
Article

Path Planning for Non-Circular, Non-Holonomic
Robots in Highly Cluttered Environments

Ricardo Samaniego 1,*, Joaquin Lopez 2 and Fernando Vazquez 2

1 Imatia Innovation, 36310 Vigo, Spain
2 Department of Systems Engineering and Automation, School of Industrial Engineering, University of Vigo,

36310 Vigo, Spain; joaquin@uvigo.es (J.L.); fvazquez@uvigo.es (F.V.)
* Correspondence: ricardo.samaniego.lopez@gmail.com; Tel.: +34-986-812-231

Received: 16 June 2017 ; Accepted: 11 August 2017; Published: 15 August 2017

Abstract: This paper presents an algorithm for finding a solution to the problem of planning a feasible
path for a slender autonomous mobile robot in a large and cluttered environment. The presented
approach is based on performing a graph search on a kinodynamic-feasible lattice state space of
high resolution; however, the technique is applicable to many search algorithms. With the purpose
of allowing the algorithm to consider paths that take the robot through narrow passes and close to
obstacles, high resolutions are used for the lattice space and the control set. This introduces new
challenges because one of the most computationally expensive parts of path search based planning
algorithms is calculating the cost of each one of the actions or steps that could potentially be part
of the trajectory. The reason for this is that the evaluation of each one of these actions involves
convolving the robot’s footprint with a portion of a local map to evaluate the possibility of a collision,
an operation that grows exponentially as the resolution is increased. The novel approach presented
here reduces the need for these convolutions by using a set of offline precomputed maps that are
updated, by means of a partial convolution, as new information arrives from sensors or other sources.
Not only does this improve run-time performance, but it also provides support for dynamic search in
changing environments. A set of alternative fast convolution methods are also proposed, depending
on whether the environment is cluttered with obstacles or not. Finally, we provide both theoretical
and experimental results from different experiments and applications.

Keywords: mobile robots; car-like robots; non-holonomic; path planning; motion planning;
state lattice

1. Introduction

The problem of planning a path for a geometrically and dynamically constrained mobile robot
in a cluttered environment is one of the most time-consuming tasks in the field of mobile robotics.
A common approach is to search for the path over a grid-based cost map, in which each cell has a value
ranging from zero (free space) to a very high value representing non traversable areas (MAXCOST).
Intermediate values represent either high cost movements (e.g., difficult terrain) or areas where there
is a high probability of collision, making it risky to move at the robot’s normal speed and probably
forcing it to slow down. Search is performed in a step-by-step manner, starting at the cell where the
path begins, evaluating the cost of moving the robot to each adjacent cell, selecting the action with
the lowest cost, moving the robot to that cell and from there repeating the process in a recursive or
iterative manner until an optimal path to the target location is found. To evaluate each of the possible
actions, even if they are finally discarded, the algorithm must perform a convolution between the
robot’s footprint, with its anchor point (typically the geometric center) placed on the evaluated cell
and the cost map. Typically, the maximum value of this convolution is taken into account to evaluate
the cost of the potential action. This convolution is computationally expensive when a high resolution

Sensors 2017, 17, 1876; doi:10.3390/s17081876 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s17081876
http://www.mdpi.com/journal/sensors

Sensors 2017, 17, 1876 2 of 19

is used to model the robot’s footprint and the local map’s features. Furthermore, if the paths to be
found are long and a high spacial resolution is also used for determining the steps, the number of
convolutions to be performed, and thus the computations, grows exponentially.

A common approach to reduce the complexity of this problem is to approximate the robot’s
footprint to its enclosing circle, precomputing a cost map in which obstacles are inflated by the
radius of this circle, effectively reducing the robot to a single point and avoiding the need to perform
convolutions when searching for the path. This approach works well for robotic vehicles that are
approximately circular or small compared to the environment and obstacles in which they move,
but not so for slender (elongated) vehicles that must move in environments in which they are large
compared to the obstacles and the free space through which they must move. For these types of
vehicles, approximating them by their enclosing circle makes them look much larger than they actually
are, and turns out to be too conservative for most practical uses. As a result, narrow passages are
often considered non traversable even when they would actually be feasible for certain orientations or
configurations of the robot. For these non circular robots, planning using the actual footprint implies
a real-time convolution for every single action on a three-dimensional space (x, y and orientation).
For example, for a 5 m × 2 m robot on a grid of 0.1 m resolution, a single 5 m forward movement
involves the evaluation of about 2000 cells.

In this paper, we present a new approach to the problem, in which a set of precomputed maps
are used, convolving the footprint of the robot with the entire map for a set of possible orientations,
discretizing the map for x, y and orientation. The method reduces any robot, regardless of its footprint,
to a single point that must traverse a 3D precomputed map, thus avoiding the need of any real-time
convolutions. For applications in which dynamic search is required, normally due to a changing
environment, we propose carrying out a local convolution, whenever new information regarding
the environment is received, to update the precomputed 3D map. To do that, we propose using fast
convolution methods based on the Fast Fourier Transform (FFT) or the morphology dilation operation,
depending on whether the environment is cluttered with obstacles or not.

The rest of the paper is organized as follows. First, a brief description of the prior work in this area
is provided in the next section. Then, the key concepts and techniques of our solution are described.
Section 4 includes a description of the different methods used to obtain the convolution of the robot
with the local map, including an analysis of the complexity involved. The description of the graph
search algorithms that we have used is included in Section 5. Finally, we present theoretical results in
simulated environments as well as experimental results obtained from an implementation for a large
“tugmaster” articulated truck navigating inside a narrow warehouse.

