
sensors

Article

Hitchhiking Robots: A Collaborative Approach
for Efficient Multi-Robot Navigation in
Indoor Environments

Abhijeet Ravankar *, Ankit A. Ravankar, Yukinori Kobayashi and Takanori Emaru

Lab of Robotics and Dynamics, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan;
ankit@eng.hokudai.ac.jp (A.A.R.); kobay@eng.hokudai.ac.jp (Y.K.); emaru@eng.hokudai.ac.jp (T.E.)
* Correspondence: abhijeetravankar@gmail.com

Received: 16 June 2017; Accepted: 12 August 2017; Published: 15 August 2017

Abstract: Hitchhiking is a means of transportation gained by asking other people for a (free) ride.
We developed a multi-robot system which is the first of its kind to incorporate hitchhiking in robotics,
and discuss its advantages. Our method allows the hitchhiker robot to skip redundant computations
in navigation like path planning, localization, obstacle avoidance, and map update by completely
relying on the driver robot. This allows the hitchhiker robot, which performs only visual servoing,
to save computation while navigating on the common path with the driver robot. The driver
robot, in the proposed system performs all the heavy computations in navigation and updates the
hitchhiker about the current localized positions and new obstacle positions in the map. The proposed
system is robust to recover from ‘driver-lost’ scenario which occurs due to visual servoing failure.
We demonstrate robot hitchhiking in real environments considering factors like service-time and
task priority with different start and goal configurations of the driver and hitchhiker robots. We also
discuss the admissible characteristics of the hitchhiker, when hitchhiking should be allowed and
when not, through experimental results.

Keywords: multi-robot navigation; multi-robot cooperation; indoor robot systems

1. Introduction

Hitchhiking is a social and symbiotic behavior with many potential advantages for the hitchhiker.
The hitchhiker: (a) does not need to do path planning; (b) does not need to localize himself while
navigation; (c) does not need to worry about control sequences (ex. car steering); (d) does not need to
do obstacle avoidance, and (5) saves energy and money. Now consider a multi-robot system deployed
at a large infrastructure like a warehouse for object delivery, cleaning, patrolling, and other tasks.
Each robot of the multi-robot system needs to navigate from one location to other to perform its
task. The paths of the robots often overlap completely or partially. Moreover, each robot is equipped
with its own path planning unit, localization unit, obstacle avoidance unit, and SLAM (Simultaneous
Localization and Mapping) [1,2] unit. In the context of hitchhiking, following questions naturally
arise: Why should two robots with completely or partially overlapping paths separately perform their
own path planning, collision avoidance, localization, and new obstacle update? Can’t one robot just
hitchhike another robot going to the (nearly) same location, and skip most of the redundant operations?

Although there exists a plethora of literature on leader-follower multi-robot systems, the presented
work is the first to address this question and demonstrate and discuss the feasibility and advantages of
hitchhiking in multi-robot systems in various scenarios, to the best of our survey. Multi-robot systems
and especially leader-follower robot systems have been presented earlier, however to realize different
objectives. A multi-robot leader-follower system using two tractor robots has been proposed in [3,4]
to improve efficiency in agricultural tasks in which the focus is on cooperation and coordination to

Sensors 2017, 17, 1878; doi:10.3390/s17081878 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s17081878
http://www.mdpi.com/journal/sensors

Sensors 2017, 17, 1878 2 of 21

execute a turn without collision. Many works have been proposed in collective localization [5] and
mapping [6–8]. However, in all these works, the robots are independent entities and the emphasis is
on using sensor data from different robots to collectively build maps and localize in the environment.
An interesting technique to arrange robot rendezvous, i.e., pairing of two robots in an unknown
environment is proposed [9] for collaborative exploration. Similarly, multi-robot navigation has
been proposed [10–12] with focus on collision avoidance and area coverage. A semi-autonomous
teleoperation system is proposed in [13] in which the follower robot satisfies several constraints while
tracking the leader robot. The emphasis is on making the follower robot semi-autonomous when
teleoperating the follower is difficult in cluttered environments. A similar scheme is presented in [14]
for efficient teleoperational control of master-slave robots.

All the aforementioned works make important contributions but with different goals. To the best
of our knowledge, none of the research has discussed how a follower robot can skip path-planning,
obstacle avoidance, localization, and map update by completely relying on the leader robot for
navigation towards a (nearly) common goal location. We experimentally show the feasibility of such
‘hitchhking’ with experimental results in real environment. We particularly focus on strategies in
which the hitchhiker does not lose any information (like new obstacles) in the environment by shutting
down some of its modules, and is able to recover in case of failure in following the driver robot.

2. Hitchhiking in Robots

The following terminologies are used throughout the paper: (a) Driver: is the leader robot in the
leader-follower scene. Driver does all the path planning, obstacle avoidance, map update, and assists
the follower robot in the hitchhiking process; (b) Hitchhiker: is the robot which follows the driver
through visual servoing, and shuts down other modules.

2.1. Hitchhiking Mechanism

Hitchhiking is achieved through visual servoing. A complete description of visual servoing is
beyond the scope of the main idea of the proposed work. However, a brief description is provided.

Visual servoing [15], also known as vision-based robot control is a technique which uses feedback
information extracted from a vision sensor (like camera) to control the motion of a robot. Visual
Servoing control techniques are broadly classified into the following types [16]: (a) Image-based
Visual Servoing (IBVS) [17], which calculates the error between desired features (ex. lines, points)
in images without estimating the pose of the target and has problems with large rotational motions;
(b) Position/pose-based Visual Servoing (PBVS) [18], a model-based technique which estimates also the
pose of the target with respect to the camera using the extracted image features enabling servoing in 3D;
(c) Hybrid approach based Visual Servoing [19] which uses a combination of the 2D and 3D servoing.

A set of visual features m are extracted from a set of visual measurements x(t) which comprises
of coordinates of points of interest, i.e.,

m = m(x(t)), (1)

which allows the required degrees of freedom [20]. For correct realization, a controller is designed
such that the features m reach a desired value m∗, such that the error vector m−m∗ is zero. In vision
based control, the objective is to minimize an error e(t), where,

e(t) = m−m∗. (2)

The required trajectory m∗(t) is generated and details can be found in [16,21].
Visual servoing is generally implemented through an artificial marker and a camera. In our

implementation, each robot has a QR-code which is fixed on the back side of the robot. Each robot also
has a forward facing camera. The QR-code and camera setup is shown in Figure 1a.

Sensors 2017, 17, 1878 3 of 21

QR-code

Cam

(a) (b)

Figure 1. QR code and camera system for coupling. (a) Robot with fixed QR code and camera for
visual servoing; (b) An example of pose estimation from QR-code in visual servoing.

2.2. Four Steps of Hitchhiking

Each robot of the multi-robot system is equipped with path planning, localization and mapping,
obstacle avoidance, communication, and other necessary modules. Each robot is provided with a
unique ID (Rid). They also have respective start (Sloc) and goal location (Gloc), task priority (Tp),
and profile (Pid). A profile comprises of the specifications of the robot, i.e., the type of sensors attached
to the robot, accuracy of the odometers and sensors, and robustness of the SLAM module. In actual
implementation, a numerical value is manually assigned against each attribute (the better the attribute,
higher the value). A profile provides logical parameters to compare the specifications of the two robots.

