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Abstract: The use of RGB-Depth (RGB-D) sensors for assisting visually impaired people (VIP) has
been widely reported as they offer portability, function-diversity and cost-effectiveness. However,
polarization cues to assist traversability awareness without precautions against stepping into
water areas are weak. In this paper, a polarized RGB-Depth (pRGB-D) framework is proposed
to detect traversable area and water hazards simultaneously with polarization-color-depth-attitude
information to enhance safety during navigation. The approach has been tested on a pRGB-D
dataset, which is built for tuning parameters and evaluating the performance. Moreover, the
approach has been integrated into a wearable prototype which generates a stereo sound feedback to
guide visually impaired people (VIP) follow the prioritized direction to avoid obstacles and water
hazards. Furthermore, a preliminary study with ten blindfolded participants suggests its effectivity
and reliability.

Keywords: traversable area detection; water hazard detection; RGB-D sensor; polarized stereo; ZED;
visually impaired people

1. Introduction

According to the World Health Organization, 285 million people around the world are estimated
to be visually impaired and 39 million of them are blind [1]. It is rather challenging for visually
impaired people (VIP) to naturally navigate through obstacles and avoid water hazards in unknown
environments. The invention of RGB-D sensors had a prodigious influence to the research field of
visually impaired people assistance with the emergence of light-coding sensor-based approaches [2–17]
and stereo camera [18–29]-based approaches as well as the proof-of-concepts they provided.

The appearance of RGB-D sensors across a wide range of visual assistance contexts is not only due
to their low-power-consumption and cost-efficiency, but also its robustness and good performance as
they are able to simultaneously perceive color and depth information at video framerates. Apart from
color and depth, polarization and its imaging extend information dimension to be used for material
discrimination and target detection because polarization parameters reflect physical properties of
materials [30]. Meanwhile, given that light with different polarization state behaves differently at the
interface of object surface, polarization has been applied to many surface measurement techniques.
However, typical commercial RGB-D sensors including light-coding sensors and stereo cameras simply
rely on intensity information whereas their polarization cues are generally unavailable or weak.

Light-coding sensors project near-IR speckles and capture the patterns with a calibrated camera,
the structured light pattern being coded with spatial or temporary projecting methods [31]. These
sensors correlate observed pixels with projected pixels so as to derive depth information through
triangulating algorithms. However, many consumer-grade sensors are coded in intensity rather than
polarization regardless of whether they use spatial or temporary coding methods. Thereby, as projected
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speckles are easily lost in sunlight, approaches for VIP with light-coding sensors focus mainly on
obstacle avoidance [2,3,9,11,13], traversability awareness [5–8,12,14] and stairs detection [4,10,15–17].

A stereo camera estimates depth maps through stereo matching of images from two lenses. There
is a large body of work on stereo matching, some of which are local stereo matching algorithms [32–34]
while others approximate global optimization [35–37]. Local stereo algorithms are generally faster
as they calculate the depth of pixels based simply on the correlation of local image patches. Most
commercial stereo cameras include local algorithms to achieve speedy refresh rates but return sparse
depth information in texture-less scenes, such as a blank wall. Different from conventional stereo
cameras, the RGB-D sensor of the RealSense R200 and RS400 [38] devices employed active stereo [39] to
combine a pair of cameras with fixed structured light patterns to realize extraordinary environmental
adaptability. ZED [40] implemented GPU-accelerated global stereo algorithms to achieve dense
and large-scale depth perception, but these commercial stereo cameras comprised IR or RGB lenses
and none of them use polarization modulation. As a result, most approaches for VIP with stereo
cameras assist navigation in large outdoor spaces [18–22,26–29] and some schemes have also addressed
localization [23–25], but none of them detect water hazards to prevent misleading VIP to step into
water areas.

In this paper, we proposed to use a polarized a RGB-D sensor for detecting traversable areas and
water hazards by adequately considering polarization effects. We equipped a stereo camera with an
attitude angle sensor, a pair of horizontal and vertical polarizers to form a pRGB-D sensor. The point
cloud in 3D space relative to the sensor is computed with the depth image and intrinsic parameters.
The points are adjusted to the world coordinate system with the attitude angles of the sensor. The
traversable area is determined by building a stochastic polar occupancy grid, estimating the ground
pose by fitting a B-spline surface and using dynamic programming to segment the ground area and
obstacles. The water areas are identified by using polarization effects as the primary cue and the
polarization difference image is computed with disparity information from the pRGB-D sensor.