2. Related Work

Autonomous path planning and navigation of non-holonomic vehicles have been an active field
of research during the past decades and several surveys about this topic have also been published [1].
Robotic developments are increasingly moving from small, circular research robots to vehicles that
are large and fast such as cars or trucks. When it comes to motion planning, small circular robots
have the advantage that they can stop almost instantly and can turn in place if they are equipped
with differential drives, making the path planning problem for them very close to that of a holonomic
vehicle. Large vehicles pose many more challenges for path planning algorithms due to their dynamic
and spatial characteristics, including a limited turning radius, as well as the fact that they tend to be
slender or elongated, rather than circular or almost circular.

Early approaches focused on local planning, where only short term paths are calculated to navigate
towards a given goal while avoiding obstacles, whether previously known or detected in real time [2,3].
This local approach is prone to get stuck on convex obstacles, such as cul-de-sacs or other forms of
local minima, and it is also incapable of reasoning complex maneuvers for navigating in complicated
environments such as sharp turns on narrow corridors or U-turns. Much of the recent work is focused
on global path planning, taking the robot from the current position to a given goal, reasoning a

Sensors 2017, 17, 1876 3 of 19

complete path that is compatible with the restrictions posed by the vehicle and the environment [4].
This global path is usually computed through the concatenation of minor discrete actions taken from
a precalculated control set, forming a state lattice [5]. These actions connect different states of a
discretized space, allowing the path planning problem to be formulated as a graph search. This global
approach is very challenging in terms of memory consumption and processing time, especially when
high resolutions are needed.

This approximation discretizes the space in a grid on which each cell is a state of the lattice which
describes the corresponding location of the map, so it is possible to define different costs for each cell.
If the vehicle dimensions are not negligible with respect to the size of the cell, this method will not
address the problem of collision with a nearby object. A common practice for robots of cylindrical or
near-cylindrical shape is to grow the obstacle by the radius of the robot itself [6], but this approximation
is not appropriate for slender robots.

Several approaches have been made to address the problem of finding a path for an arbitrarily
shaped robot in the presence of obstacles. The most common approach is the online calculation of
collisions at each step of the graph search algorithm by convolving the footprint of the robot with
the map, having rotated the footprint to the corresponding angle of the maneuver in progress [4].
Furthermore, as each individual motion primitive of the control set can cross several cells of the state
space, a set of finely spaced intermediate poses is calculated for each of these primitives. All of these
poses must be checked to ensure that a given motion is valid between the two states. Although several
optimizations and precalculations can be made [7], the computation time of these convolutions grows
rapidly with map resolution and the density of obstacles.

In environments where the density of obstacles is high, one approach is to reduce the resolution in
order to limit the total calculation time, but this implies increasing the padding distances to ensure that
the robot will always be at a safe distance from the obstacles found throughout the path. This makes it
impossible for the robot to be positioned near walls and, in environments with narrow corridors, can
eventually prevent the robot from finding a suitable path to the goal.

Likhachev and Ferguson [7] propose the use of two preconvolved obstacle maps in order to
reduce the calculation time: one with the obstacles grown by the radius of the circle circumscribed to
the robot and another one with the inscribed circle. This way, a motion primitive that is successfully
checked against the first map is guaranteed not to collide in any possible heading, while a motion
primitive overlapping an obstacle on the second map will not be feasible for any orientation. Only the
paths traversing an obstacle cell on the first map but not on the second one will require a convolution
between the real obstacles’ map and the vehicle’s footprint, in order to ensure a collision-free trajectory.
However, in an environment with a high density of obstacles, a detailed convolution can be expected
to be necessary for the vast majority of steps, making the performance improvement provided by
using these two additional preconvolved maps insignificant.

Another optimization is made in the same paper, with the use of two separate action spaces, of two
different resolutions. The paper proposes using the high resolution action space in the vicinity of the
robot and the goal, while using the low resolution action space elsewhere. As the computational cost
of the graph search increases with the size of the action space, as well with the size of the occupancy
map, the idea is that the use of this low resolution action space for the majority of calculations will
reduce the total calculation time. However, the resolution of the action state, is not always critical
only around these two points, but also in cluttered zones where the robot has to maneuver closely in
order to pass between obstacles. Considering the problem that we are addressing in this paper, where
we are not generally assuming the presence of large clearance zones between obstacles, this previous
approach would result in a permanent utilization of the high resolution lattice, without accessing the
benefits of using the one of low resolution.

An efficient grid-based spatial representation to compute dynamic layered c-space maps is
proposed in [8]. However, the solution includes a path planning method that is restricted to robots
without a non-holonomic constraint because they do not use a state lattice.

Sensors 2017, 17, 1876 4 of 19

One of the most interesting approaches that has been made, for the purposes of the problem
addressed in this paper, is the utilization of two different occupancy maps: the original obstacles
map and a second one inflated by the radius of a set of circles inscribed in the robot’s footprint [9].
The points of the footprint are then divided into two sets: points that should be evaluated against the
cost map that has the inflated obstacles and points that should be evaluated against the original cost
map. Although the online convolution of the footprint is not completely avoided, the number of points
to be convolved in each step is greatly reduced. In a real case scenario, the authors show that more
than 60% of the calculations can be avoided. However, for large robots in high resolution scenarios,
convolving 40% of the footprint cells still implies an unacceptably high computation time.

A totally different approach to the problem is made by sampling-based planning methods [10,11].
These methods discretize the continuous space by taking samples on the fly, without using a previouslly
existing graph representation of the search space. While these methods are usually much faster than
the search-based ones, they do not guarantee the optimality of the results, providing inefficient paths.
Examples of this methods are RRT [12] or PRM [13]. More recent works have extended these techniques
in order to achieve probabilistic completeness, or even asymtotic optimality [14–16]. However, none of
these sampling-based methods can guarantee the optimality of the generated path.