Hitchhiking is carried out in the four steps which are graphically shown in Figure 2 and
explained below:

1. Handshake: The hitchhiker keeps broadcasting requests to a potential driver until a threshold
hitchhike wait time Thwait. Once a (potential) driver responds, the two robots exchange
information. The hitchhiker request comprises of {Rh, Gh, Ph}, where, Rh is the ID, Gh is the goal
location, and Ph is the profile of the hitchhiking robot. The potential driver robot checks if the
length of the common path (dhh) traversed during hitchhiking is longer than a threshold distance
(Tdhh). This is graphically shown in Figure 3, in which, Sd and Sh are the start locations, and Gd
and Gh are the goal locations of the driver and hitchhiker robots, respectively. The common
path between the points A and B is the hitchhiking distance (dhh). Hitchhiking is allowed if
dhh ≥ Tdhh. Hitchhiking is denied for shorter distance (less than Tdhh) due to the overhead
involved in coupling and decoupling. Moreover, hitchhiking over shorter distances affects the
service time. The threshold hitchhiking length (Tdhh) depends on many factors like the dynamics
of the environment, and the characteristics of the SLAM algorithm employed. A typical setting
involves setting Tdhh to several meters (ex. ≈20 m). Notice that, from Figure 3, if dhh ≥ Tdhh,
hitchhking is allowed even if the nodes Gd and Gh are far from each other. The best case scenario
for hitchhking is when Gd and Gh completely overlap. This entire process is called a handshake.

Sensors 2017, 17, 1878 4 of 21

If no potential driver is found until Thwait time, the hitchhiker navigates towards the goal on its
own. A driver with high task priority (Td) will simply ignore any requests from a hitchhiker.

2. Coupling: The next step is coupling between the hitchhiker and the driver. Coupling is defined as
the process in which the hitchhiker aligns behind the driver robot and the QR-code behind
the driver is recognized to initiate visual servoing. The alignment and coupling are only
allowed within a threshold time Talign and Tcoupling, respectively. In order to assist coupling,
the environment is marked with special pre-defined markers known to all the robots. Certain
positions with markers are also reserved to further assist coupling.

3. Navigation: Once the robots are coupled, the driver initiates navigation towards the goal. During
this time, the hitchhiker shut downs all the processes except visual servoing. In other words,
the hitchhiker shuts down the localization, path planning, obstacle avoidance, and map update
modules. It simply follows the driver robot using visual servoing. The driver robot executes all
the modules.

4. Decoupling: Once the two robots have reached the destination, the decoupling process is initiated
where visual servoing stops. During decoupling, the driver gives the current position location (i.e.,
the estimated x, y, θ pose in the map) and the uncertainty associated with it (Σ). This information
must be given to the hitchhiker as it requires it as an initial estimate to localize itself in the map
to navigate to another location. Moreover, during navigation if the driver robot has updated
its map with the location of the new static obstacles (Ω), this information is also transferred to
the hitchhiker to update its local map. This ensures that there is no loss of information during
navigation for the hitchhiker.

Driver
Hitchhiker C

O
U
PL
IN
G

N
A
V
IG
A
T
IO
N

Driver
Hitchhiker

Figure 2. Four steps of hitchhiking: (1) Handshake, (2) Coupling, (3) Navigation, and (4) Decoupling.

Sh

Sd

Gd

Gh

A
Bdhh

Figure 3. Hitchhking is allowed if the common path dhh is longer than a threshold distance (Tdhh).
Point A is the handshake and coupling location, while point B is the decoupling location.

The hitchhiker can thus skip redundant computation from the hitchhiking point to the decoupling
location without any information loss.

3. Hitchhiking Points

Although hitchhiking can be initiated at any place in the map, it is generally not a good idea to do
so because of the following two reasons:

1. Loss of Efficiency: Hitchhiking consumes time in alignment and coupling. By allowing hitchhiking
anywhere in the map, the robots may not find fixed markers in the environment to assist coupling.

Sensors 2017, 17, 1878 5 of 21

In the absence of such markers, coupling is difficult and the robots consume more time. Moreover,
the robots must always be alert of an incoming request from a hitchhiker.

2. Problem of Obstacles: Since it consumes time for the two robots to align and couple, hitchhiking
at an inappropriate place is a hindrance in the pathways for other robots and people.

Therefore, we propose certain fixed ‘hitchhiking points’ in the map which are laid with artificial
markers to assist coupling. It eliminates the aforementioned two problems and gives an estimate to
the robots about a possibility of hitchhiking. Its major benefit is that the driver robot knows exactly
where to stop, and trajectories can be generated beforehand for alignment. As shown in Figure 4a,
the hitchhiker stands pre-aligned broadcasting requests, while the driver aligns with the marker at
a certain distance (d1). This arrangement automatically helps in the alignment process for coupling.
Figure 4b shows the real example of such alignment and coupling at hitchhiking point.

d
d1
2

Driver
Hitchhiker

Marker

(a) (b)

Figure 4. Benefit of hitchhiking area with markers. (a) Hitchhiker is stationary while the driver aligns
with the marker; (b) Implementation result in real environment.

3.1. When to Hitchhike and When Not

The best possible scenario for hitchhiking is when the start and goal locations of the hitchhiker
and driver are the same. Hitchhiking is good for different goals if the common path distance is large
for navigation.

In case the goal locations of the two robots are different, the point of decoupling in the map can
easily be calculated. Our implementation uses A* [22] which is a famous algorithm for path planning.
Let G = (V, E) is a graph with non-negative edge distances, and h is an admissible heuristic. Let Shp
be the hitchhiking point which marks the start location and Th be the end node of the hitchhiker robot.
If d(v) is the shortest distance from Shp to v seen so far, then d(v) + h(v) gives an estimate of the
distance from Shp to v, and similarly from v to Th. The queue of nodes Qh = (V1, V2, · · · , Vn) sorted
by d(v) + h(v) is the A* path from Shp to Th. Similarly, if Qd is the sorted node queue of the hitchhiker
robot to Td, then the farthest node in Qd ∩Qh is the node of decoupling in the map.

However, hitchhiking is not good for short distances due to the extra time required for alignment,
coupling, and decoupling which may adversely affect the service response time. Moreover, a hitchhiker
always hitchhikes a robot with better or same profile score (Pid) checked during the handshake step.
This is to ensure that, ‘you don’t trust suspicious drivers’. This is natural as a robot with a robust and
accurate SLAM module should never hitchhike another robot with less accurate sensors and SLAM
module as doing so has risks of task failure for both the robots. On the other hand, a hitchhiker
with a lower profile can always benefit from a driver with good profile in terms of accuracy of maps,
navigation, obstacle avoidance, and localization.

Sensors 2017, 17, 1878 6 of 21

4. Problem of ‘Driver Lost’ Scenario

One potential problem in hitchhiking is that during navigation the driver might be ‘lost’.
This particularly depends on the robustness of the visual servoing algorithm employed. Visual
servoing, particularly image based visual servoing is not very robust to large rotations. A detailed
explanation of problems in visual servoing can be found summarized in the work of C. Francois [23]
and can result in a driver lost scenario in which the follower robot is left behind while the driver robot
navigates to its goal.

Since the hitchhiker has just visual servoing module in execution, if the driver is lost then it is
difficult for the hitchhiker to localize itself in the map as it is completely unaware of its current position
in the map. This problem is similar to the famous ‘kidnapped robot problem’ for which solutions are
available in literature [24–26]. However, we propose to recover from this problem in the first place by
transferring the current estimated pose (xδ, yδ, θδ) and associated uncertainty (Σδ) information to the
hitchhiker intermittently in intervals of δ s. This is graphically shown in Figure 5 where a driver is
shown transferring information intermittently. With this scheme, even if the driver robot is lost due to
failure of visual servoing, the hitchhiker still has a rough initial estimate to localize itself in the map,
and navigate towards the goal independently.