This work extends what was presented in [11,12,29], where we addressed the traversable area
detection and scene segmentation with a wearable RGB-D sensor. In this paper, we have attached the
filters to add polarization information, and generated a stereo sound feedback system to take into
account both traversable regions and water areas to guide VIP to follow the prioritized direction in
order to avoid obstacles and water hazards, as well as set up a pRGB-D navigation framework which
has been proved to be useful and reliable by a field test with ten blindfolded participants.

This paper is organized as follows: in Section 2, related works that have addressed traversability
awareness or water hazard detection are reviewed; in Section 3, the presented approach is elaborated
in detail; in Section 4, the effectiveness and robustness in terms of the detection and the stereo sound
interface are demonstrated with experiments and a user study; and in Section 5, relevant conclusions
are drawn and future works are expected.

2. Related Work

Several related works have been dedicated to traversable area detection, which can be divided into
two categories: traversable area detection based on scene segmentation and traversable area detection
based on surface normal vector estimation. Dakopoulos presented a comparative survey of wearable
obstacle avoidance systems to inform the research community and users about the capabilities of
the progress in assistive technology for VIP [41]. As for segmenting ground areas from hazardous
obstacles, Wang adopted a mean-shift algorithm to regard the local point cloud to be a traversable
area if the angle between the fitting plane and horizontal plane in the camera coordinate system
is less than a threshold [42]. The approach achieves good robustness under certain environmental
conditions with the reliance on thresholds and assumptions. Cheng put forward a seeded region
growing algorithm to detect ground areas by adequately considering the depth boundaries instead of
attaching importance to setting thresholds [11]. The approach withstands the fluctuations between
frames but confuses VIP with the unstable results as the seeded pixels are randomly elected. Rodríguez
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estimated ground planes based on RANdom SAmple Consensus (RANSAC) and used a polar grid
representation to account for the potential obstacles [27]. The approach involved a field test to verify
the usability but it yielded a detection error in more than ten percent of the frames. Badino proposed
to represent the 3D situation with a set of rectangular sticks for autonomous systems by taking into
account the fact that the traversable area in front of vehicles is limited by objects with almost vertical
surfaces and estimated the road by fitting a B-spline surface instead of assuming a planar road [43,44].
Elleuch developed a segmentation approach based on possibility modeling theory by imposing a
crucial starting point, namely considering reference area placed in the bottom of the image to be
traversable [45,46]. As for estimating the surface normal vector to determine traversable areas, Koester
detected accessible sections by calculating the gradients and estimating the surface normal vector
directions of real-world scene patches. The approach delivers fast and effective detection even in
crowded scenes, but it prevents practical applications for user studies due to its overreliance on the
quality of 3D reconstruction process and adherence to constraints [47]. For example, it assumes that
area directly in front of the user is accessible. Bellone defined a descriptor to measure the unevenness
of a local surface based on the estimation of normal vectors [48]. The index gives an enhanced
description of the traversable area to perform obstacle avoidance and terrain navigability analysis
simultaneously. However, it computes both the inclination and roughness at a low framerate which
remains unpromising for assisting at normal walking speed. Ni proposed to extract safe directions
by compressing the depth image from a light-coding sensor in the walking assistive robotic system
which also comprises ultrasonic sensors to detect the evenness of road surfaces [49]. Cui predicted
traversability based on support vector machine (SVM), and planned the optimal path for field robot
with consideration of the travelling smoothness [50].

