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Abstract: This paper presents a wearable electrophysiological interface with enhanced immunity to
motion artifacts. Anti-artifact schemes, including a patch-type modular structure and real-time
automatic level adjustment, are proposed and verified in two wireless system prototypes of
a patch-type electrocardiogram (ECG) module and an electromyogram (EMG)-based robot-hand
controller. Their common ExG readout integrated circuit (ROIC), which is reconfigurable for multiple
physiological interfaces, is designed and fabricated in a 0.18 µm CMOS process. Moreover, analog
pre-processing structures based on envelope detection are integrated with one another to mitigate
signal processing burdens in the digital domain effectively.

Keywords: motion artifact; readout integrated circuit; ECG holter; robot-hand controller; envelope
detector; level detector

1. Introduction

Electrophysiological monitoring devices such as electrocardiograms (ECGs) and electromyograms
(EMGs) have inherent artifacts; that is, anomalous or interfering signals that originate from some sources
other than the electrophysiological structure. Especially in wearable-type devices, which are preferred
for 24-h monitoring systems and prosthesis control devices [1,2], the motion artifact is a crucial factor
that dominates the overall monitoring quality, because most physiological devices generally operate in
direct contact with human bodies [3,4]. Various physical movements give unstable skin contact, causing
variations in the contact impedance and resulting in transient signal fluctuations. However, these
motion artifacts are not easy to eliminate, because their frequency band overlaps with the frequency
bands of electrophysiological signals, which degrades accuracy in the physiological signal analysis [5].
Therefore, there have been recent works to alleviate this motion-artifact problem by utilizing adaptive
filtering [6], baseline wander tracking [7] or bio-impedance measurement [8]. However, the filtering
works require additional detection channels for a reference, and baseline tracking requires a complex
control loop that consists of an analog-to-digital converter (ADC), a digital-to-analog converter (DAC),
and digital signal processing (DSP). The bio-impedance measurement is dedicated to heart rate, which
is not appropriate for multi-sensor purposes. In terms of low-power DSP implementation, recent
digital-domain efforts such as down-sampled wavelet transform [9], sub-Nyquist scanning [10], and
data compression [11] have been reported to reduce the data rate from sensor modules or to relieve
their post-processing and data-storage burdens. But, these digital efforts are still limited, because they
do not fundamentally reduce the data rate of the sensors themselves. Meanwhile, one interesting
analog pre-processing work on R-wave timing extraction from ECG measurement [12], whose digital
implementation consumes three times more than its analog front end, has been reported. Even though
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it was implemented only for heart-rate detection, it is meaningful that analog pre-processing can
reduce the burden of its digital-domain post-processing work. Therefore, conceptually inspired by this
analog pre-processing method, we propose a reconfigurable ExG interface structure that is tolerant of
various motion artifacts, and also reduces its post-processing burden in digital domain efficiently.

This work presents two wireless system prototypes of a patch-type ECG holter and an EMG-based
robot-hand controller and their common ExG readout integrated circuit (ROIC) with multiple proposed
circuit- and system-level technologies for motion-artifact reduction. In the case of the ECG detection,
which has stringent requirements in terms of signal quality, its sensing module is made flexible by
implementing each of its components on flexible principle printed circuit boards (PCBs); then, the
whole module, including electrodes, is immobilized by putting adhesive patches on it. Through this
patch-type implementation, a large portion of the motion artifacts are supposed to be autonomously
removed. Then, in order to minimize the remaining artifacts, instant amplitude fluctuations are
automatically compensated for by a proposed level detection scheme, and are also minimized by
adopting state-of-the-art methods such as impedance boosting [13] and chopper stabilization [14].

For the EMG-based robot-hand control, the EMG module, whose signal-quality requirement is
less strict, is designed in portable form for durability and reusability. Since the EMG signal has a higher
frequency band, an envelope detection method is proposed to relieve its digital post-processing burden.
Similarly, the R-peak timing information that is required for the ECG signal analysis in the digital
domain is provided by a proposed simple analog method of a peak detection, resulting in significant
reduction of its post-processing loads. For feasibility verification of these proposed methods, an ExG
ROIC prototype and two system-level prototypes are fabricated and experimentally verified.

The remainder of this paper is organized as follows: Section 2 presents the proposed ExG interface
architectures. Section 3 contains detailed designs of the ExG ROIC. Section 4 shows experimental
results. Finally, the conclusion is given in Section 5.