In this paper, we present a novel, search-based, path planning method that is especially
advantageous in the case of elongated or slender vehicles that must operate in heavily cluttered
environments. This method assumes that the map, obstacles and shape of the robot are previously
known and precomputes a 3D obstacles map, where the first two dimensions represent a discretized
horizontal space and the third dimension represents the robot’s pose or orientation. Once the 3D map
is constructed, the search for an optimal path between any two points can be performed as if the robot
occupied a single point in this pseudo 3D space and without having to perform costly convolutions
at run-time. To support moderately changing environments, we propose partially updating the 3D
map by means of applying a Fast Fourier Transfer (FFT) or simple morphology dilation operations,
depending on the type of occupancy map that is available.

3. Algorithm Basics

The traditional approach that has been used for planning paths to be traversed by ground
vehicles, in environments that have been previously mapped, is to use a 2D cost map that represents
the distribution of the obstacles. Although the occupancy maps used for motion planning are
two-dimensional, searching for a minimal cost solution, when the vehicle is non cylindrical, requires
considering three dimensions (x, y and orientation). This three-dimensional look up is converted
into a discrete set of two dimensional checks, which must be done in real time and require a highly
time-consuming convolution operation.

Let us first introduce the notation that is going to be used in the rest of the paper. The workspace
W is the map of the robot’s working area. In our case,W ⊂ R2 is discretized into an array W of n×m
cells. In a binary map, each cell (W(i, j)) can only have two possible values, representing an obstacle
(W(i, j) = 1) or free space (W(i, j) = 0), while, in a cost map, each cell value represents the cost of
traversing the cell (W(i, j) ⊂ R).

The robot is a rigid body of any shape and the robot footprint A ⊂ R2 is the set of all points of
W that lie in A .

The robot configuration q is a minimal set of parameters that specify the position of the robot.
For our application, we employ a three-dimensional (x, y, θ) representation where (x, y) represents the
position and θ represents the vehicle’s orientation. The configuration space of a robot (C-space) is the
set of all the possible configurations.

Sensors 2017, 17, 1876 5 of 19

For a robot configuration q(x, y, θ), we will represent the robot’s footprintA as A(x,y,θ). In addition,
we define the footprint matrix A(x,y,θ) as a set of cells (i, j) with the same size as the cells in the
workspace W, according to the following equation:

A(x,y,θ)(i, j) =

{
1, if A overlaps the cell(i, j),

0, if A does not overlap cell(i, j),
(1)

where the dimensions of A (a × b) will depend on the size of the robot and the resolution of the
workspace W.

The bottom part of Figure 1 shows the representation of the footprint matrix (A(0,0,θ)) of a L-shaped
robot for two different orientations (θ).

We present an algorithm that completely avoids the need for real-time convolution calculations
by effectively performing three-dimensional checks, using a precomputed set of inflated cost maps.
In regular occupancy maps, the discretization of the space is made in two dimensions (x, y), but here
we propose to also discretize the orientation taken by the vehicle, inflating the map with the actual
footprint of the robot for each discrete angle value, thus generating a set of preconvolved maps. Thus,
any cost computation and collision checking can be done in real time by just taking the appropriate
value from this set of spatially inflated maps. The resulting data can be seen as a single 3D map, in
which the z-coordinate represents the orientation of the robot. More specifically, this map will be
toroid-shaped, given the fact that the top and bottom layers of the 3D map are actually connected.
An example of this 3D map is shown in Figure 2, where a 128 ×128 cells binary map is converted to an
eight layer 3D map, corresponding to an angular resolution of 45 degrees.

In Figure 2, the original binary map is on the right, with obstacles represented in black and free
space in white. The robot’s footprint is shown over the map in light gray. On the left, the layers
of the inflated map are shown, along with the rotated footprint used for the convolution of each
layer. In Figure 1, two layers of this convolution are shown in detail, along with the corresponding
rotated footprint.

Figure 1. Detail of two layers of convolution.

Figure 2. Preconvolved 3D occupancy map.

Sensors 2017, 17, 1876 6 of 19

4. Obtaining the Cost for Each Action

When generating the inflated maps, we take a slightly different approach for binary maps than for
non-binary (grey) cost maps. Non-binary cost maps represent cells that could be potentially traversed,
albeit with a certain probability of collission or difficulty, so our approach is to convolve the robot’s
binary footprint, for each discrete orientation value, with each one of the map’s cells. In contrast,
binary cost maps represent cells that are either occupied or free, so we propose using a morphology
dilation operation for these.

4.1. Obtaining the Cost through Convolution

Therefore, for the the non-binary situation, we perform a regular matrix convolution, in which
overlapping elements are multiplied and the results are summed up. This means that the cost of being
at a certain position (x, y, θ) can be obtained as the sum of cost of the cells overlapping the robot’s
footprint A:

C(x, y, θ) = ∑
x− a

2<i<x+ a
2

y− b
2<j<y+ b

2

W(i, j)A(x,y,θ)(i, j). (2)

For the moment, any problems that might arise concerning the range of the indexes in the borders
have been ignored. However, when obtaining the costs as in Equation (2), indexes i and j that are
beyond the borders (i < 0, i > m, j < 0 and j > n) should not be considered. From a theoretical point
of view, we can assume that W and F are padded with zeros in all directions.

For a fixed orientation θ, the footprint matrix for a position A(x,y,θ) can be obtained as a translation
of the footprint matrix for another position A(0,0,θ) and Equation (2) can be reformulated as:

C(x, y, θ) = ∑
i,j

W(i, j)A(0,0,θ)(i + x, j + y). (3)

The convolution of two arrays (E ∗ B) can be obtained with the equation:

(E ∗ B)(x, y) = ∑
i,j

E(i, j)B(x− i, y− j). (4)

If we compare the terms in Equation (3) with this equation, we can realize that, for a fixed θ,
we can obtain the cost as:

C(x, y, θ) = W ∗ A′, (5)

where, as proposed in [17], A′ is defined as (There is a shift in the position for which the cost is obtained
of (a

2 , b
2) because element F(0, 0) is not the center of the robot):

A′θ(i, j) = A(0,0,θ)(−i,−j).