Several related work have been devoted to water hazard detection by taking multi-cue approaches
with color, texture, depth and polarization information. Rankin detected water areas by analyzing
brightness and saturation values, and searched for the reflections of ground cover with range
information, and also discussed the possibility to specifically use the zero disparity to encode water
area [51]. Yao extracted the features of brightness and texture from the non-reflective regions with
color cameras, and detected the reflected regions where negative height exists and disparity sudden
changes with stereo cues [52]. Xie detected water hazards by calculating the polarization degree image
and used a self-adaptive segmentation algorithm and a morphology filtering technique to label water
regions [53]. The method has good performance in complex natural backgrounds, but it requires
mechanically rotating the linear polarizing filter and taking images at different angles, which results
in a tradeoff between convenience and effectivity. Yao combined traditional machine learning and
mean-shift segmentation, which accurately detects not only common water hazards, but also identifies
special water hazards that may have lots of ripples or low brightness [54]. Rankin firstly found the
horizon line and constrained the search for water bodies to the region below the horizon. Thereby, this
approach decreases the computational cost of water detection as well as reduces the probability of
false water detection [55]. Shao used a line-structured light sensor to achieve all-day water puddle
detection by measuring the deformation of active light strip [56]. Kim presented a methodology using
a stereo camera and treated the detection of wet areas and puddles differently [57]. For the detection
of wet areas, the polarization difference, graininess as well as gradient magnitude are combined using
hypothesis verification. For the detection of puddles, the depth map obtained by the stereo camera
is used to check whether depth changes abruptly around the puddles. Nguyen set up a ZED stereo
camera on top of a car with polarizing films on the camera lenses and tracked water hazards based on
the polarization and color variation of reflected light with consideration of the effect of polarized light
from the sky [58].

Almost all reported works were conducted under ideal scenarios or cause intolerable side effects
in navigational assistance for VIP. To the best of our knowledge, no previous work has addressed the
detection of water hazards to help VIP to avoid stepping in water areas and no previous work has fully
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combined the detection of traversable area and the detection of water hazard. Our approach builds on
the prior work and makes the breakthrough while the superiority is apparent in the following aspects:

• The approach is able to detect traversable area and water hazard simultaneously, which prevents
colliding into obstacles and stepping in water areas during navigation.

• The approach takes into account of the attitude angles of the sensor, which enables accurate
detection with the continuous movement of the wearable prototype during navigation.

• The approach combines the detection of water hazard with the detection of traversable area,
which decreases the computing cost and reduces water area detection error in scenarios such as
sky regions and edges of buildings.

3. Approach

In this section, the approach to detect traversable area and water hazard is elaborated in detail.
As shown in Figure 1, the approach is described in terms of the pRGB-D sensor, the traversable area
detection, the water hazard detection and the stereo sound feedback accordingly.
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3.1. pRGB-D Sensor

As shown in Figure 1, the pRGB-D sensor is comprised of a ZED stereo camera which is equipped
with horizontal and vertical polarization filters on the left and right camera, respectively, as well as a
MPU6050 attitude sensor [59]. The stereo camera delivers 720 p left-right color video pairs and a depth
image at 60 frames per second with the resolution same as the color video. The wide-angle all-glasses
dual lenses share a diagonal field of view of 110 degrees. The sensor ranges from 0.5 m to 20 m which
is quite suitable to detect traversable area and water hazard.
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For the traversability awareness, it not only refers to long-range ground plane detection but also
involves the early warning when a VIP approaches obstacles at close-range. For obstacle detection,
the minimum range of 0.5 m, equivalent to the length of an arm, is enough for the avoidance of most
obstacles given the normal walking speed of a VIP during navigation.

For water hazard detection, the primary cue is the polarization effect as specular reflection on
water is known to polarize light [58]. The specular reflection from the water surface Rre f lect is the sum
of two polarization components Rre f lect,⊥ and Rre f lect,//, perpendicular and parallel respectively to
the plane formed by the incident and reflected rays as given in Equations (1) and (2). As shown in
Figure 2, nair and nwater are the refractive indices of air and water respectively and θ is the reflection
angle at the water surface.

Rre f lect,⊥(nair, nwater, θ) =

naircosθ − nwater

√
1− (nair/nwater)

2sin2θ

naircosθ + nwater

√
1− (nair/nwater)

2sin2θ

2

(1)

Rre f lect,//(nair, nwater, θ) =

−nwatercosθ + nair

√
1− (nair/nwater)

2sin2θ

nwatercosθ + nair

√
1− (nair/nwater)

2sin2θ

2

(2)
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Figure 2. The light reflection and refraction for water hazards with particles and ground bottom.