Rider

Hitchhiker

Rider

Hitchhiker

Rider

Hitchhiker

Figure 5. Intermittent information transfer from driver every δ time-steps to recover from
‘driver-lost’ scenario.

As shown in Figure 5, the hitchhiker acknowledges the receipt of the intermittent information
(xδ, yδ, θδ). Through this acknowledgement message (ack), the driver robot can know that the hitchhiker
is following well and continue its navigation. In the absence of ack message, the driver stops for the
hitchhiker to catch-up. A straightforward pseudo-code for hitchhiking is given in Algorithms 1 and 2
for driver and hitchhiker robots, respectively.

Sensors 2017, 17, 1878 7 of 21

Algorithm 1: Hitchhiking Pseudocode (Driver Robot)
Data: Received Rh, Gh, Ph from hitchhiker

1 Function terminate_hitchhiking(msg)
2 deny_hitchhiking(msg)
3 exit()
· · ·

4 while True do
// Not a hitchhiking point

5 if get_area(current_pos) 6⊂ {HH Points} then
6 terminate_hitchhiking(‘Error : Invalid HH place’)

// Common path distance is smaller than threshold distance Tdhh
7 if (astar(Sh, Gh) ∩ astar(Sd, Gd)) < Tdhh then
8 terminate_hitchhiking(‘Error : Path too short’)

// Hitchhiker has better profile
9 if Ph > Pd then

10 terminate_hitchhiking(‘Error : Profile mismatch’)
// Calculate location for decoupling beforehand

11 dloc← get_decouple_loc(Gh, Gd, current_pos)
// Get marker info for alignment

12 pose, marker← get_nearest_aligner(current_pos)
// Align with marker for coupling

13 start_time← get_current_time()
14 aligned← False
15 while not aligned do
16 aligned← hh_align(pose, marker, current_pos)

// Alignment takes too much time, give up
17 if |start_time− get_current_time()| > Talign then
18 terminate_hitchhiking(‘Error : Unable to align’)
19 broadcast(Rh, ‘Aligned : Ready to couple’, dloc)

// Wait for successful coupling from hitchhiker
20 start_time← get_current_time()
21 coupled← False
22 while not coupled do
23 coupled← get_message()

// Hitchhiker takes too much time to couple, give up
24 if |start_time− get_current_time()| > Tcoupling then
25 terminate_hitchhiking(‘Error : Large couple_time’)

// Start navigation until the decoupling location
26 Ωδ ← {} // Empty new obstacle set
27 while current_loc 6= dloc do
28 xδ, yδ, θδ, Σδ, Ωδ ← navigate()

// Intermittently send location and new obstacle coordinates
29 foreach δ seconds do
30 broadcast(Rh,xδ, yδ, θδ, Σδ, Ωδ)

// Decoupling, send location and obstacle coordinates with uncertainty
31 decouple(Rh,xδ, yδ, θδ, Σδ, Ωδ)

Sensors 2017, 17, 1878 8 of 21

Algorithm 2: Hitchhiking Pseudocode (Hitchhiker)
Data: Rh, Gh, Ph, Thwait
· · ·

1 start_time← get_current_time()
2 driverFound← False
3 while not driverFound do
4 driverFound, dloc← hh_request(Rh, Gh, Ph)

// Cannot find a driver, give up
5 if |start_time− get_current_time()| > Thwait then
6 terminate_hitchhiking(‘Error : Driver not found’)

// Waituntil timeout for driver aligned message
7 wait_driver_aligned()

// Wait until timeout for coupling
8 couple()

// Broadcast coupling successful
9 broadcast(‘Coupling successful’)

// StartVisual Servoing until decouple point
10 visual_servoing(dloc)

// If decoupling point ‘dloc′ is reached
11 xδ, yδ, θδ, Σδ, Ωδ ← decouple()

// Update map if new obstacles received
12 if Ωδ not empty then
13 update_map(Ωδ)

// If decouple location is different from goal
14 if dloc 6= Gh then

// Localize and navigate from here
15 navigate(xδ, yδ, θδ, Gh)

16 end()

5. Award Mechanism

An award mechanism is designed in which the driver robot is awarded with points for assisting
other robots in hitchhiking. The points are directly proportional to the distance traveled, i.e.,
Points = κ · f (hhike_start, hhike_end), where κ is a constant and the function f (·) calculates the
distance between the start and end locations of hitchhiking. Robots try to increase their points whenever
possible. Two constraints check that the task performance is not compromised: (a) Hitchhiking is not
allowed over short distances; (b) Hitchhiking is only allowed when the driver robot has a better or
same profile, and either robot has no time-critical task at hand.

6. State of the Art in Robot Localization

In this section, we discuss the state of the art related to robot localization and mapping in indoor
environments. It is important for the driver and the hitchhiker robots to localize themselves in the map
to ascertain the hitchhiking points, and the map needs to be updated by the driver robot. SLAM is a
challenging problem due to the uncertainties of sensors and robot motion [27]. Bayes filters [28] are the
most common tools to mathematically model these uncertainties. There are many variants of Bayes
filter like Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF), and Particle Filter (PF).

An Unscented Kalman Filter (UKF) performs a stochastic linearization through statistical linear
regression process. The main idea behind UKF is that it is easier to approximate the probability
function than the nonlinear function. A detailed explanation of UKF can be found in [29–35].

Sensors 2017, 17, 1878 9 of 21

Particle Filter (PF) is a non-linear state estimator based on Bayesian filtering. It is a sequential
Monte Carlo based technique which models the probability density using a set of discrete points.
PF can represent a much broader space of distributions than, for example, Gaussians. A detailed
explanation of Particle Filter can be found in [31,33,35–37].

Apart from the above mentioned filters, there are many other filters like histogram filter,
information filter, and others which have been explained in detail in [31,33,34]. All of these filters can
estimate the state of the robot and the uncertainty associated with the estimate. Readers may find a
comparison of the merits and limitations of various filters in [38].

Recently, several fusion filters which are more robust have also been proposed. Work in [39]
proposes a Fusion-Kalman/UFIR Filter. It is a fusion of Kalman Filter which is optimal but not robust,
with the unbiased finite-impulse response (UFIR) filter which is more robust than KF but not optimal.
The fusion is achieved by employing KF and UFIR as subfilters which provides small errors at the
point where UFIR meets Kalman by applying probabilistic weights to each subfilter. A novel Deadbeat
Dissipative FIR Filter with a finite impulse response (FIR) structure for linear discrete-time systems
with external disturbance is proposed in [40] which ensures (Q, S, R)-α-dissipativity based on three
slack matrix variables. A Hybrid-Particle/FIR Filter to improve the reliability of Particle Filter based
localization has been proposed in [41,42] which detects PF failure and recovers localization by resetting
the PF using the output of an auxiliary FIR filter. This makes PF which traditionally suffers from
the sample impoverishment in noisy environments to be more reliable. Particularly, graph based
SLAM algorithms [43], in which, a graph whose nodes correspond to the poses of the robot at different
points in time and whose edges represent constraints between the poses, have been shown to be very
successful. A detailed survey of SLAM techniques in the past 30 years, considering future challenges
can be found in [44].

