0T © 835} })) * (V{R{as © Is © s} }) = g5, + Ad, (20)

where 7; = g30lo 4315 and 7’7 =30 Lo 4315- Equation (20) provides the sub-problem 2 of
Paden-Kahan. The parameters are:

a = (V{R{Ig}}) x (V{D{lg}}) + (VIR{I;}}) x (V{D{I;}})) - (V{R{lg}})) * (V{R{Is}}), (1)

and where parameter [; is the imaginary axis 7, dy; parameter I, is the imaginary axe 8, ds;
value b = 9 + Adg. With this parameters and the sub-problem 2, we can find 6, and 5.

To find the last parameter, 65, we need a point allowed over the last axis. We define p; = ps + Ads.
We use two virtual axes to find the point p; that is the position of the point p; after rotation of 6.
Analogously to the above equations and the five angles known, we obtain:

(VIR{g6 © 11 @ 35} }) x (V{D{36 © Ty © 85 }})
H((VIR{3s © 1y ©82}}) x (V{D{8s ® Iy ©35}}))
(V{R{gs ® 11y © 95 }11)) * (VIR{G6 © 1o @ 3} }) = g5, + Ade, (22)
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where 7’10 = 150100 4315 and 7; = 45000 415 Equation (22) allows us to sub-problem 1.
The parameters are:

a = (V{R{Tj}}) x (VID{I}}}) + (V{R{Ig}}) x (VID{Io}})) - (V{R{Io}})) * (VIR{T}}}), (23)

and where parameter [ is the imaginary axis 6, d¢; value b = 4% + Ads. With these parameters and the
sub-problem 1, we can find 6.

We use inverse kinematics because we can obtain the base of our KC (shoulders or hips), and where
the final effector and the orientation (hands and feet) are; thus, we have these parameters: (x,y,z,¢,6,9)
and, using inverse kinematics, we obtain the six variable joints, (61, 6>, 63, 64, 05, 65), and use them to
know where the elbow or knee are located.

Figure 6. Results of our method after inverse kinematics (IK). The second row shows the model and
joints being inferred (elbows and knees).

3. Results

e 3D Camera Calibration: Our method works with any RGB-D sensor after correct calibration.
In our experiments, we use a kinect device and calibrate the intrinsic and extrinsic parameters of
the monocular and IR sensors. The calibration system is done similarly to [43] or [44,45].

e Data sets: To train and test our method, we use a combination of videos from our own data set
and a subset of the publicly available CAD60 data set [46].

o CADG60 data set: The original CAD60 data set [46] contains 60 RGB-D videos, four subjects
(two male, two female), four different environments (office, bedroom, bathroom and living
room) and 12 different activities. This data set was originally created for the activity recognition
task [47-49]. The size of images is 320 x 240 pixels.

o Our data set: It consists of seven videos with only one person on the scene moving his arms and
legs. We had almost 1000 frames of people to obtain specific movements, e.g., crossing arms over
one’s body, to complement the CAD60 data set. Images were taken indoors in different scenarios.
The subject inside the images is a male who wears different clothes. The size of the images is
320 x 240 pixels.

The ground truth of the joints in this data set was obtained by recording predictions from kinect.
Thus, in order to make a fair comparison of the predictions from the methods being tested, we provide
the videos to our human annotators to manually record the ground truth of the joint positions in
the CADG60 data set. Thus, our annotators recorded over 15,000 frames of videos that correspond to
16 videos from the CAD60 data set with different activities and environments. For training and testing
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purposes, we use two different splits of such annotations. We chose to manually annotate the CAD60
data set because, to our knowledge, there is no RGBD data set with the ground truth of human pose
joints. We will also publicly release our annotated videos for the benefit of the research community.

We can find some other data sets using RGB and depth images for pose estimation, but they can
not be used in our proposed method due to annotation problems.

Metrics: The metrics we use in our different experiments are the probability of a correct kypoint
(PCK), the average precision keypoint (APK) and error distance.

PCK: The probability of a correct keypoint (PCK) was introduced by Yang and Ramanan [1].
Given the bounding box, a pose estimation algorithm must report back the keypoint locations for
body joints. The overlap between the keypoint bounding boxes was measured, which can suffer from
quantization artifacts for small bounding boxes. A keypoint is considered correct if it lies within
a - max(h,w) of the ground truth bounding box, where 1 corresponds to the height and w to the width
of the corresponding bounding box. « is a parameter that controls the relative threshold to consider
the correctness of the keypoint.

APK: In a real system, however, one has no access to annotated bounding boxes at the test time,
and one must also address the detection problem. One can cleanly combine the two problems by
thinking of body parts (or rather joints) as objects to be detected, and evaluate object detection accuracy
with a precision-recall curve. The average precision keypoint is another metric introduced by Yang and
Ramanan [1], where, unlike PCK, it penalizes false-positives. Correct keypoints are also determined
through the « - max(h, w) relationship.

