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Abstract: As a spatial selective attention-based brain-computer interface (BCI) paradigm,
steady-state visual evoked potential (SSVEP) BCI has the advantages of high information transfer
rate, high tolerance to artifacts, and robust performance across users. However, its benefits come at
the cost of mental load and fatigue occurring in the concentration on the visual stimuli. Noise, as a
ubiquitous random perturbation with the power of randomness, may be exploited by the human
visual system to enhance higher-level brain functions. In this study, a novel steady-state motion
visual evoked potential (SSMVEP, ie., one kind of SSVEP)-based BCI paradigm with
spatiotemporal visual noise was used to investigate the influence of noise on the compensation of
mental load and fatigue deterioration during prolonged attention tasks. Changes in a, 6, 0 + a
powers, O/a ratio, and electroencephalography (EEG) properties of amplitude, signal-to-noise ratio
(SNR), and online accuracy, were used to evaluate mental load and fatigue. We showed that
presenting a moderate visual noise to participants could reliably alleviate the mental load and
fatigue during online operation of visual BCI that places demands on the attentional processes.
This demonstrated that noise could provide a superior solution to the implementation of visual
attention controlling-based BCI applications.

Keywords: brain-computer interface; steady-state visual evoked potential (SSVEP); steady-state
motion visual evoked potential (SSMVEP); visual noise; mental load; fatigue

1. Introduction

Brain-computer interfaces (BCls) traditionally harness intentionally-generated brain signals to
control devices that can, in turn, be potentially helpful for disabled individuals by replacing the
usual channels of communication and control [1]. A variety of methods for monitoring brain
activities might serve as a BCIL. In addition to electroencephalography (EEG), these include
magnetoencephalography (MEG) [2], functional magnetic resonance imaging (fMRI) [3], functional
near-infrared spectroscopy (fNIRS) [4-6], and more invasive electrophysiological methods. Among
them, EEG and related methods have high time resolution, lower environmental limits, require
relatively inexpensive equipment [7], and have been largely used in practical BCI applications.
Generally, two types of EEG patterns of the P300 component of the event-related potential (ERP)
[8,9] and steady-state visual evoked potential (SSVEP) are more practically used to develop visual
BCI systems because they support large numbers of output commands, and need little training time

Sensors 2017, 17, 1873; d0i:10.3390/s17081873 www.mdpi.com/journal/sensors



Sensors 2017, 17, 1873 20f17

[10]. The P300-based BCI has relatively robust performance for target detection. Although its
information transfer rate (ITR) is at a medium level, unlike an SSVEP-based BCI, it does not cause
some participants to feel annoyed or fatigued by the flickering stimuli [11]. On the other hand, due
to the advantages of high-level ITR, high tolerance to artifacts, and robust performance across users,
the SSVEP-based paradigm has been widely used in BCI applications. As a visual spatial selective
attention-based BCI paradigm, SSVEP BCI requires users to concentrate on the visual stimulus to
generate sufficiently strong responses. However, due to high brightness, overstimulation, and
repetitive attentional demands, SSVEP BCI may easily result in a high mental load and users may
become fatigued. In the present context, mental load can be defined as a measure of the amount of
mental resources engaged in a task. The mental load level is considered as an index of task difficulty
[12]. In addition, the visual or mental fatigue, which is partially induced by cognitive load [13,14], is
associated with tiredness or exhaustion and results in a decrease in cortical arousal and BCI
performance [15]. When people experience high mental load and become fatigued in SSVEP-BCI
tasks, they might be easily disturbed by distracting stimulations, which distract their attention from
targets due to the competition for attentional resources [16]. Therefore, mental load and visual
fatigue should be considered when designing spatial selective attention-based SSVEP BCls.

To assess mental load and fatigue, EEGs in a band (~8-13 Hz) and 0 band (~4-7 Hz) can be used
to distinguish different levels of mental states. The occurrence of 0 activity is associated with
drowsiness, attention, and processing of cognitive and perceptual information. The o waves appear
during relaxed conditions, at decreased attention levels, and in a drowsy, but wakeful, state. An
overall decrease in @ power has been linked to increased alertness and task load, in general [17-19].
Global increases in attentional demands and corresponding mental load are most associated with a
decrease in @ power and an increase in 0 activity [20,21]. Furthermore, changes in a and 0 powers
seem to be the most robust objective indicators of not only mental load but also fatigue. Under
decreased attention and arousal levels, there are progressive increases in a and 6 activities in resting
spontaneous EEGs [22-24], this probably reflecting a decrease in cortical activation and task
performance [25,26]. Therefore, @ and 0 activities can be adopted to evaluate the degree of mental
load and fatigue in the context of BCI applications.