After the convolution, a normalization step is performed, in order to obtain costs that are consistent
all over the map, regardless of the robot’s footprint size. Furthermore, when the robot’s footprint
overlaps a non traversable cell, the cell cost is set to MAXCOST, instead of the actual convolution
result. This prevents a small robot with a pose overlapping an obstacle to have a lower cost than a
larger robot with a pose that takes it over rough but traversable terrain.

4.2. Obtaining the Cost through Using a FFT

The convolution theorem states that under suitable conditions the Fourier transform of a
convolution is the point-wise product of the corresponding Fourier transforms. Therefore, in our case,
we can obtain the cost as:

C(x, y, θ) = W ∗ A′ = F−1{F{W} � F{A′}}, (6)

Sensors 2017, 17, 1876 7 of 19

where F{W} denotes the Fourier transform of W and E� B denotes the point-wise product of both
matrices. An obvious advantage of this solution is that the use of the FFT allows us to reduce
computation time. However, in order to apply the FFT to Equation (5), both matrices A′ and W must
have the same dimension because both “functions” are assumed to be periodic with the same period as
if the matrix were to repeat periodically. A possible solution is to pad the A′ matrix with zeros. We use
the C library FFTW [18] to implement the FFT.

4.3. Obtaining the Cost through a Morphology Dilation Operation

When dealing with binary occupancy maps, where just traversable/occupied values are recorded,
a morphology dilation operation [19] can be used to obtain the binary convolution map using the
robot’s footprint as the kernel.

The morphology dilation operation uses the robot’s footprint as the kernel of the operation,
but mirroring it both horizontally and vertically. This technique produces the same result as a regular
convolution while taking much less computation time, especially when dealing with clear maps that
have few obstacles, mainly because the computational effort is only required for obstacle cells and not
for those that represent free space.

The workspaceW is represented as the set of cells occupied by obstacles:

W = {(i, j)/W(i, j) = 1}.

To simplify the notation, we’ll use a single variable for a coordinate pair, w = (i, j). The robot’s
footprint A in this case is going to be centered at the origin (0, 0) and mirrored horizontally and
vertically. Then, it is also represented by a set of points:

A = {(i, j)/A(i, j) = 1}.

The morphology dilation operation is going to obtain a new set:

C =W ⊕A = {(q + a)∀q ∈ W , a ∈ A}.

The result will represent the occupied cells after the convolution of the map and the robot.

4.4. Complexity Analysis

The convolution of the robot’s footprint and the map for each orientation is carried out offline,
as it does not need to be a real-time operation. However, as will be discussed later, for dynamic
graph planners, a local convolution must be calculated every time the cost of relevant map cells is
updated. For example, when a new obstacle is detected, the cost of the cells where the obstacle is
located should be increased and the planner should plan a new path to avoid a collision with the
obstacle. Therefore, it is important to analyze the complexity of the different methods to obtain the
cost of the actions in order to determine which of these methods is faster in each particular case. The
first point that should be noticed is that the morphology dilation operation, as described here, can only
be applied to binary maps.

The morphology dilation operation method is found to be the fastest method in environments
with very few obstacles. However, as the map gets cluttered with more obstacles, the complexity of
the dilation operation method gets closer to that of the convolution method.

The complexity of Fast Fourier Transform (FFT) is on the order of O(NlogN) operations [20],
where N is the size of the data. The two-dimensional FFT requires taking the FFTs in each row and
then in each column. Therefore, the complexity of a matrix M × N is O(NMlogM + MNlogN) =

O(MN(LogM + logN)). Considering a square environment, the complexity is O(N2logN) operations.
When directly applying the convolution, the complexity is O(N4). It looks like the FFT saves quite

Sensors 2017, 17, 1876 8 of 19

some time. However, to be able to compare the complexity of both methods, we need to take into
account the following issues:

• For the FFT method, it is necessary to calculate the workspace’s FFT (F{W}), the robot footprint’s
FFT (F{A}), the point-wise product of both matrices and the inverse FFT of the result. The C
library FFTW [18] has been used to implement the FFT transforms.

• For the FFT method, the robot’s footprint matrix A has been padded with zeros to match the
dimension of the workspace (W) increasing the complexity of the FFT. That means that as the
difference in size between W and A increases, the the FFT method is going to be less advantageous.

• When obtaining the cost map for each robot orientation (θ), it is only necessary to calculate the
workspace’s FFT once (F{W}).

Figure 3 shows the execution times of the FFT method for different sizes of W and A, while
Figure 4 shows the execution times of the direct convolution method for the same configurations.
As can be appreciated by comparing the two figures, the FFT method reduces the calculation time for
all the cases. For a particular robot size A and varying workspace sizes W, Figure 5 shows that the FFT
is always faster and that the difference just gets bigger as the size of the workspace increases. This is
because the complexity of the FFT is O(NlogN) while the convolution is O(N4), as we have seen
before. Here, we do not present the execution times for the morphology dilation operation method
because it mainly depends on the size of the robot’s footprint and the size of the obstacles. For very
clear environments, it will be even faster that the FFT, while, for very cluttered environments, it will
get closer to the pure convolution method.

Figure 3. FFT method execution times for different robot and workspace sizes. The robot and workspace
are square and the size is the number of cells on each side.

Figure 4. Convolution method execution times for different robot and workspace sizes. The robot and
workspace are square and the size is the number of cells on each side.

Sensors 2017, 17, 1876 9 of 19

Figure 5. Comparison of the convolution and FFT execution times for a robot of 16 × 16 cells and
varying workspace sizes.