Notice that, the proposed hitchhiking in multi-robot systems is not limited to any one particular
localization approach. In fact, any of the mapping and localization methods can be used with the
robots. Obviously, the more robust and accurate the localization algorithm employed, more accurate is
the navigation. The choice of the SLAM algorithm used may depend on factors like the sensors and
computation devices available. Although any of the filters can be used, for the sake of completeness,
we briefly discuss robot localization with Extended Kalman Filter (EKF).

6.1. Driver Robot Localization with Extended Kalman Filter

EKF based SLAM and localization has extensively been employed with mobile robots. Other
variants of EKF like particle filters, and unscented kalman filter (UKF) are also very popular. EKF is a
powerful mathematical tool to model the uncertainties of the sensors attached to the robot, and has
been demonstrated successfully with laser range sensors, vision sensors, and intertial sensors, etc.
An elaborated description of EKF can be found in [31].

The state of the robot (xt) at time t is indicated by a vector comprising of its pose [x y]T and
orientation (θ) as, xt = [x y θ]T . EKF assumes a Gaussian distribution in which the belief bel(xt) at
time t is given by the mean µt and the covariance Σt. At the start of navigation, the robot assumes no
uncertainty, and Σt=0 is set to a zero matrix. The robot is made to move by issuing a command which
comprises of the translation velocity (vt) and rotational velocity (ωt) as [vt ωt]T .

θ ← µt−1,θ (3)

To handle the non-linearity of the system, EKF uses Jacobians of motion and control functions.
The Jacobian of motion function with respect to state is given by,

Gt ←

1 0 − vt
ωt

cos θ + vt
ωt

cos(θ + ωt∆t)
0 1 − vt

ωt
sin θ + vt

ωt
sin(θ + ωt∆t)

0 0 1

 , (4)

Sensors 2017, 17, 1878 10 of 21

and the Jacobian of motion with respect to control is given by,

Vt =

−sin θ+sin(θ+ωt∆t)

ωt

vt(sin θ−sin(θ+ωt∆t))
ω2

t
+ vt(cos(θ+ωt∆t)∆t)

ωt
cos θ−cos(θ+ωt∆t)

ωt
− vt(cos θ−cos(θ+ωt∆t))

ω2
t

+ vt(sin(θ+ωt∆t)∆t)
ωt

0 ∆t

 . (5)

With robot specific error-parameters α1, · · · , α4, the covariance of noise in control space is given by,

Mt =

ñ
α1v2

t + α2ω2
t 0

0 α3v2
t + α4ω2

t

ô
. (6)

Here, α1, · · · , α4 are robot specific parameters. They are determined empirically and vary from
robot to robot [31]. The prediction updates in state (µ̄t) and covariance (Σ̄t) are given by,

µ̄t = µt−1 +

−vt
ωt

sin θ + vt
ωt

sin(θ + ωt∆t)
vt
ωt

cos θ − vt
ωt

cos(θ + ωt∆t)
ωt∆t

 , (7)

and,

Σ̄t = GtΣt−1Gt + Vt MtVT
t , (8)

respectively. The mapping from motion noise in control space to motion noise in state space is provided
by the term Vt MtVT

t in Equation (8).
To model the correction step, we assume that the sensors provide the range (rt), bearing (φt),

and signature (st, for ex. color) of the landmark relative to the robot’s current pose (xt). The covariance
(Qt) of the sensor noise is given by the matrix,

Qt =

σ2
r 0 0

0 σ2
φ 0

0 0 σ2
s

 . (9)

Let [mix miy]
T be the coordinates of the ith landmark obtained by measurement zi

t = [ri
tφ

i
ts

i
t]

T

from the current pose µ̄t, and q represent the squared distance as,

q = (mk,x − µ̄t,x)
2 + (mk,y − µ̄t,y)

2, (10)

then, we have,

ẑt
k =

√

q
atan2(mk,y − µ̄t,y, mk,x − µ̄t,x)− µ̄t,θ

mk,s

 . (11)

The Jacobian of measurement with respect to state is given by,

Hk
t =

−
mk,x−µ̄t,x√

q −mk,y−µ̄t,y√
q 0

mk,y−µ̄t,y
q −mk,x−µ̄t,x

q −1
0 0 0

 (12)

Sensors 2017, 17, 1878 11 of 21

This gives the measurement covariance matrix as,

Sk
t = Hk

t Σ̄t[Hk
t]

T + Qt. (13)

Maximum likelihood estimate is applied for all the k landmarks (Equations (10)–(13)) in the map
to calculate the most likey correspondence j(i) as,

j(i) = argmax
1»

det(2πSk
t)

e−
1
2 (z

i
t−ẑk

t)
T [Sk

t]
−1(zi

t−ẑk
t). (14)

The calculation of Kalman gain (Kt) and EKF updates for state (µt) and covariance (Σt) only
corresponds to this most likely estimate,

Ki
t = Σ̄t[H

j(i)
t]T [Sj(i)

t]−1

µt = µ̄t + Ki
t(z

i
t − ẑj(i)

t)

Σt = (I − Ki
tH j(i)

t)Σ̄t

(15)

Thus, at each time step (t), a Kalman gain (Kt) is calculated from which the state (µt) and covariance
(Σt) are updated by the robot. In traditional navigation schemes, each robot of the multi-robot system
must execute localization using the above mentioned computationally expensive steps. However,
in the presented scheme only the driver robot executes localization while the hitchhiker follows the
driver using visual servoing.

6.2. Pose Transfer during Decoupling

During decoupling the driver transfers its pose (Pd = [xd yd θd]
T) to the hitchhiker robot and

the uncertainty associated with it (Σd). It is required as an initial estimate for the hitchhiker robot to
localize itself in the map to navigate to another location.

Since the hitchhiker follows the driver using the QR-code and camera setup, the final orientation
of the hitchhiker (θh) is same as that of the driver robot, i.e.,

θh = θd. (16)

If d is the distance between the hitchhiker and the driver during decoupling, then the pose of
hitchhiker is calculated as (Figure 6),

Ph = [(xd − d·cos θh) (yd − d·sin θh) θd]T . (17)

Moreover, the hitchhiker assumes the same uncertainty in its pose as the driver robot, i.e.,

Σh = Σd. (18)

The hitchhiker robot uses this pose (Ph) to localize itself in the map. It can use the uncertainty (Σh)
information to consider the distribution of particles (for ex. in case of particle filter [31,33,36,37]) by
taking the Eigenvalue-Eigenvector decomposition of Σh. Eigenvalues (λ1, · · · , λn) and eigenvectors
(~v1, · · · , ~vn) of the matrix Σh gives the magnitude and direction of variance, respectively for
considerable distribution of particle poses.

Sensors 2017, 17, 1878 12 of 21

d

Driver

Hitchhiker

Decoupling

Figure 6. Decoupling process.

7. Experimental Results

This section presents the results of the experiments. We first show the motion model of the robots
used in the experiment, and then discuss the results in different cases of hitchhiking.