Suppose the polarized light from the air comprises energy components ES
⊥(θ) and ES

//(θ) for
perpendicular and parallel components respectively as functions of reflection angle. The total energy
entering the water can be calculated with Equation (3):

FS = ES
⊥(θ)[1− Rre f lect,⊥(nair, nwater, θ)] + ES

//(θ)[1− Rre f lect,//(nair, nwater, θ)] (3)

However, part of the energy FS is scattered by suspended particles and ground bottom while
the rest is absorbed by both particles and the ground as shown in Equation (4) where µparticles and
µbottom are the scattering coefficients of particles and the ground bottom respectively, and µabsorption is
the absorption coefficient:

µparticles + µbottom + µabsorption = 1 (4)

Light in water can be considered as highly unpolarized light with random scattering and internal
reflection. With part of the scattered light coming out of the water through refraction, the total light
energy component coming out of the water is the summation of reflection and refraction for each
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polarization component, which can be calculated with Equations (5) and (6) where θ′ is the refraction
angle from water to air:

ER
⊥(θ) = ES

⊥(θ)Rre f lect,⊥(nair, nwater, θ) + 0.5FS[µparticles + µbottom]Rre f ract,⊥(nair, nwater, θ′ = θ) (5)

ER
//(θ) = ES

//(θ)Rre f lect,//(nair, nwater, θ) + 0.5FS[µparticles + µbottom]Rre f ract,//(nair, nwater, θ′ = θ) (6)

For illustrative purposes, in Figure 2, the water refractive index nwater is set to 1.33 and the
absorption coefficient µabsorption is set to 60%. Figure 3 shows that the polarization difference between
perpendicular and parallel components is large enough to provide a strong cue for water hazards at
reflection angles above 70 degrees or at distances above the minimum detection range. Thereby,
it is able to detect water hazards by setting the threshold of polarization difference with point
correspondence from left color image to right color image.
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If the wearing height of the pRGB-D sensor is H, the minimum water hazard detection range D
is calculated with Equation (7), where ϕ is the vertical field view of the stereo camera, which equals
55.75 degrees:

D = H × tan(θ − ϕ/2) (7)

Thereby, given the average value of user height, the wearing height H is set to 1.6 m, and the
reflection angle θ is set to 70 degrees. Thus, the minimum range D is around 1.45 m which is enough
to provide immediate feedback to avoid stepping in water areas and quite matched with the working
range of the depth sensor. However, with the continuous movement of the user head during navigation,
the threshold to segment potential water hazards should be varying as the polarization direction of
reflected light would not be strictly parallel or perpendicular with the polarizer in this circumstances.
Given the rolling angle of the pRGB-D sensor equaling to η, which is obtained with an attitude
sensor, the dynamic threshold is set to δ = δ0 cos2 η, where δ0 is the threshold if there is no rolling.
Additionally, notwithstanding different brightness of water area in left and right image due to the
specular reflection, depth information of water areas on the road is available as the stereo camera
in the pRGB-D sensor implemented a global stereo matching method to approximate smoothness
constraint for compensating local brightness differences and radiometric transformations [35]. As a
result, the pRGB-D sensor is quite suitable for navigational assistance thanks to its wearable computing
technology and its compatibility to support traversable area and water hazard detection.

3.2. Traversable Area Detection

In order to detect traversable area, a simple and effective technique is presented. First,
3D coordinates of the point cloud are calculated. Given the depth Z of pixel (u, v) in the depth
image, the calibrated focal length f , the radial distortion coefficients c1, c2, c5, the tangential distortion
coefficients c3, c4, as well as (u0, v0) the principal point, the point (X, Y, Z) in the camera coordinate
system can be derived with Equations (8)−(13):

x =
u− u0

f
(8)

y =
v− v0

f
(9)

r2 = x2 + y2 (10)

t = 1 + c1r2 + c2r4 + c5r6 (11)

X = Z× [xt + 2c3xy + c4(r2 + 2x2)] (12)

Y = Z× [yt + 2c4xy + c3(r2 + 2y2)] (13)

With the help of the attitude sensor, X, Y and Z coordinates in the camera coordinate system are
adjusted to world coordinates. Assume a point in the camera coordinate system is (X, Y, Z) and the
attitude angles acquired from the attitude sensor are (a, b, c). This means the point (X, Y, Z) rotates
about the x-axis by α = a, then rotates about the y-axis by β = b and rotates about z-axis by γ = c
in the end. Multiplying the point (X, Y, Z) by the rotation matrix given by Equation (14), the point
(Xw, Yw, Zw) in world coordinate system is obtained: Xw