Error distance: This metric calculates the distance between the results and the correct labeled
point. To do this, we calculate the distance error between the predicted result and the ground truth
location. For each joint, we obtain an error score that is the mean value calculated from all of the
frames.

3.1. Quantitative Results

Table 1 compares our results with Yang and Ramanan’s [1] original method (Yang*) trained with
the same images that we used to train our proposed method (P. Method*). Observing the results
obtained in Table 1, and by comparing our proposed method with the original DPM, trained both
with the same range of images and tested with the same range of images, but a different one of
trained images, we have improved the results with the proposed method by adding depth information,
a Kalman filter and using Denavit-Hartenberg (DH), in order to cut the number of points modeled
in the DPM. Observing the results in Table 1, and independently of the data set used to test or train
parts, our proposed method obtains better solutions. This means that the results can be repeatable
with different data sets.

Table 1. Experimental comparisons with the state-of-the-art methods on our proposed data set. The
probability of a correct kypoint (PCK) and the average precision keypoint (APK) metrics are expressed
on %. Error is expressed in pixels.

Model Metric Head Shoulders Wrist Hip Ankle Avg
APK  91.20 92.30 8270 86.60 8350 87.26

Yang*[1] PCK  91.50 89.00 85.80 8990 83.80 88.00
Error 817 8.81 10.87 937 1159  9.76

APK  97.50 98.30 92.20 94.70 94.00 95.34
P. Method* with KF with DH PCK  96.40 95.20 93.70 96.50 94.20 95.20
Error 5.82 5.71 7.43 6.37 6.61 6.38
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Table 1 shows the results using KF and DH. , and using DQ will obtain the same results in accuracy
as using DH. For this reason, a table comparing the original DPM model with our proposed method is
not shown. We discuss in the next section the difference between DH and DQ.

3.2. Time Complexity Analysis

For our experiments, we use a system based on Windows 7 (Microsoft, Redmond, WA, USA) with
64 bits and 4 GB RAM. The processor used is Inter Core Quad 2.33 GHz (Intel Corporation, Santa Clara,
CA, USA). We calculate for each frame the average time taken for the proposed algorithm to process
the frame. The images used have 320 x 240 pixels.

In our previous work, we used (DH) kinematics instead of dual quaternions. Dual quaternions
are faster than a transformation matrix used in DH and do not have singularities in their solutions.

Table 2. Number of operations between Denavit-Hartenberg and dual quaternions.

Method Memory Products Sum/Subtract Total
Homogeneous Matrix 16 64 48 112
Dual Quaternions 8 48 40 88

Table 2 shows the number of operations for one degree of freedom, for n degrees of freedom, we
have on DH 64 (n — 1) products operations and 48 (n — 1) between sums and subtraction operations,
while, for DQ. we have 48 (n — 1) products operations and 40 (n — 1) between sums and subtractions
operations. Figure 7 shows how many operations we need for each degree of freedom added.

2500

T T
==Transformation Matrix
==Dual Quaternions

2000

Operations
@
2
S
-

2
3
3

500 -

0 2 4 6 8 10 12 14 16 18 20
Degrees of freedom

Figure 7. Comparing the number of operations between Denavit-Hartemberg and dual quaternions.

Figure 8 shows the time needed to make the operations. We can see that DQ is faster than DH;
for this reason, we opted to use DQ.

Direct Kinematics Inverse Kinematics

- _
o

Single Solution All Solutions Single Solution

All Solutions
EDH 0.09 03 HDH 0.21 0.65
mDQ 0.07 0.18 =DQ 0.09 0.34

Figure 8. Computational time used.
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All of these comparisons about computational cost using dual quaternions are for one kinematic
chain. In our proposed method, we are using four kinematic chains for which we have to multiply
these results by 4.

Finally, the computational cost of the proposed method is 6.85 s and the original DPM method
takes 9.21 s.

4. Conclusions

In this paper, we have presented a 4D-DPM model using RGB-D information to improve accuracy
and timing cost. We use MSER for foreground subtraction. We use dual quaternions to reduce the
number of points of interest inside the imagery. We use a polisphere to draw the results and detect
collisions between the different parts of the body. All of this allows us to reduce the time complexity
during the training part using a smaller fraction of training samples.
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Abbreviations

The following abbreviations are used in this manuscript:

PS Pictorial Structures

MRFs Markov Random Fields

DPM  Deformable Parts Model

MSER Maximally Stable Extremal Regions
PCK  Probability of a Correct Kypoint
APK  Average Precision Keypoint

KF Kalman Filter

DQ Dual Quaternions

KC Kinematic Chains
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