5. Graph Search

Once the 3D map has been generated offline, the problem is reduced to a graph search on a
three-dimensional space. Any graph search algorithm can be used in order to find a dimensionally
feasible path, such as A* [21], ARA* [22] or ADA* [23].

We conducted our tests using the ARA* (Anytime Repairing A*) algorithm. This is an anytime
heuristic search algorithm based on A*, which introduces a heuristic inflation technique (by a
factor ε > 1). Anytime planning algorithms find an initial, usually suboptimal, solution, which is then
progressively improved until the optimal path is found or the allocated time expires. The advantage of
ARA* is that it iteratively performs calculations with progressively lower ε, while reusing the previous
search results in order to reduce the calculation time. In addition, this algorithm provides a bound on
the sub-optimality of the solution, which is the ε factor itself.

When using replanning graph search algorithms, such as Anytime Dynamic A* (ADA*),
a real-time convolution will be required for any newly found obstacles. This will also happen when
using the technique based on the two inflated maps (inscribed and circunscribed). To update this 3D
map, we will have to recalculate the cost of the cells corresponding to any orientation and located
within a

√
a2 + b2 distance of the ones that have changed, a and b being the length and the width of

the convex hull of the robot’s footprint, respectively. For binary maps, this operation can be performed
very fast by using the morphology dilation technique. For regular cost maps, the FFT approach will
allow the update to be performed in a reasonable amount of time (usually less than 100 ms). We have
already provided a study on the execution times for different robot and map sizes in Section 4.4.

In order to guarantee the kinodynamic feasibility of the computed path, a precomputed set of
motions is used, along with a lattice-based planner [5]. By means of this lattice, the motion planning
problem is resolved as a graph search and the precomputed motions guarantee that the path is
traversable. In this case, as the space is discretized on a 3D map, the lattice is also calculated in three
dimensions, with the third dimension representing the orientation of the robot. Thus, a turn in place
operation is represented as a vertical connection between equal x and y coordinate cells, with the
start of the connection at the original vehicle orientation and the end at the final one. To achieve
kinodynamic feasibility, these precomputed motions need to accomplish the following:

• The curvature on every point of the motion has to conform with the robot’s minimum
turning radius.

• There must not be discontinuities regarding the position (jumps), orientation (sharp turns) or
curvature (steering wheel jumps).

In order to accomplish these restrictions, Euler spirals are used for these motion primitives.
These curves of continuous curvature are calculated offline [24] using the techniques described in [5]

Sensors 2017, 17, 1876 10 of 19

for achieving a reduced set. These motion primitives are then discretized, both in position and
orientation, obtaining the list of 3D cells traversed by each motion, thus speeding up the online graph
search. An example of these motion primitives set can be seen in Figure 6.

Figure 6. Motion set of Euler spiral primitives.

It should be noted that these precomputed discretizations will produce slightly different values
than the ones calculated in real time. In the real-time approximation, a record of discretized occupied
cells is precomputed for each exact pose value. In the proposed approach, the pose value is first
discretized, and then checked against a precomputed map. Especially for large and slender robot
footprints, this previous orientation discretization leads to a greater position error on the perimeter
cells of the robot. This inconvenience for slender robots can be solved by incrementing the number of
discretized orientations. In the proposed approach, experimental tests were conducted on a vehicle
with a length of 12 m, for which 32 different discretized angles were needed in order to allow the robot
to make turns at a distance of less than 0.2 m from large walls. We have found that similar results can
be obtained with just 16 discretized angle values using the real-time approach.

In order to accomplish the aforementioned kinodynamic restrictions while performing the graph
search, the motion primitive starting at each traversed cell must have an initial curvature that is similar
to the final curvature of the previous motion primitive ending at that same cell. Note that it is not
necessary to check that the orientations are equal at calculation time, since this is already represented
by the actual 3D cell itself.

Although it could also be possible to require a continuity in speed when calculating the path, for
low speed applications the effects of inertia may be neglected at the global planning level, delegating
the task of managing these small errors to the robot’s local planner during navigation.

6. Comparative Analysis

In Section 4.4, we have analyzed the complexity of the different methods proposed for the
convolution of the geometric footprint of the robot with the map. There is a great interest in reducing
this complexity because the most time-consuming part of global planning is computing the cost of
each action a. Some approaches such as [7] implement some efficient convolution steps offline in order
to reduce the convolution time needed to obtain the cost of action a. In that approach, for each action
a, they precompute the cells covered by the vehicle when executing action a. Every time they need
to evaluate action a, all of those cells are iterated to obtain the action’s cost. Figure 7 left shows the
number of cells covered by the robot while executing the short action of moving 1 m straight ahead.
In our approach, we precompute the convolution and store the value in the robot’s center cell. In the
example of Figure 7, we show that in our approach we only have to iterate on the black cells, compared
to former approaches where all the green and black cells had to be iterated. When the robot is moving
straight ahead X cells (left part of Figure 7), the number of cells covered is X× D + FP (black, dark

Sensors 2017, 17, 1876 11 of 19

green and clear green), where FP = D× L are the robot’s footprint cells. On the other side, the cells
needed to iterate if we store the convolution are X (black cells). When the precomputed convolution
cost map is used, the number of cells involved in the iteration required for executing action a is reduced
by a factor of D = robotwidth/cellwidth, compared to the approach that precomputes the cells covered
by the vehicle. When the robot is moving and rotating at the same time, it tends to cover more cells
(right part of Figure 7), because it is longer than wider and when it turns, the rotation center is in the
middle of the rear wheels.

For a typical vehicle size of 5.5 m × 2.5 m and a resolution of 0.25 m, a short move straight ahead
of 2 m requires the iteration and collision checking of roughly 310 cells ((5.5/0.25) × (2.5/0.25) +
(2/0.25)× (2.5/0.25)). However, if the orientation is discretized and the convolutions are precomputed
offline as we propose here, it will only be necessary to iterate over about nine cells. In the next section,
we will discuss the results of both algorithms for two different scenarios.