Yw

Zw

 =

 cos γ − sin γ 0
sin γ cos γ 0

0 0 1


 cos β 0 sin β

0 1 0
− sin β 0 cos β


 1 0 0

0 cos α − sin α

0 sin α cos α


 X

Y
W

 (14)

After the point cloud adjustment, occupancy grids are computed with the stereo disparities
transferred from the adjusted point cloud coordinates, and the method proposed in [60] is used to
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propagate the uncertainty of the stereo disparities onto the grid. In the polar occupancy grid, the image
column is used to represent the angular coordinate and the adjusted disparity is used to represent the
range. 3D points lying above the ground area are registered as obstacles in the occupancy grid and
extremely high 3D points are dismissed such as ceilings which will not influence the travelling of VIP.
Moreover, the ground pose is fitted by a B-Spline surface with consideration of two facts: real-world
ground areas are not always planar surfaces [44] and the lenses share a distortion given a diagonal
field of view of 110 degrees. Our system builds on the work of Stixel World [43], which represents the
scene using a few upright objects on the ground plane. The computation includes dividing the input
image into a set of vertical columns, and searching for regions that could be immediately reached
without collision. In this sense, the task of traversable area detection is to find the first visible relevant
obstacle in the positive direction of depth. In this work, instead of using a single threshold to segment
obstacles and traversable areas independently, dynamic programming is used to seek the optimal path
cutting the polar grid from left to right by imposing a spatial smoothness and a temporal smoothness
to penalize both jumps in depth and deviations of the current frame from the previous frame. Figure 4
depicts frames of traversable area detection results by producing a green mask to overlay on the left
color image acquired with the pRGB-D sensor.
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3.3. Water Hazard Detection and Stereo Sound Feedback

As shown with the flowchart in Figure 5, in order to detect water hazards out of the traversable
area, we first generate the disparity image from the depth image produced by the pRGB-D sensor.
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Considering pixel G(u, v) in the depth image which ranges d, the calibrated focal length f ,
the baseline length B, the disparity value dis of pixel G can be calculated with Equation (15):

dis = B× f /d (15)

After that, we warp the right image to the left image to produce a point correspondence for
water hazard detection. With the stereo pair, we are able to calculate a brightness difference image
which signifies the polarization difference. Considering pixel G whose image coordinate is (u, v) in
left image and corresponds to the pixel G′(u + dis, v) in right image. If the brightness at G(u, v) in left
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image is Vle f t and the brightness in the warped right image is Vright at G′(u + dis, v). The left image
is captured by the left color camera with the horizontal polarizer while the right image is captured
by the right color camera with the vertical polarizer. Thereby, the brightness difference of pixel G
equals

∣∣∣Vle f t −Vright

∣∣∣. After extraction of the brightness difference image, it depends on the following
conditions whether pixel G can be classified as water hazard:

• Pixel G is classified as traversable in the process as presented in Section 3.2, where traversable
area is detected with depth and attitude information.

•
∣∣∣Vle f t −Vright

∣∣∣ > δ, where δ is the dynamic threshold of polarization difference set with the
derivation in Section 3.1 and varies with the rolling angle of the pRGB-D sensor.

Figure 6 depicts frames of water hazard detection results by producing magenta masks on the
green traversable area detection results as presented in Section 3.2.Sensors 2017, 17, 1890  9 of 19 
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color images; (c,f) Detection results with the pRGB-D sensor.

After traversable area detection and water hazard detection, a farthest traversable line to represent
the traversable distances in different directions is proposed to generate the stereo sound interface.
In each direction, the farthest distance for navigating is determined by both the traversable area and
water hazard detection results. In each direction, we first locate the farthest traversable pixel with the
biggest depth value Zt and then search for the nearest pixel denoted as water area whose depth value
is Zw. The farthest traversable depth value Z f equals to Zw if a water area is detected and equals to
Zt if no water areas are detected in this direction. Gaussian filtering is applied to smooth the farthest
traversable line to reduce noises before generating feedback to VIP. After the filtering stage, the green
farthest traversable lines with or without water hazard detection are obtained, as shown in Figure 7
where the red triangles represent the suggested navigation directions to take to avoid obstacles or
water hazards.