7.1. Motion Model

We used Pioneer-P3DX (Figure 7a) [45] and Kobuki Turtlebot (Figure 7b) [46] robot which are two
wheeled differential drive robots [47]. Both the robots were equipped with distance sensors (Microsoft
Kinect [48] and UHG-08LX laser range sensor [49]) and cameras. The distance sensor is accurate within
±30 mm within 1m, and within 3% of the detected distance between 1 and 8 m. The angular resolution
is approx 0.36 degrees, and other specifications can be found in [49]. We first describe the motion
model of the robot. The distance between the left and the right wheel is Wr, and the robot state at
position P, is given as [x, y, θ]. From Figure 7c, turning angle β is calculated as,

r = β · (R + Wr), l = β · R

∴ β =
r− l
Wr

(19)

and the radius of turn R as,

R =
l
β

, β 6= 0. (20)

The coordinates of the center of rotation (C, in Figure 7c), are calculated as,ñ
Cx
Cy

ô
=

ñ
x
y

ô
−
Å

R +
Wr

2

ã
·
ñ

sin θ

−cos θ

ô
(21)

The new heading θ′ is,
θ′ = (θ + β) mod 2π, (22)

from which the coordinates of the new position P′ are calculated as,ñ
x′

y′

ô
=

ñ
Cx
Cy

ô
−
Å

R +
Wr

2

ã
·
ñ

sin θ′

−cos θ′

ô
, β 6= 0 =⇒ r 6= l. (23)

If r = l, i.e., if the robot motion is straight, the state parameters are given as, θ′ = θ, and,ñ
x′

y′

ô
=

ñ
x
y

ô
+ l ·

ñ
cos θ

sin θ

ô
, (l = r). (24)

Sensors 2017, 17, 1878 13 of 21

Different experiments in real indoor environment were performed to test the proposed hitchhiking
in various scenarios. Pioneer P3DX was the driver robot, and Turtlebot initated hitchhiking in all
the cases. Both the robots used ROS [50] on Ubuntu computer and were on the same network to
communicate with each other. Figure 8 shows a simplified view of ROS topics and nodes. The hitchhike
communication module publishes an appropriate message on a topic which is subscribed by the other
modules to turn them on or off.

For visual servoing, we used a modified open source Visp (Visual Servoing Platform)
library [20,51,52] for online tracking. The initial pose was set by extracting the location of the four
QR-code corners using a Perspective-n-Point (PnP) algorithm [53] from which a model based tracker
was initialized to extract the black area around the QR-code. A hybrid approach for tracking edges and
keypoint features was employed to estimate the pose. The robots exchanged messages in JSON format
for which JSMN parser was used [54]. A sample JSON message is given in Appendix A: Listing 1.

(a) (b) (c)

Figure 7. Robots used in the experiments. (a) Pioneer P3DX; (b) Kobuki Turtlebot; (c) Motion model of
two wheel differential drive robots.

Path
Planning

SLAM

Obs.
Avoidance

Visual
Servoing

/hhike_msg/status/Hitchhike
Comm

publisher

subscribers

topic

Figure 8. Simplified view of ROS topic (green), publisher (red) and subscriber (blue) nodes for
module on/off.

7.2. Experiments in Which Hitchhiking Was Allowed

Three sets of the following two experiments were conducted with permissible initial conditions of
hitchhiking. For comparison, the two experiments were performed with and without the new obstacles
in the environment.

7.2.1. Experiment 1

Experiment 1 was carried out in the corridor (≈23 m long, 2.23 m wide) shown in Figure 9a.
In order to test map update and new obstacle coordinate transfer, the boxes marked in red circles
in Figure 9a were placed as new obstacles and were not reflected in the old maps of the two robots.
Turtlebot waited and initiated the hitchhiking process. The hitchhiking point with a ‘+’ sign marked on
the pillar is shown in Figure 9b. Driver P3DX robot aligned itself with the marker on the pillar whereas
the Turtlebot stood pre-aligned for visual servoing. The navigation started and Turtlebot followed the
driver P3DX as shown in Figure 9c. The hitchhiker Turtlebot had temporarily shut down its modules
except visual servoing.

Sensors 2017, 17, 1878 14 of 21

Figure 10 shows the results of the map update process of the experiment. Figure 10a shows
part of the map without the obstacles. Both Turtlebot and P3DX had this map before starting the
experiment. Figure 10b shows the updated map with the positions of the new obstacles marked in
red circles. The driver successfully transferred the coordinates of the new obstacles to the hitchhiker
during the decoupling process. The actual values of the coordinates are summarized in Table 1. For the
sake of simplicity, both the robots in our implementation had the prior grid maps build from the
same location giving them the same anchor which simplified the process of transferring the new
obstacle information. In case of map builds from different locations, the relevant transformation can be
calculated for 2D [55,56] and 3D [57] cases. The dimensions of the obstacles in Table 1 is in grid pixels.

(a) (b) (c)

Figure 9. Experiment 1. (a) Environment with new obstacles marked in red; (b) Coupling between
the two robots. The ‘+’ marker on pillar is marked in red circle; (c) Turtlebot following P3DX through
visual servoing. (Refer the accompanied video provided in the Supplementary Materials section).

(a)

Decouple
Point

Hittchhiking Point

20.4 m

(b)

Figure 10. Experiment 1. (a) Initial map without obstacles; (b) Updated map with new obstacles.
Driver robot transferred the obstacle coordinates (marked in red) to the hitchhiker.

Table 1. New obstacle info transferred to the hitchhiker.

Obstacles
Experiment 1 Experiment 2

(x, y) (Width × Breadth) (x, y) (Width × Breadth)

Obstacle 1 (231, 152) (7× 4) (394, 685) (11× 11)
Obstacle 2 (308, 129) (10× 11) (493, 650) (14× 11)
Obstacle 3 (376, 150) (11× 7) (632, 698) (10× 12)
Obstacle 4 − − (795, 646) (21× 10)
Obstacle 5 − − (931, 682) (17× 11)
Obstacle 6 − − (1075, 654) (15× 10)

7.2.2. Experiment 2

Experiment 2 was carried in a long corridor (≈30 m long, 2.92 m wide) shown in Figure 11a.
Similar to the previous experiment, the boxes marked in Figure 11a were placed as new obstacles.

Sensors 2017, 17, 1878 15 of 21

The hitchhiking Turtlebot was not pre-aligned and there were no artificial markers to assist coupling.
Instead, the left wall was used as a landmark. The coupling process is shown in Figure 11b.
The navigation started and Turtlebot followed the driver P3DX as shown in Figure 11c.

Figure 12 shows the results of the map update process of the experiment. Figure 12a was the
section map without the obstacles. Figure 12b shows the updated map with the positions of the new
obstacles marked. The driver successfully transferred the coordinates of the new obstacles to the
hitchhiker during the decoupling process which has been summarized in Table 1. The accuracy of
obstacle locations were verified manually in both the experiments.

(a) (b) (c)

Figure 11. Experiment 2. (a) Environment with new obstacles marked in red; (b) Coupling between
the two robots using left wall as marker (c) Turtlebot following P3DX through visual servoing. (Refer
the accompanied video provided in the Supplementary Materials section).

(a)
Hitchhiking Point

Decouple
Point

28
.8

2
m

(b)

Figure 12. Experiment 2. (a) Initial map without obstacles; (b) Updated map with new obstacles.
Driver robot transferred the obstacle coordinates (marked in red) to the hitchhiker.

The time taken in coupling, decoupling, and waiting for the driver has been summarized in
Figure 13 for the three runs of the two experiments with and without new obstacles. Table 2 shows the
average time of the three runs. The total path distance navigated in Experiments 1 and 2 were, 20.4 m
and 28.82 m, respectively. To award 10 points to the driver for every 25 m hitchhike, κ (Section 5) was
set to 0.4, and the driver robot was awarded 8.2 and 11.5 points, respectively.

Sensors 2017, 17, 1878 16 of 21

0

10

20

30

40

50

60

70

80

Exp1 Exp2 Exp3 Exp1 Exp2 Exp3 Exp1 Exp2 Exp3 Exp1 Exp2 Exp3

Without Obstacles With Obstacles Without Obstacles With Obstacles

Experiment 1 Experiment 2

T
im

e
(s

)

Coupling Time Decoupling Time Hitchhiker's Waiting Time

Figure 13. Coupling, decoupling, and hitchhiker’s waiting time in different experiments done
with/without new obstacles.