Figure 7. Cells covered by the robot while moving. On the figure on the left, the robot moves straight
ahead. On the figure on the right, the robot turns to the right.

7. Experimental Results

First, some simulated experimental results will be shown to compare the results and computation
time of this approach with respect to other approaches found in the literature. Then, we will introduce
some applications where the proposed algorithms have been implemented and tested.

7.1. Simulation Results

We used the Search Based Planning Library (SBPL) (http://www.sbpl.net/, version 1.3.0, Carnegie
Mellon University - Robotics Institute, Pittsburg, PA, USA) for performing comparative tests, as this
library implements the techniques described in [7]. In SBPL, the discrete representations of a planning
problem are implemented by “Environments”. We compared the results of the presented algorithm
against one called “EnvironmentXYTHETALAT”, which implements the technique described in [7].
All of the tests were conducted with the same set of motion primitives and the same computer,
equipped with an Intel® CoreTM i7-4770 CPU processor, running at 3.40 GHz.

In this section, we use the term “Reference” when referring to the original method and “Proposed”
when referring to the proposed one, where the orientation is encoded by the third dimension.

Two different tests were performed: first, in a small clear occupancy map, called “cubicle” and,
second, in the large cluttered occupancy map of the Willow Garage Company (Palo Alto, CA, USA)
facilities, called “willow”. Both maps are included with SBPL and 3D occupancy maps are generated
for the tests, following the technique described in this paper. Both tests were performed using the
implementation of the ARA* graph search algorithm included with the library, using eleven different
values of epsilon (3.0, 2.8, 2.6, 2.4, 2.2, 2.0, 1.8, 1.6, 1.4, 1.2, 1.0).

http://www.sbpl.net/

Sensors 2017, 17, 1876 12 of 19

Moreover, while the cubicle test is conducted for a robot with a small rectangular footprint of
0.3 × 1.0 m, the willow test is conducted for a robot with a large rectangular footprint of 0.5 × 2.0 m.
This leads to two very different environments: an easy one, where the robot can occupy most of
the positions on practically any possible orientation, and most of the paths pass by cells outside the
circumscribed zone; and a hard one, where the robot can traverse most zones only for a reduced set
of orientations, and where most of the collision checks need to be performed during planning time,
since the robot will be inside the circumscribed radius zone.

The cubicle test (Table 1) is conducted in a small environment of 10.9× 11.825 m, with a resolution
of 0.025 m per cell. We obtain the paths between the start and end points shown in Figures 8 and 9,
for a robot with a small rectangular footprint of 0.3 × 1.0 m. Both on the starting and ending positions,
the robot is facing to the right. Since this map is very clear, the proposed method presents little
advantage with respect to the one used as a reference (a time reduction of just 12.99%), as most of
the path travels through clear zones, where obstacles are farther than the circumscribed radius. As it
can be seen, the reduction in the average computation time per node is just 8.3%. A small path cost
increase of 0.46% is due to the discretization errors that were previously described. These errors are
also the cause for the 5.10% reduction in the number of visited nodes.

The willow test (Table 2) is conducted in a large environment of 48.675 × 55.275 m, with a
resolution of 0.025 m per cell. We obtain the paths between the start and end points shown in
Figures 10 and 11, for a robot with a large rectangular footprint of 0.5 × 2.0 m. Both at the starting and
ending positions, the robot is facing to the right. The environment is heavily cluttered compared with
the robot’s size, so the proposed method presents great advantages with respect to the one used as a
reference (a time reduction of 56.60%), as most of the paths must pass through cells where obstacles
are inside the circumscribed radius. Now, the reduction in the average computation time per node is
28.0% Again, the path cost increase of 4.02% is due to the discretization errors, and these errors are
also the cause of the 39.71% reduction in the number of visited nodes.

Table 1. Cubicle results.

Test No. of Expanded Cells Planning Time (s) Avg. µs Per Cell Solution Cost

Reference method 3,113,307 12.108 3.889 36,110
Proposed method 2,954,517 10.535 3.566 37,563

Figure 8. Reference method—Cubicle test.

Sensors 2017, 17, 1876 13 of 19

Figure 9. Proposed method—Cubicle test.

Table 2. Willow results.

Test No. of Expanded Cells Planning Time (s) Avg. µs Per Cell Solution Cost

Reference method 19,659,296 114.422 5.82 93,112
Proposed method 11,853,039 49.664 4.19 96,792

Figure 10. Reference method—Willow test.

Sensors 2017, 17, 1876 14 of 19

Figure 11. Proposed method—Willow test.

The cost for each path is calculated as the sum of the costs of all the motions conforming that
path. The cost of each single motion is estimated as the time required to traverse it, considering for
the conducted tests that the robot is capable of traveling at one meter per second, and these costs are
weighted according to the following criteria:

• If the motion is completely straight, the cost is not altered.
• If the motion performs a curve, the cost is doubled.
• If the motion is traveling backwards, the cost is multiplied by five.

This approximation minimizes both the distance travelled backwards and the number of turns
performed. This generates smoother paths that are easier to follow for a vehicle with slow and complex
dynamics. This also reduces the effort and wear applied to the vehicle actuators (steering wheel,
brake and accelerator).

The color code on the figures shown is the following:

• Blue: unknown cells.
• Black: untraversable (obstacle) cells.
• Green: cells invading the circunscribed radius of the robot (possibly in collision).
• Dark red: cells invading the inscribed radius of the robot (definitely in collision).
• Yellow rectangle: starting pose of the robot
• Green rectangle: ending pose of the robot.
• Red: calculated path.