This paper uses a variant of the non-semantic audio interface presented in our previous work [29]
to transfer the traversable area and water hazard detection results to VIP by synthesizing stereo sound
from the farthest traversable line. In this work, the mapping of traversable distances to the different
sonification of instruments is elaborated.
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Figure 7. Farthest traversable lines with or without water hazard detection. (a,d,g) Traversable area
and water hazard detection results; (b,e,h) Farthest traversable lines correspond to the traversable
area detection without water hazard detection; (c,f,i) Farthest traversable lines obtained with both
traversable area detection and water hazard detection.

As shown in Figure 8, the directions of traversable areas are differentiated not only by sound
source locations in the virtual 3D space and the directions of stereo sound, but also by musical
instruments, whose timbre differs from each other.
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Figure 8. Stereo sound feedback of the assisting system. Sounds of five directions of traversable area
with or without water hazard detection are presented by five musical instruments in the virtual 3D
space, including trumpet, piano, gong, violin and xylophone.

The generation of the stereo sound follows rules below to guide and attract VIP to take the
prioritized direction to detour around hazardous regions:

• Divide the farthest traversable line into five sections which correspond to the five different musical
instruments. We only use five instruments to make sure that it is easy to understand and would
not sound confusing after the familiarization period. Five instruments, including trumpet, piano,
gong, violin and xylophone, produce sounds simultaneously.
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• The horizontal field view of the pRGB-D sensor is 86.5◦, so each musical instrument corresponds
to the traversable line with a range of 17.3◦.

• Each direction of traversable area and water hazard is represented by a musical instrument in the
virtual 3D space.

• For each musical instrument, the bigger the sum of height in the corresponding section of the
traversable line, the louder the sound from the instrument. As the relationship shown in Figure 9,
the instrument loudness increases exponentially with the average traversable distance in the
corresponding section of the traversable line so as to guide or attract the user to navigate the
traversable direction.

• For each musical instrument and the corresponding section, the bigger the areas that overlap with
the red triangle sections which denote suggested directions to take on navigation, the higher the
pitch of the instrument. As the relationship shown in Figure 10, the instrument pitch increases
linearly with the proportion of the overlapping areas with the red triangle sections.
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Figure 11. Results of traversable area and water hazard detection in indoor and outdoor environments. 
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4. Experiments

In this section, the proposed approach is verified with a series of experiments including tests on a
score of indoor and outdoor scenarios, comparisons with other works in the literature and a field test
in the real-world environment involving ten voluntary blindfolded users.

4.1. Indoor and Outdoor Detection Results

Figure 11 shows a number of traversable area detection and water area detection results in indoor
and outdoor environments. The approach detects traversable areas and generates farthest traversable
lines correctly, whose red triangles suggest the prioritized directions to avoid close obstacles and
water hazards.
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Figure 11. Results of traversable area and water hazard detection in indoor and outdoor environments.
(a,e,i,m) Left color images; (b,f,j,n) Depth images; (c,g,k,o) Traversable area and water hazard detection
results denoted respectively by the green and magenta masks on the left color images; (d,h,l,p) Farthest
traversable lines as stereo sound feedback interface.

4.2. Comparison of Detection Results

To compare the performance of traversable area and water hazard detection with respect to other
works, the results of several approaches are shown in Figure 8. Figure 12a−c are the results of the
proposed approach which detects ground areas and water areas correctly. Comparatively, Figure 12d–f
show the indoor and outdoor results of the approach proposed by Rodríguez which estimated the
ground plane based on RANSAC plus filtering techniques [27]. Figure 12f is a correct result of detecting
ground with some noises and holes, but the ground is partly detected in Figure 12e which is a type of
sample error as the inclination angle of the plane is not considered.