2. ExG Interface Architecture

Figure 1 shows a proposed wireless ExG interface system to support the ECG monitoring and
the EMG-based control, where wireless connectivity and battery are included together to minimize
potential motion artifacts paths. The overall system is embodied as two wireless modules of a
patch-type ECG holter and a portable-type EMG-based robot-hand, where a designed ExG ROIC is
commonly utilized and their monitoring results are remotely displayed on a smartphone. For stable
ambulatory ECG monitoring and effective reduction of motion artifact, a patch-type module is designed
to implement most components on a flexible PCB that has polydimethylsiloxane (PDMS) substrate.
One side of the module consists of the ExG ROIC, a microprocessor (MCU), a Bluetooth module, and
two electrodes of the positive and the ground. The other side has a flexible lithium-ion battery and
two electrodes of the negative and the ground. Through this hardware structure, two electrodes of the
positive and the negative are autonomously located to have proper interspace around the heart for the
ECG signal detection. For user convenience to control the robot hand intuitively, the EMG interface is
designed to be a portable-type module which has similar composition of hardware components in
the patch-type. The size of core PCB board is 5 × 2.5 cm which is smaller than the ECG module and
the rest area is filled with battery to give enough operation time. The EMG interface is configured to
detect EMG signals from the arm muscles and to control the robot hand [15] wirelessly.
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Figure 1. Wireless ExG interface with patch-type and portable-type modules for mobile healthcare 
and robot-hand control applications. 

Figure 2 shows the architecture of the ExG ROIC that is commonly used in the two application 
systems. It consists of a capacitive-coupled instrumentation amplifier (CCIA), a programmable-gain 
amplifier (PGA), a level detector for real-time automatic gain calibration, and an envelope detector 
for amplitude detection of EMG signals. A low dropout (LDO) regulator, clock generators, bias 
circuits, a 12-bit successive approximation register (SAR) ADC [16], and a serial peripheral interface 
(SPI) are integrated together which includes a serial-to-parallel (S/P) register and parallel-to-serial 
(P/S) register. It is also designed to have reconfigurable structure to adjust voltage gain and frequency 
band depending on bio-potential signal types. In the ECG signal path, the PGA gain is automatically 
adjusted by a proposed level detector. The EMG path has another signal processing procedure of the 
envelope extraction to reduce its frequency bandwidth, which relieves its post-processing burden in 
digital domain. In this way, the proposed ROIC provides reconfigurable ExG interface whose internal 
operation mode is software-controlled. Another benefit of this software-controlled reconfigurable 
ROIC is to provide excellent protection capability from the reverse engineering of integrated circuits 
or systems because the hardware operation cannot be understood without its software information. 

 
Figure 2. Block diagram of ExG readout integrated circuit (ROIC) for ECG/EMG interfaces. 

Figure 1. Wireless ExG interface with patch-type and portable-type modules for mobile healthcare and
robot-hand control applications.

Figure 2 shows the architecture of the ExG ROIC that is commonly used in the two application
systems. It consists of a capacitive-coupled instrumentation amplifier (CCIA), a programmable-gain
amplifier (PGA), a level detector for real-time automatic gain calibration, and an envelope detector for
amplitude detection of EMG signals. A low dropout (LDO) regulator, clock generators, bias circuits,
a 12-bit successive approximation register (SAR) ADC [16], and a serial peripheral interface (SPI)
are integrated together which includes a serial-to-parallel (S/P) register and parallel-to-serial (P/S)
register. It is also designed to have reconfigurable structure to adjust voltage gain and frequency
band depending on bio-potential signal types. In the ECG signal path, the PGA gain is automatically
adjusted by a proposed level detector. The EMG path has another signal processing procedure of the
envelope extraction to reduce its frequency bandwidth, which relieves its post-processing burden in
digital domain. In this way, the proposed ROIC provides reconfigurable ExG interface whose internal
operation mode is software-controlled. Another benefit of this software-controlled reconfigurable
ROIC is to provide excellent protection capability from the reverse engineering of integrated circuits or
systems because the hardware operation cannot be understood without its software information.
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3. ROIC Implementation

3.1. CCIA and PGA

The schematic of the CCIA, which is a front-end low-noise amplifier to remove low-frequency
noise and DC offsets, is shown in Figure 3a, where it employs capacitive feedback to set mid-band gain
of Cin1/Cfb1. The input capacitor Cin1 and the feedback capacitor Cfb1 are designed to be 5 pF and 250 fF,
respectively, in order to realize the 26 dB mid-band gain. The chopper stabilization technique [14] is
adopted to suppress low-frequency noises including 1/f noises. The input impedance is increased
further to minimize remaining motion-artifact effects by adopting capacitive impedance boosting [13],
which implements a positive feedback between input and output nodes without additional current
consumption. The resulting input impedance is maximized when Cibl is almost equal to Cfb1. In order
to achieve a low high-pass cutoff frequency for DC-offset reduction, the feedback resistor Rfb1 is
implemented with a PMOS pseudo-resistor that achieves very high resistance in small area [17].