7.2. Applications

Real world experimental results were obtained with a robotized Kalmar Tugmaster truck
(Figures 12 and 13), in the framework of the Autoport project [25]. Here, the robotized vehicle
was autonomouslly driven on a Ro-Ro ship hold, whose map is shown in Figure 14, as well as on a
9.5 m × 39.1 m narrow environment at a warehouse, which was also cluttered with several hydraulic
jacks and other furniture. The truck had a width of 2.5 m and a length of 12.3 m.

Sensors 2017, 17, 1876 15 of 19

Figure 12. Robotized Tugmaster truck. Note the laser scanner for localization purposes on the top part
of the cabin.

Figure 13. Robotized Tugmaster truck. Note the laser scanner for obstacles detection under the truck.

Figure 14. Ro-Ro ship hold map.

Occupancy grid maps were constructed with a resolution of 2.5 cm using an implementation
of Hähnel et al.’s map-builder algorithm [26]. This implementation builds a metric map from data
recorded by a Sick NAV-350 laser-ranger. For that, it takes into account the distance and also the

Sensors 2017, 17, 1876 16 of 19

reflectivity provided by the laser readings. The map is stored as an occupancy grid and used by the
path planning algorithm proposed here. Angular positions were discretized to 32 different values,
thus obtaining an angular resolution of 11.25 degrees. Calculation times in this environment were as
low as 0.6 s with ε = 1.0 for the narrow warehouse.

The localization system integrates the laser-range and odometry readings using a variation of the
Monte Carlo Localization [27] algorithm. Even though the Sick NAV-350 can determine the vehicle
position with a high level of precision using three visible reflectors, we are using it in mixed-mode
navigation mode that provides both spatial contour data and reflector data. We have chosen this mode
because we cannot add new elements such as reflectors to the vessel.

We compared the proposed method with the one presented in [7] and implemented in SBPL, in the
aforementioned ship hold. We used the same test conditions as in the previously exposed simulations
but limited the path planning time to 180 s. The results are shown in Table 3. The reference method
was not able to finish the search within the allocated time, thus obtaining a suboptimal path with an
epsilon value of 1.2. The proposed method obtained the optimal solution (ε = 1.0) in just 26.28 s. Both
paths are shown in Figures 15 and 16.

Table 3. Autoport project results.

Test No. of Expanded Cells Planning Time (s) Avg. µs Per Cell Solution Cost

Reference method 1,811,289 180.027 99.392 92.602
Proposed method 2,026,728 26.280 12.967 88.794

Figure 15. Reference method—Autoport test.

Figure 16. Proposed method—Autoport test.

The approach presented in this paper is now also being applied to navigate an autonomous
vehicle specially oriented for elders (SmartElderlyCar project). For this project, the algorithm is being
implemented in a simulator (Figure 17) because the car is still in the automation phase. This algorithm
is intended to navigate the car in open areas, such as parking lots, while a different approach will be
used to follow the lanes on roads.

Sensors 2017, 17, 1876 17 of 19

Figure 17. ElderlyCar project simulator (V-rep) in the testing environment of “Universidad de Alcalá”.

8. Conclusions

A new path planning technique for mobile robots was successfully developed and tested,
achieving up to a 56 percent decrease in planning time when compared with existing methods that are
already quite efficient and have been optimized by various authors.

The pre-computation time can be very high, but this is done offline and can be greatly reduced
using the techniques proposed here, such as the FFT method for cost maps in highly cluttered
environments or the morphology dilation operation for clear binary maps.

In any case, the convolution of the whole map is done a single time, just after the occupancy
grid generation. The resulting 3D map requires using more memory than previous approaches.
Specifically, it requires n times more memory, being n = 360/r, where r is the angular resolution used.
For the warehouse map used in the Autoport project, this led to a 1.13 MB map, when a regular 2D
occupancy grid map occupies 36.27 kB. For the tests performed on the willow SBPL map, the results
were 65.69 MB against 4.10 MB. While this is a considerable increase from a percentual point of view,
it is almost negligible considering today’s memory standards, and map sizes have no impact on the
search time.

Replanning graph search algorithms can also be used with this technique, by calculating the
convolution of newly found obstacles in real time. As these convolutions must be made for each
layer of the 3D map, the impact of replanning will be higher than with other techniques that we have
mentioned in this paper. In scenarios that require heavy replanning, this can offset the gains made
by the planning time reduction, but using the convolution algorithms proposed here will reduce the
computation time. In addition, in most situations, new obstacle discoveries are sporadic events.

Acknowledgments: This work has been partially supported by EU FEDER fundings, through the Spanish
“Ministerio de Economía y Competitividad” FEDER-INNTERCONECTA program (CDTI), under Project
“AUTOPORT: Carga automatizada en terminales portuarias RoRo” (ITC-20133102) and also by the same ministry
(MINECO/FEDER) under Project SmartElderlyCar (TRA2015-70501-C2-2-R). We would like to thank all the
people that have influenced this work. In particular, all the people that contributed to the different applications
and robots where this system was used.

Author Contributions: All authors participated in the design of the algorithms; Ricardo Samaniego and
Joaquín López designed and performed the simulation experiments; all authors participated in designing the
changes to be made in the algorithms; Ricardo Samaniego and Fernando Vázquez implemented the algorithms
as part of the AUTOPORT project and analyzed the final results; and all authors contributed equally to writing
the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2017, 17, 1876 18 of 19

Abbreviations

The following abbreviations are used in this manuscript:

RRT Rapidly-exploring Random Tree
PRM Probabilistic roadmap
MAXCOST High value representing non traversable cells
FFT Fast Fourier Transform
ARA* Anytime Repairing A*
ADA* Anytime Dynamic A*
SBPL Search Based Planning Library
Ro-Ro Roll-on and Roll-off
FEDER Fondo Europeo Para el Desarrollo Regional (spanish for European Regional Development Funds)
MINECO Ministerio de Economía y Competitividad (spanish ministry)

References

1. Mac, T.T.; Copot, C.; Tran, D.T.; De Keyser, R. Heuristic approaches in robot path planning: A survey.
Robot. Auton. Syst. 2016, 86, 13–28.