Table 2. Average time of the hitchhiking components.

Exp Obstacles Time to Time to Waiting Time Delay of Delay of
Yes/No Couple Decouple of Hitchhiker Driver Hitchhiker

Exp 1 No 15.00 s 17.67 s 19.33 s 32.67 s 52.00 s
Yes 15.33 s 22.00 s 21.67 s 37.33 s 59.00 s

Exp 2 No 33.00 s 19.00 s 11.33 s 52.00 s 63.33 s
Yes 35.00 s 21.67 s 10.67 s 56.67 s 67.33 s

7.3. Experiments with Denied Hitchhiking

We performed three more experiments to test scenarios in which hitchhiking should be denied.
Experiments were performed in the same setup (Figure 11a) as in experiment 2. (a) In the first case, we
set the priority of the driver robot to a high value of 10 (the lowest value being 1 in our implementation).
Due to the high task priority, the driver P3DX ignored the requests from the hitchhiker; (b) In the
second case, we reversed the profile scores of the two robots i.e., we set the driver P3DX with a profile
score of 58, and hitchhiker with a profile score of 90. In this case, the driver stopped upon receiving
the request from the hitchhiker, however, the hitchhiking was denied as the the driver had a lesser
profile score. Notice that in this case, the two robots can reverse the roles, i.e., the requesting robot
with better profile score can be the driver and other hitchhiker. However, we did not consider this case
in the current work and will do so in future work; (c) The third case scenario was tested at a wrong
hitchhiking location and the driver ignored the requests from the hitchhiker.

7.4. Transferring Quality Maps to Hitchhiker

In both the previous experiments, apart from the occupancy grid map based map update, 3D map
update was also performed by the driver robot. The initial point cloud map of the environment before
placing new obstacles in experiment 2 is shown in Figure 14a. The final updated 3D point cloud map
with the new obstacles is shown in Figure 14b.

Notice that not only the locations of the new obstacles, but high quality 3D maps can also be
transferred to the hitchhiker during decoupling. This is particularly useful if the hitchhiker’s profile
is poor and it is not equipped with accurate 3D sensors or powerful computational units. In that
case, a driver with good sensors and powerful computer can build high quality maps and give to the
hitchhiker robot. Algorithms like OctoMap [58] can be used to get reduced sized maps from 3D point
cloud maps, as shown in Figure 15.

Sensors 2017, 17, 1878 17 of 21

(a)

(b)

Figure 14. Top view of the 3D point cloud map in Experiment 2. (a) Initial map without obstacles;
(b) Map with obstacles.

Figure 15. Octomap of the point cloud map shown in Figure 14b.

8. Discussion

The results in Section 7 show that hitchhiking can be implemented in multi-robot systems with a
simple setup. The hardware required are just QR-code marker, camera, and wireless communication
setup. The software module can be implemented with a module on/off switch and visual servoing
module. The measure of computation saved by the hitchhiker lies on many factors like the algorithms
employed for path-planning, SLAM, and navigation. It also depends on the computation units, robot
specifications, and the topology of the environment. Moreover, since the implementation and execution
platforms vary and evolve rapidly, we focus on which redundant modules can be turned off without
affecting the quality of service and loss of information for the hitchhiker. Moreover, compared to the
other modules, SLAM particularly is a computationally expensive module and the hitchhiker can save
substantial computation by skipping it. Table 3 shows the different modules run by the two robots
in navigation in the experiments in Section 7. It is clear that the traditional navigation requires all
the modules of both the robots to be active. On the other hand, in hitchhiking, most of the modules
of the hitchhiker are off. One overhead is visual servoing which is not computationally expensive
compared to SLAM (especially 3D SLAM). Another overhead is the delay in service time caused due
to hitchhiking. Table 2 summarizes the average time required for coupling, decoupling, waiting for
a potential driver, and the driver’s total delay. Although it depends upon the exact task, however,
for less critical tasks, a delay of about 70 s should be acceptable.

Table 3. Modules run with and without hitchhiking.

Scheme Robot PP OBS LZN MAP COM VS

Traditional R1 On On On On On Off
R2 On On On On On Off

Hitchhiking R1 On On On On On Off
R2 Off Off Off Off On On

PP: Path Planning, OBS: Obstacle Avoidance, LZN: Localization, MAP: Mapping, VS: Visual Servoing,
COM: Communication.

Sensors 2017, 17, 1878 18 of 21

It is interesting to notice in Table 2 that there is little time difference in the experiments with
and without obstacles. The presence of obstacles only affect the actual navigation time. Moreover,
in Experiment 2 the hitchhiker was not pre-aligned and there were no markers and therefore the
average time for coupling in Experiment 2 was more than that in Experiment 1. This shows that
having hitchhiking points with markers in the map can save coupling time. As shown in Section 7.3,
hitchhiking is denied for high priority tasks. Moreover, as described in Section 2.2, the hitchhiker
only waits for a potential driver for Thwait time, which ensures that service is not affected adversely.
Although our implementation dealt with local robot communication, hitchhiking can be very efficient
with global communication in a sensor network, as the hitchhiker can know beforehand the passage of
a potential driver with desired characteristics near a hitchhiking area. The proposed hitchhiking is
not limited to a particular localization algorithm and any of the robust localization algorithms can be
employed. Although the results were presented using EKF based localization algorithms, more robust
algorithms (ex. [39–41,43]) will improve the accuracy of the results. Robustness of the visual servoing
and communication modules largely determine the success of hitchhiking.

9. Summary

This paper introduced a novel idea of hitchhiking in multi-robot systems. When two robots have
a common path towards the goal, the follower hitchhiker can skip the redundant computation of
path planning, obstacle avoidance, map update, and localization. The process of hitchhiking was
systematically explained in four steps. Later, the advantages of having hitchhiking points in the map
were discussed. Solutions to the problem of ‘driver lost’ scenario were provided. The experimental
results show that hitchhiking is feasible in a multi-robot system without any loss of information.
Hitchhiking can particularly be useful in multi-robot systems in which some of the robots have less
accurate sensors and less powerful computational resources. In future, we plan to test hitchhiking in
dynamic environments. We also plan to test the role reversibility of robots based on their profiles.

Supplementary Materials: Download link for video presentation with results: http://www.mdpi.com/1424-
8220/17/8/1878/s1.