The schematic of PGA in the second stage, which is a kind of switched-capacitor amplifier, is
shown in Figure 3b, where the variable resistors Rin2 and Rfb2 are implemented by capacitors of Csc_in2

and Csc_fb2, and switches with non-overlapping clocks of CLKP and CLKN. The PGA is designed
to set mid-band gain (Csc_in2/Csc_fb2), and its low-pass cutoff frequency is changed by adjusting the
feedback capacitor Cfb2 based on the operation modes of the ECG and the EMG. For sufficient noise
immunity, fully-differential amplifiers (FDAs) in the PGA and the CCIA are commonly designed to
have folded-cascode structures with rail-to-rail input ranges. While the FDA for the CCIA, including
its common-mode feedback circuits, is optimized to minimize the power consumption, the FDA for
the PGA is designed to have current-driving capability for output loads.
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EMG signals are converted to low-frequency amplitude signals by utilizing the envelope detector, 
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3.2. Envelope and Level Detectors

The robot-hand system is designed to be controlled by referring the EMG signal strength, where
important control information exists in the amplitude of instantaneous EMG spikes. Therefore, the
EMG signals are converted to low-frequency amplitude signals by utilizing the envelope detector,
reducing their sampling rate in the process of digital conversion, and thereby reducing the digital
post-processing burden considerably. The schematic and basic operation of the designed envelope
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detector, which is based on the peak detector in [18], are shown in Figure 4. If any input among
Vinp and Vinn is greater than the output of Vout, the current mirror chain of M5,6 and M7,8 provides
current proportional to their difference, and the peak value of the inputs is stored in the output
through an external capacitor Cext. For continuous tracking of time-varying input signals, the output
voltage is slowly discharged by utilizing a leakage current IL, which comes from three diode-connected
transistors. Since the size ratio of M1,2 and M3,4 affects the feedback amount, the output DC offset can
be adjusted by changing the M3,4 size.
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Figure 5 shows the architecture of the proposed ECG level detector and the operational principle
of its automatic gain control on the PGA with detection capability of the R-peak signal. The envelope
detector is used to find the R-peak in analog domain to reduce the post-processing burden that finds
the R-peak location of the ECG signal in digital domain, where it is designed to have some output
offset-voltage control range by adjusting the size of M3,4. The input signal of the level detector, which is
processed to Vpre, comes from a differential output of CCIA, which is a first-stage amplifier in the ROIC.
The envelope detector generates the ECG baseline signal with some offset (Venv), and it is compared
with Vpre to produce the R-peak location signal of DR-peak. If the DR-peak becomes too high, it activates a
peak-to-digital converter (PDC), which is composed of a comparator, an 8-bit resistive digital-to-analog
converter (DAC), and successive approximate register (SAR) control logic. The PDC output, which
represents a digital value of the R-peak signal in the ECG, is converted to the PGA control signal
of Dcont. In this way, the ECG signal amplitude is automatically controlled to give stable output
waveforms, making the overall system less susceptible to motion-artifact fluctuations. The sensitivity
of this automatic amplitude control can be adaptively changed by tuning the programming of the
mapping method from DR-peak to Dcont, depending on operating environments.
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4. Experimental Results

A proposed ExG ROIC prototype was fabricated in a 0.18 µm complementary metal oxide
semiconductor (CMOS) process, and Figure 6 shows its microphotograph with a chip area of 4 mm2.
The external supply voltage is 3 V, but the LDO inside the ROIC provides an internal supply voltage
of 1.8 V for better noise immunity and device protection. For verification of the ROIC prototype, the
gain control capability was measured as shown in Figure 7a, where the low-pass corner frequency
of the PGA was adjusted together. The measured pass band was set to be 0.6 to 230 Hz in the ECG
mode and 0.6 to 1.5 kHz in the EMG mode. The measured programmable pass-band gain range was
31.3 to 44.8 dB, and the power consumption was 37.3 µW. At 60 Hz, the common-mode rejection ratio
(CMRR) was 65.6 dB and power-supply rejection ratio (PSRR) was 55.4 dB. Figure 7b shows measured
characteristic of the SAR ADC, where the spurious-free dynamic range (SFDR) is 67.38 dB and the
power consumption is 0.2 µW at 125 S/s sampling rate.
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By utilizing the fabricated ExG ROIC, two system-level prototypes of the patch type and the
portable type were manufactured as seen in Figure 1. First, the ECG module that consists of the ROIC,
electrodes (3 M Ag/AgCl), the MCU (ARM cortex-M0), the Bluetooth (HC-06), and the flexible battery
was implemented as patch-type to immobilize every component for anti-artifacts. For feasibility
verifications of the proposed motion-artifact reduction methods, the comparison experiment of the
wireless ECG patch prototype against a commercial ECG holter product (TLC5000 of Contec Medical
Systems) was performed as shown in Figure 8, where electrodes are attached according to the standard
12-lead ECG placement [5]. The commercial holter’s waveform corrupted seriously when the human
moved up and down (in moving state), while the proposed prototype gave stable waveforms in
both stationary and moving states, and the P-QRS-T wave was clearly observed. In the proposed
prototype, the R-peak waveform, which is generated from the proposed level detector, was displayed
together, which would initiate its digital post-processing sequences to analyze the ECG waveform
characteristics. Through this comparison experiment, it can be seen that the proposed anti-artifact
methods are more attractive in the form of wearable devices because the adhesive patch increases the
anti-artifact capability of the ROIC.