2. Khatib, O. Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 1986,
5, 90–98.

3. Simmons, R. The curvature-velocity method for local obstacle avoidance. In Proceedings of the 1996
IEEE International Conference on Robotics and Automation, Minneapolis, MN, USA, 22–28 April 1996;
Volume 4, pp. 3375–3382.

4. MacAllister, B.; Butzke, J.; Kushleyev, A.; Pandey, H.; Likhachev, M. Path planning for non-circular micro
aerial vehicles in constrained environments. In Proceedings of the 2013 IEEE International Conference on
Robotics and Automation (ICRA), Karlsruhe, Germany, 6–10 May 2013; pp. 3933–3940.

5. Pivtoraiko, M.; Kelly, A. Generating near minimal spanning control sets for constrained motion planning in
discrete state spaces. In Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 2005), Edmonton, AB, Canada, 2–6 August 2005; pp. 3231–3237.

6. Lozano-Pérez, T.; Wesley, M.A. An algorithm for planning collision-free paths among polyhedral obstacles.
Commun. ACM 1979, 22, 560–570.

7. Likhachev, M.; Ferguson, D. Planning long dynamically feasible maneuvers for autonomous vehicles.
Int. J. Robot. Res. 2009, 28, 933–945.

8. Lau, B.; Sprunk, C.; Burgard, W. Efficient grid-based spatial representations for robot navigation in
dynamic environments. Robot. Auton. Syst. 2013, 61, 1116–1130.

9. King, J.; Likhachev, M. Efficient cost computation in cost map planning for non-circular robots.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems IROS, St. Louis,
MO, USA, 10–15 October 2009; pp. 3924–3930.

10. Lindemann, S.R.; LaValle, S.M. Current issues in sampling-based motion planning. Robot. Res. 2005,
15, 36–54.

11. Sánchez López, A.; Zapata, R.; Osorio Lama, M.A. Sampling-based motion planning: A survey.
Comput. Y Sist. 2008, 12, 5–24.

12. LaValle, S.M. Rapidly-Exploring Random Trees: A New Tool for Path Planning. Avialable online:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.35.1853&rep=rep1&type=pdf (accessed on
14 August 2017).

13. Kavraki, L.E.; Svestka, P.; Latombe, J.C.; Overmars, M.H. Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 1996, 12, 566–580.

14. Karaman, S.; Frazzoli, E. Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res.
2011, 30, 846–894.

15. Şucan, I.A.; Kavraki, L.E. A sampling-based tree planner for systems with complex dynamics.
IEEE Trans. Robot. 2012, 28, 116–131.

16. Salzman, O.; Halperin, D. Asymptotically near-optimal RRT for fast, high-quality motion planning.
IEEE Trans. Robot. 2016, 32, 473–483.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.35.1853&rep=rep1&type=pdf

Sensors 2017, 17, 1876 19 of 19

17. Lydia, K.E. Computation of Configuration-Space Obstacles Using the Fast Fourier Transform. IEEE Trans.
Robot. Autom. 1995, 11, 408–4013.

18. Frigo, M.; Johnson, S.G. The design and implementation of FFTW3. Proc. IEEE 2005, 93, 216–231.
19. Haralick, R.M.; Sternberg, S.R.; Zhuang, X. Image analysis using mathematical morphology. IEEE Trans.

Pattern Anal. Mach. Intell. 1987, 1, 532–550.
20. Cooley, J.W.; Lewis, P.A.; Welch, P.D. Historical notes on the fast Fourier transform. Proc. IEEE 1967,

55, 1675–1677.
21. Hart, P.E.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths.

IEEE Trans. Syst. Sci. Cybern. 1968, 4, 100–107.
22. Likhachev, M.; Gordon, G.J.; Thrun, S. ARA*: Anytime A* with provable bounds on sub-optimality.

In Proceedings of the Neural Information Processing Systems (NIPS), Vancouver and Whistler, BC, Canada,
8–13 December 2003.

23. Likhachev, M.; Ferguson, D.I.; Gordon, G.J.; Stentz, A.; Thrun, S. Anytime Dynamic A*: An Anytime,
Replanning Algorithm. In Proceedings of the International Conference on Automated Planning Scheduling
(ICAPS), Monterey, CA, USA, 5–10 June 2005; pp. 262–271.

24. Bertolazzi, E.; Frego, M. Fast and accurate clothoid fitting. arXiv 2012, arXiv:1209.0910.
25. Murgoitio, J.; Vázquez, F.; Samaniego, R.; Paz, E.; Sachocos, M.; Arejita, B.; Urquiza, A.; Veiga, E. Spanish

initiative for fully automated stowage on roll-on/roll-off operations. Transp. Res. Procedia 2016, 14, 173–182.
26. Hahnel, D.; Triebel, R.; Burgard, W.; Thrun, S. Map building with mobile robots in dynamic environments.

In Proceedings of the IEEE International Conference on Robotics and Automation ICRA’03, Taipei, Taiwan,
14–19 September 2003; Volume 2, pp. 1557–1563.

27. Thrun, S.; Fox, D.; Burgard, W.; Dellaert, F. Robust Monte Carlo localization for mobile robots. Artif. Intell.
2001, 128, 99–141.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Algorithm Basics
	Obtaining the Cost for Each Action
	Obtaining the Cost through Convolution
	Obtaining the Cost through Using a FFT
	Obtaining the Cost through a Morphology Dilation Operation
	Complexity Analysis

	Graph Search
	Comparative Analysis
	Experimental Results
	Simulation Results
	Applications

	Conclusions