Author Contributions: Abhijeet Ravankar and Ankit A. Ravankar conceived the idea, designed, and performed
the experiments; Yukinori Kobayashi made valuable suggestions to analyze the data and improve the manuscript.
Takanori Emaru provided the necessary tools. The manuscript was written by Abhijeet Ravankar.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

Rh/d Robot ID of hitchhiker (h)/driver (d)
Sh/d Start location of hitchhiker (h)/driver (d)
Gh/d Goal location of hitchhiker (h)/driver (d)
Th/d Task priority of hitchhiker (h)/driver (d)
Ph/d Robot profile of hitchhiker (h)/driver (d)
Thwait Threshold hitchhike wait time
Talign Threshold alignment time
Tcoupling Threshold coupling time
Tdhh Threshold hitchhiking distance
Σ Positional uncertainty of robot
Ω New static obstacles
[x, y, θ]T Robot Pose
SLAM Simultaneous Localization and Mapping
EKF Extended Kalman Filter

http://www.mdpi.com/1424-8220/17/8/1878/s1
http://www.mdpi.com/1424-8220/17/8/1878/s1

Sensors 2017, 17, 1878 19 of 21

Appendix A

Listing 1: Example of driver message in JSON format.
{ “robot_id” : “01” , // Driver robot Id
“x” : “351” , // Estimated x location
“y” : “141” , // Estimated y location
“Σ” : “ (σ2

x , σ2
y , σ2

θ) ” , // Uncertainty
“time_stamp” : “1452189953” // Unix timestamp
“new_obstacles” : { // New obstacles meta data
“obstacles” : [// Coordinates
{ “obs1” : “x” : “231” , “y” : “152” , “w” : “7” , “b” : “4” } , // Obstacle information
{ “obs2” : “x” : “308” , “y” : “129” , “w” : “10” , “b” : “11” } , // Obstacle information
{ · · · }] // Other meta data
} }

References

1. Durrant-Whyte, H.; Bailey, T. Simultaneous localization and mapping: Part I. IEEE Robot. Autom. Mag.
2006, 13, 99–110.

2. Dissanayake, M.W.M.G.; Newman, P.; Clark, S.; Durrant-Whyte, H.F.; Csorba, M. A solution to the
simultaneous localization and map building (SLAM) problem. IEEE Trans. Robot. Autom. 2001, 17, 229–241.

3. Zhang, C.; Noguchi, N.; Yang, L. Leader follower system using two robot tractors to improve work efficiency.
Comput. Electron. Agric. 2016, 121, 269–281.

4. Zhang, C.; Noguchi, N. Development of leader-follower system for field work. In Proceedings of the 2015
IEEE/SICE International Symposium on System Integration (SII), Nagoya, Japan, 11–13 December 2015;
pp. 364–368.

5. Roumeliotis, S.I.; Bekey, G.A. Distributed multirobot localization. IEEE Trans. Robot. Autom. 2002,
18, 781–795.

6. Howard, A.; Sukhatme, G.S.; Mataric, M.J. Multirobot Simultaneous Localization and Mapping Using
Manifold Representations. Proc. IEEE 2006, 94, 1360–1369.

7. Thrun, S.; Liu, Y. Multi-robot SLAM with Sparse Extended Information Filers. Robotics Research. The Eleventh
International Symposium; Springer Berlin Heidelberg Press: Berlin, Heidelberg, Germany, 2005.

8. Atanasov, N.; Ny, J.L.; Daniilidis, K.; Pappas, G.J. Decentralized active information acquisition: Theory and
application to multi-robot SLAM. In Proceedings of the 2015 IEEE International Conference on Robotics and
Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 4775–4782.

9. Roy, N.; Dudek, G. Collaborative Robot Exploration and Rendezvous: Algorithms, Performance Bounds
and Observations. Auton. Robot. 2001, 11, 117–136.

10. Alonso-Mora, J.; Baker, S.; Rus, D. Multi-robot navigation in formation via sequential convex programming.
In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Hamburg, Germany, 28 September–2 October 2015; pp. 4634–4641.

11. Wee, S.G.; Kim, Y.G.; Lee, S.G.; An, J. Formation control based on virtual space configuration for multi-robot
collective navigation. In Proceedings of the 2013 10th International Conference on Ubiquitous Robots and
Ambient Intelligence (URAI), Jeju, Korea, 30 October–2 November 2013; pp. 556–557.

12. Ravankar, A.; Ravankar, A.; Kobayashi, Y.; Emaru, T. Symbiotic Navigation in Multi-Robot Systems with
Remote Obstacle Knowledge Sharing. Sensors 2017, 17, 1581.

13. Liu, Y.C.; Chopra, N. Semi-autonomous teleoperation in task space with redundant slave robot under
communication delays. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots
and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 679–684.

14. Usmani, N.A.; Kim, T.H.; Ryu, J.H. Dynamic authority distribution for cooperative teleoperation.
In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Hamburg, Germany, 28 September–2 October 2015; pp. 5222–5227.

15. Hutchinson, S.; Hager, G.D.; Corke, P.I. A tutorial on visual servo control. IEEE Trans. Robot. Autom. 1996,
12, 651–670.

Sensors 2017, 17, 1878 20 of 21

16. Chaumette, F.; Hutchinson, S. Visual servo control, Part I: Basic approaches. IEEE Robot. Autom. Mag. 2006,
13, 82–90.

17. Sanderson, A.C.; Weiss, L.E. Adaptive Visual Servo Control of Robots. In Robot Vision; Pugh, A., Ed.;
Springer: Berlin, Heidelberg, 1983; pp. 107–116.

18. Wilson, W.J.; Hulls, C.C.W.; Bell, G.S. Relative end-effector control using Cartesian position based visual
servoing. IEEE Trans. Robot. Autom. 1996, 12, 684–696.

19. Kermorgant, O.; Chaumette, F. Combining IBVS and PBVS to ensure the visibility constraint. In Proceedings
of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA,
25–30 September 2011; pp. 2849–2854.

20. Marchand, E.; Spindler, F.; Chaumette, F. ViSP for visual servoing: A generic software platform with a wide
class of robot control skills. IEEE Robot. Autom. Mag. 2005, 12, 40–52.

21. Mezouar, Y.; Chaumette, F. Path planning for robust image-based control. IEEE Trans. Robot. Autom. 2002,
18, 534–549.

22. Hart, P.; Nilsson, N.; Raphael, B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths.
IEEE Trans. Syst. Sci. Cybern. 1968, 4, 100–107.

23. Chaumette, F. Potential problems of stability and convergence in image-based and position-based visual
servoing. In The Confluence of Vision and Control; Kriegman, D.J., Hager, G.D., Morse, A.S., Eds.; Springer:
London, UK, 1998; pp. 66–78.

24. Bukhori, I.; Ismail, Z.H.; Namerikawa, T. Detection strategy for kidnapped robot problem in landmark-based
map Monte Carlo Localization. In Proceedings of the 2015 IEEE International Symposium on Robotics and
Intelligent Sensors (IRIS), Langkawi, Malaysia, 18–20 October 2015; pp. 75–80.

25. Desrochers, B.; Lacroix, S.; Jaulin, L. Set-membership approach to the kidnapped robot problem.
In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Hamburg, Germany, 28 September–2 October 2015; pp. 3715–3720.

26. Majdik, A.; Popa, M.; Tamas, L.; Szoke, I.; Lazea, G. New approach in solving the kidnapped robot problem.
In Proceedings of the ISR 2010 (41st International Symposium on Robotics) and ROBOTIK 2010 (6th German
Conference on Robotics), Munich, Germany, 7–9 June, 2010; pp. 1–6.

27. Ravankar, A.A.; Hoshino, Y.; Ravankar, A.; Jixin, L.; Emaru, T.; Kobayashi, Y. Algorithms and a Framework
for Indoor Robot Mapping in a Noisy Environment Using Clustering in Spatial and Hough Domains. Int. J.
Adv. Robot. Syst. 2015, 12, 27.