We removed this kind of error in our work with adequate use of the attitude angles of the pRGB-D
sensor. The approach in [58] set up a stereo camera to track water areas by modeling the sky light
effect with reflection and azimuth angles. That approach is able to detect water hazards robustly, but
mistakenly detects sky regions or edges of buildings as water areas as shown in Figure 12g−i. As the
approach proposed in this paper combines the detection of water hazards and traversable areas, the
aerial detection errors which would not hinder the navigation of VIP are reduced in number. Thus,
the aerial errors would not be transferred to mislead VIP to avoid the fake water hazards. The total
computation time of a single frame is 70.5 ms, while the image acquisition from the pRGB-D sensor
takes 3 ms, and the time cost for the segmentation of traversable area and the detection of water hazard
are 48 ms and 19.5 ms, respectively. Thereby, the computation cost is saved to maintain a reasonably
qualified refresh rate of 14.2 frames per second on a 4.0 GHz Intel Core 7 processor with the resolution
empirically set at 640 × 360, which is enough to feed results back in time to assist VIP at normal
walking speed.
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In order to provide a quantitative evaluation of the approach, the performance of the algorithm
is thoroughly analyzed by calculating traversable area detection rate (TADR), water area detection
rate (WADR) and expansion error (EE). Given Equations (16)−(18), traversable area detection rate
(TADR) is defined as the number of frames which ground has been detected correctly (GD) divided
by the number of frames with ground (G). Water area detection rate (WADR) is defined as the number
of frames which water area has been detected correctly (WAD) divided by the number of frames
with water area (WA). Meanwhile, expansion error (EE) is defined as the number of frames which
traversable area has been expanded to non-ground areas (ENG) including water areas divided by the
number of frames with ground (G):

TADR =
GD
D

(16)

WADR =
WAD
WA

(17)

EE =
ENG

G
(18)

For quantitative analysis we used a sequence of 1285 frames from the pRGB-D dataset [61], which
is built for tuning parameters and testing. The dataset is captured by the wearable sensor whose images
of a single frame are respectively the depth image, left and right color images acquired with different
polarizers whose polarization directions are perpendicular to each other after calibrations using a
polarization analyzer. As shown in Table 1, the approach has a high traversable area detection rate of
94.4% compared with respect to other works [27,29]. Moreover, the expansion error has been decreased
to 7.3% after the combination of traversable area detection and water area detection, illustrating the
reliability of the approach.
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Table 1. Quantitative analysis.

Approaches TADR% WADR% EE%

Proposed approach without water area detection 94.4% N/A 60.6%
Proposed approach with water area detection 94.4% 89.2% 7.3%

RANSAC plus filtering techniques [27] 79.6% N/A 41.5%
RANSAC plus expanding techniques [29] 93.8% N/A 65.2%

3D tracking of water areas [58] N/A 86.5% N/A

4.3. Detection Limitations

The proposed pipeline effectively combines polarization-color-depth-attitude information and
improves the detection performance in indoor and outdoor environments, which is able to provide
real-time assistances for VIP to avoid colliding into obstacles or stepping into water areas. However,
it still has certain potential limitations. Since the proposed traversable area detection is based on the
pRGB-D sensor whose depth information is acquired with stereo matching between left and right
RGB images, the approach will have a slight problem when the depth information is defective as
shown in Figure 13. As the textures of glass door and the overexposed region are poor, the depth
information are invalid or filled with wrong values offered by the stereo type of RGB-D sensor in our
prototype as shown in Figure 13a−c. Thereupon, the approach wrongly detects the region of glass
door as a traversable area, and merely part of the ground area close to the overexposed wall is detected.
Besides, as shown in Figure 13d–f, the approach is insensitive to small obstacles on the ground due
to the depth filtering and dynamic programming strategy. To solve this problem, in the future time
we aim to implement a small obstacle discovery algorithm [62] or provide both physical support and
navigational indication for tiny threat awareness [49].Sensors 2017, 17, 1890  14 of 19 
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4.4. User Study

To evaluate the ability of our system to help visually impaired users follow a prioritized
route without losing their orientation or colliding into obstacles or stepping into water puddles,
we conducted a user study in a real-world outdoor space. Before the participants were blindfolded,
the stereo sound feedback of the system when wearing a bone-conduction headphone was explained
as shown in Figure 14a,b. As we know, VIP or blindfolded users rely on cues from the environment a
lot. For example, they use the sounds from their ears to understand the orientations of streets. Thereby,
the assisting prototype is not only wearable but also ears-free, because the bone-conducting interface
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will not block the ears of participants from hearing environmental sounds. This familiarization period
lasted for about seven minutes, during which they were able to adapt to hearing the stereo sound to
keep away from close hazards including obstacles and water areas.
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sensor, a laptop in the backpack and a set of bone-conduction headphone; (c) The route around a
building and an empty field in the real-world environment while the red labels represent the locations
during navigation.