Figure 9a shows the experimental environment of EMG-based wireless robot-hand control
interface, which is composed of the proposed portable-type EMG module and a robot-hand controller.
The robot-hand controller consists of the MCU, the Bluetooth, a DC-motor driver, and a commercial
robot hand of Open Bionics, which includes one micro linear actuator at each finger. During this
experiment, the EMG envelope waveform depending hand movement is shown in Figure 9b. The EMG
envelope signal shows low-frequency amplitude waveforms, while the original EMG signal gives
high-frequency AC waveforms. The robot-hand control interface for mimicking hand activity is easily
implemented by utilizing the EMG envelope signal, rather than the original. In Figure 9c,d, it can been
seen that the robot fingers moved following the human finger movement intuitively. Through this
experiment, the effectiveness of the envelope-based EMG interface to simplify its post-processing was
verified, where intuitive control capability of the robot hand was achieved through the EMG-based
mimic mechanism.
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Figure 9. Experiment of robot-hand controller interface. (a) Experiment environment; (b) EMG
waveform with and without envelope detection; (c) Robot-hand control in hand release state;
(d) Robot-hand control in hand grip state.

In this way, the designed common ExG interface was experimentally verified to support both
the ECG and the EMG, which provides a one-channel sensor interface. Measured performances are
summarized in Table 1, where comparisons with recent works are also given. The designed ROIC
provides multiple electrophysiological interfaces through the proposed reconfigurable structure,
embedding distinguished features of anti-artifact and pre-processing functions. For further
applications, including standard 12-lead ECG recording [5] and multi-point EMG detection of various
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muscle movements [15], the common ROIC would be redesigned to support multi-channel ExG
interfaces, where Bluetooth might need to be replaced with WiFi in order to cover multiple streams of
data traffic from multiple channels.

Table 1. Performance summary and comparison with recent works.

Parameter This Work [7] [12] [13]

ROIC Application ECG, EMG, EEG ECG ECG ECG, EEG

Module type Patch-type ECG module,
Portable-type EMG module N.A. Ear clip-type ECG

module N.A

Functionality R-peak detection,
EMG envelope detection

Baseline wander
tracking R-peak detection N.A.

Process 0.18 µm CMOS N.A. 0.18 µm CMOS 0.18 µm CMOS

Chip Area (mm2) 4 mm2 N.A. 3.24 mm2 24.01 mm2

Passband (Hz) 0.6–1500 Hz
(programmable) DC–500 Hz 0.5–22 Hz 1–100 Hz

(programmable)

Gain (dB) 31.3–44.8 dB
(programmable) 48 dB 47–88 dB

(programmable)
47.3–71.9 dB

(programmable)

Supply voltage (V) 1.8 V (ROIC) 3 V (Module) 3 V 0.8 V 3.3 V

Power
consumption (µW)

37.3 µW (ROIC)
0.2 µW (ADC)

N.A. (ROIC)
160 µW (ADC) 58 nW (ROIC) 12.5 µW (ROIC)

ADC resolution
(bit) 12 bit 12 bit N.A. 12 bit

5. Conclusions

A reconfigurable ExG interface structure that is immune to motion artifacts and reduce digital
post-processing burden considerably was proposed and experimentally verified in the form of two
wireless electrophysiological system prototypes. For ECG interface, the patch-type wireless sensing
module was developed to include two proposed features of automatic level adjustment and R-peak
timing pre-processing. The wireless robot-hand control system prototype, which is based on the
EMG-envelope detection, was implemented to mimic the movement of the human hand. Inside both
system prototypes, the CMOS-fabricated ROIC was included and verified to work as their common
ExG readout interface.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/17/8/1888/s1,
Video S1: Comparison experiment results of proposed ECG prototype and commercial ECG holter in stationary
and moving states.
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