28. Srkk, S. Bayesian Filtering and Smoothing; Cambridge University Press: New York, NY, USA, 2013.
29. Menegaz, H.M.T.; Ishihara, J.Y.; Borges, G.A.; Vargas, A.N. A Systematization of the Unscented Kalman

Filter Theory. IEEE Trans. Autom. Control 2015, 60, 2583–2598.
30. Scheding, S.; Dissanayake, G.; Nebot, E.M.; Durrant-Whyte, H. An experiment in autonomous navigation of

an underground mining vehicle. IEEE Trans. Robot. Autom. 1999, 15, 85–95.
31. Thrun, S.; Burgard, W.; Fox, D. Probabilistic Robotics (Intelligent Robotics and Autonomous Agents); The MIT

Press: Cambridge, UK, 2005.
32. Hao, Y.; Xiong, Z.; Sun, F.; Wang, X. Comparison of Unscented Kalman Filters. In Proceedings of the 2007

International Conference on Mechatronics and Automation, Harbin, China, 5–8 August 2007; pp. 895–899.
33. Simon, D. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches; Wiley-Interscience: Hoboken,

NJ, USA, 2006.
34. Daum, F. Nonlinear filters: Beyond the Kalman filter. IEEE Aerosp. Electron. Syst. Mag. 2005, 20, 57–69.
35. Ravankar, A.; Ravankar, A.A.; Kobayashi, Y.; Emaru, T. Avoiding blind leading the blind: Uncertainty

integration in virtual pheromone deposition by robots. Int. J. Adv. Robot. Syst. 2016, 13, pp. 1–16.
36. Arulampalam, M.S.; Maskell, S.; Gordon, N.; Clapp, T. A tutorial on particle filters for online

nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 2002, 50, 174–188.
37. Mustiere, F.; Bolic, M.; Bouchard, M. Rao-Blackwellised Particle Filters: Examples of Applications.

In Proceedings of the 2006 Canadian Conference on Electrical and Computer Engineering, Ottawa, ON,
Canada, 7–10 May 2006; pp. 1196–1200.

38. Kurt-Yavuz, Z.; Yavuz, S. A comparison of EKF, UKF, FastSLAM2.0, and UKF-based FastSLAM algorithms.
In Proceedings of the 2012 IEEE 16th International Conference on Intelligent Engineering Systems (INES),
Lisbon, Portugal, 13–15 June 2012; pp. 37–43.

Sensors 2017, 17, 1878 21 of 21

39. Zhao, S.; Shmaliy, Y.S.; Shi, P.; Ahn, C.K. Fusion Kalman/UFIR Filter for State Estimation with Uncertain
Parameters and Noise Statistics. IEEE Trans. Ind. Electron. 2017, 64, 3075–3083.

40. Ahn, C.K.; Shi, P.; Basin, M.V. Deadbeat Dissipative FIR Filtering. IEEE Trans. Circuits Syst. I Regul. Pap.
2016, 63, 1210–1221.

41. Pak, J.M.; Ahn, C.K.; Shmaliy, Y.S.; Lim, M.T. Improving Reliability of Particle Filter-Based Localization in
Wireless Sensor Networks via Hybrid Particle/FIR Filtering. IEEE Trans. Ind. Inform. 2015, 11, 1089–1098.

42. Pak, J.M.; Ahn, C.K.; Shi, P.; Shmaliy, Y.S.; Lim, M.T. Distributed Hybrid Particle/FIR Filtering for Mitigating
NLOS Effects in TOA-Based Localization Using Wireless Sensor Networks. IEEE Trans. Ind. Electron. 2017,
64, 5182–5191.

43. Grisetti, G.; Kummerle, R.; Stachniss, C.; Burgard, W. A Tutorial on Graph-Based SLAM. IEEE Intell. Transp.
Syst. Mag. 2010, 2, 31–43.

44. Cadena, C.; Carlone, L.; Carrillo, H.; Latif, Y.; Scaramuzza, D.; Neira, J.; Reid, I.; Leonard, J.J. Past,
Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age.
IEEE Trans. Robot. 2016, 32, 1309–1332.

45. Pioneer P3-DX. Pioneer P3-DX Robot. 2016. Available online: http://www.mobilerobots.com/Mobile_
Robots.aspx (accessed on 23 January 2016).

46. TurtleBot 2. TurtleBot 2 Robot. 2015. Available online: http://turtlebot.com/ (accessed on 10 October 2015).
47. Ravankar, A.; Ravankar, A.A.; Hoshino, Y.; Emaru, T.; Kobayashi, Y. On a Hopping-points SVD and Hough

Transform Based Line Detection Algorithm for Robot Localization and Mapping. Int. J. Adv. Robot. Syst.
2016, 13, 98.

48. Wikipedia. Microsoft Kinect. 2016. Available online: https://en.wikipedia.org/wiki/Kinect (accessed on
25 November 2016).

49. UHG-08LX Technical Specifications. UHG-08LX Technical Specifications. 2017. Available online:
http://www.robotshop.com/media/files/pdf/hokuyo-uhg-08lx-overview.pdf (accessed on 7 August 2017).

50. Quigley, M.; Conley, K.; Gerkey, B.P.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An open-source
Robot Operating System. In Proceedings of the ICRA Workshop on Open Source Software, Kobe, Japan,
12–17 May 2009.

51. ViSP. Visp: Visual Servoing Platform. 2017. Available online: https://visp.inria.fr/ (accessed on
1 January 2017).

52. Spindler, F.; Novotny, F. Visp Auto Tracker. 2017. Available online: http://wiki.ros.org/visp_auto_tracker
(accessed on 1 January 2017).

53. Hartley, R.I.; Zisserman, A. Multiple View Geometry in Computer Vision, 2nd ed.; Cambridge University Press:
New York, NY, USA, 2004; ISBN 0521540518.

54. Zaitsev, S. Jsmn Open Source JSON C Parser, 2015. Available online: https://bitbucket.org/zserge/jsmn/
wiki/Home (accessed on 9 October 2015).

55. Birk, A.; Carpin, S. Merging Occupancy Grid Maps from Multiple Robots. Proc. IEEE 2006, 94, 1384–1397.
56. Saeedi, S.; Trentini, M.; Li, H. A hybrid approach for multiple-robot SLAM with particle filtering.

In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Hamburg, Germany, 28 September–2 October 2015; pp. 3421–3426.

57. Bonanni, T.M.; Corte, B.D.; Grisetti, G. 3-D Map Merging on Pose Graphs. IEEE Robot. Autom. Lett. 2017,
2, 1031–1038.

58. Hornung, A.; Wurm, K.M.; Bennewitz, M.; Stachniss, C.; Burgard, W. OctoMap: An Efficient Probabilistic
3D Mapping Framework Based on Octrees. Auton. Robot. 2013, 34, 189–206.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.mobilerobots.com/Mobile_Robots.aspx
http://www.mobilerobots.com/Mobile_Robots.aspx
http://turtlebot.com/
https://en.wikipedia.org/wiki/Kinect
http://www.robotshop.com/media/files/pdf/hokuyo-uhg-08lx-overview.pdf
https://visp.inria.fr/
http://wiki.ros.org/visp_auto_tracker
https://bitbucket.org/zserge/jsmn/wiki/Home
https://bitbucket.org/zserge/jsmn/wiki/Home
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Hitchhiking in Robots
	Hitchhiking Mechanism
	Four Steps of Hitchhiking

	Hitchhiking Points
	When to Hitchhike and When Not

	Problem of `Driver Lost' Scenario
	Award Mechanism
	 State of the Art in Robot Localization
	 Driver Robot Localization with Extended Kalman Filter
	Pose Transfer during Decoupling

	Experimental Results
	Motion Model
	Experiments in Which Hitchhiking Was Allowed
	Experiment 1
	Experiment 2

	Experiments with Denied Hitchhiking
	Transferring Quality Maps to Hitchhiker

	Discussion
	Summary
	