After the learning and familiarization stage, ten voluntary participants were blindfolded and were
required to travel around a building and an empty field without colliding into obstacles or stepping
into water areas. As a comparison task, the ten volunteers were divided into two groups randomly and
while one group travelled with only traversable area detection, the other group travelled with both
traversable area and water hazard detection. To provide the participants with a sense of orientation,
the user would get an extra hint to turn at the bends or the road intersections. For a single test, three
measures were recorded including the time needed by a participant to walk the route as shown in
Figure 14c, the number of collisions into obstacles and the number of times they stepped into water
areas. The route was acquired through recording the real-time locations during navigation with the
red labels on the map provided by AMAP [63]. The timer starts when a participant was sent to the
start region and stops when the participant completed navigating the route. As shown in Table 2,
average number of times stepping into water areas with water hazard detection is significantly less
than that without water hazard detection. It is the detection of water hazard in advance that endows
participants to take the prioritized direction to avoid water hazards compared with the condition
with only traversable area detection. Moreover, the average number of collisions into obstacles is few
and most of the collisions occurred when the participants swerved and hit a curb which was outside
the horizontal field view of the pRGB-D sensor. Comparatively, times of stepping in water areas are
very few but not none, which is due to the minimum range of water hazard detection. If the user
did not turn when hearing the stereo sound and kept moving forward, the water area would be out
of the vertical field view of the pRGB-D sensor or the reflection angles would not be large enough
to provide a strong cue for water hazards. Nonetheless, explicit feedback about directions to walk
to avoid obstacles and water hazards were found helpful for assisting VIP. The results suggest that
participants were aware of obstacles and water areas with our system and could make use of the stereo
sound to keep away from or detour around the hazards. In other word, the safety and robustness of
navigating VIP has been dramatically enhanced with the traversable area and water hazard detection
based on the proposed pRGB-D framework.
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Table 2. Average time, number of collisions and number of times stepping in water areas in two
conditions: the stereo sound interface transferred to the participants is generated according to the
traversable area detection result with/without water hazard detection.

Transferred Detection
Result

Average Time to
Complete

Average Number of
Collisions into

Obstacles

Average Number of
Times Stepping in

Water Areas

traversable area
detection 24 min 32 s 3.0 30.6

traversable area and
water hazard detection 26 min 11 s 2.6 2.8

After the test, the ten participants were asked two simple questions including whether the
prototype was easy to wear and whether the stereo sound feedback could be used to find traversable
directions. As shown in the questionnaire results (Table 3), all users answered that the system is useful
and could help them to find traversable areas and avoid obstacles or water hazards.

Table 3. Questionaire. After the field test, ten participants were asked two simple questions.

User Easy to Wear?
Could You Use the Stereo Sound

Feedback to Find Traversable
Directions?

User 1 Yes Yes
User 2 Yes Yes
User 3 No Yes
User 4 Yes Yes
User 5 Yes Yes
User 6 Yes Yes
User 7 No Yes
User 8 No Yes
User 9 Yes Yes

User 10 Yes Yes

Most participants were able to understand the changing process of loudness and pitch, and follow
the stereo sound to find the traversable directions and detour around the hazards, while a small group
of participants only used the direction of the stereo sound to turn left or turn right to avoid collisions.
This demonstrated the usefulness and effectivity of the approach in terms of traversable area detection
and stereo sound feedback. In addition, some users provided some advice on adding functions, such as
the detection of curbs and negative obstacles. Moreover, the users were optimistic about the pRGB-D
system and would like to have a more profound experience.

5. Conclusions

RGB-D sensors are a ubiquitous choice to assist navigation for the visually impaired. However,
most solutions are confined to using intensity information whereas the polarization cues are weak.
The proposed pRGB-D framework enhances the safety and robustness of navigation by combining
traversable area detection and water hazard detection with polarization-color-depth-attitude
information. Indoor and outdoor empirical evidences, quantitative analysis of the detection as well as
a user study with ten blindfolded participants demonstrated its usefulness and reliability.

In the future, we will improve our navigation assistance approach to reach a higher level of
perception and offer more independence to visually impaired individuals. Specifically, we look
forward to including polarization for ranging and further investigating discovery schemes for the
detection of small obstacles such as curbs and transparent objects. Additionally, it is necessary to run
a larger study with visually impaired participants to test this approach, and different audio output
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settings could be compared. The use of portable processors and sensors with larger field of view would
also benefit the system in terms of wearable mobility and detectable performance.
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