Noise is a ubiquitous random perturbation commonly found in neural systems of humans and
other mammals [27]. Noise is typically considered as detrimental to cognitive performance.
However, recent studies were able to demonstrate that, somewhat counter-intuitively, irrelevant
noise exposure can be beneficial for performance in cognitive tasks [28]. This phenomenon is labeled
as stochastic resonance (SR), or stochastic facilitation, in a broader sense [29,30], which was
introduced in the early 1980s by Benzi [31], describes the phenomenon whereby random fluctuations
or noise can enhance the detectability and/or synchronization of a weak signal in certain non-linear
dynamic systems, i.e., noise paradoxically does not worsen, but improves, system capability, and
can be used to account for noise-induced improvement in cognitive performance [32]. The
“beneficial” effects of noise in both experimental studies and theoretical investigations of neural
systems have shown particular circumstances in which synchronization of neuronal firing was
enhanced by the presence of random fluctuations [33,34]. A moderate level of noise is beneficial for
achieving perception, cognition, or action tasks [35]. This is due to nerve cells in sensory organs
being described as a thresholding system, so the neuronal membrane voltage which is not large
enough to cross the intrinsic threshold non-linearity alone would be properly assisted with noise at a
moderate intensity to accomplish threshold-crossings. Therefore, the appearance of SR can be
roughly explained by that addition of noise that effectively turns neurons from sub- to
supra-threshold. However, too little noise does not add the power required to bring the signal over
the threshold, whereas too much noise overpowers the signal, leading to deterioration in attention
and performance [27,36].

Given that noise has been shown to facilitate sensory processing in visual BCI applications [37],
its influence on neural processing would rather permeate every level of the nervous system and
should, likewise, be relevant to the implementation of higher cognitive functions, such as arousal
and attention [38]. In this work, we proposed the use of a novel steady-state motion visual evoked
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potential (SSMVEP, ie. one kind of SSVEP)-based online BCI paradigm associated with
spatiotemporal visual noise to investigate the influence of stochastic facilitation on the capacity of
mental load and fatigue experienced during prolonged attention tasks. To benchmark the effect of
mental load and fatigue occurring in non-noise and noise-tagged stimulation procedures, we
evaluated changes in SSMVEP amplitudes and signal-to-noise ratios (SNRs), spectral indices in the a
and 6 bands, as well as online accuracy and correct response time, which characterize BCI accuracy
and efficiency.

2. Materials and Methods

2.1. Participants and Recordings

Twelve graduate students (seven males and five females) from Xi’an Jiaotong University
(Shaanxi, China), aged between 23 and 29 years old, participated in this study. All participants had
normal or corrected-to-normal vision and had experienced SSVEP BCls before. However, they were
new as to the visual noise-masked SSMVEP-based BCI paradigm. They had no history of psychiatric
or neurological disorders and no visual perception disturbances or impairments were reported.
Before starting the experiment, all participants gave their informed written consent in compliance
with the guidelines approved by the institutional review board of Xi’an Jiaotong University.

EEG signals were recorded from the occipital head (Oz) using a g.USBamp system (g.tec
Medical Engineering GmbH, Schiedlberg, Austria) at a sampling rate of 1200 Hz in order to ensure
that trials encompassed single cycles of three stimulation frequencies exactly. This allowed each
stimulation frequency to be fully contained within an individual FFT “bin”, thus alleviating spectral
leakage [39,40]. EEG signals were referenced to a unilateral earlobe and grounded at the forehead
(Fpz). An online band-pass filter from 2 to 100 Hz and a notch filter between 48-52 Hz were applied
to remove artifacts and power line interference.

2.2. Stimulation Designs

Motion-reversal visual stimulations were introduced into the spatial selective attention-based
steady-state BCI paradigm. Here the “‘steady-state” brain responses were evoked by mirror
movements which oscillated in two opposite directions. For the presentation of such oscillating
motion, each of the two motion directions would be presented at half cycle time and then be
replaced by the other direction motion, comprising one stimulus period. The direction change rate
served as the stimulation frequency. Its first subharmonic frequency equaled the sinusoid frequency
[41].

In this study, three motion-reversal targets were simultaneously presented to participants
through a gamma-corrected 22-inch Dell LCD monitor at a resolution of 1024 x 768 pixels. Each
participant was situated 70 cm from the screen with the center at eye level. Three targets were
uniformly arranged in an equilateral triangle. The eccentricity from the center of the monitor to that
of each target was in a visual angle of 7.2°. Each target was created using a motion ring object whose
width was kept constant as half the radius of the circular region (Michelson contrast of 98.8%)
throughout the motion reversal procedure. The circular area was 4.8° in diameter, in accordance
with previous studies showing that a stimulus size beyond 3.8° would saturate VEP responses [42].
The phase of the motion ring was temporally sinusoidally shifted so as to produce the motion
reversal procedure, which included the inward contraction and outward expansion motions
alternately. Here the contraction of the motion ring was implemented by its phase shift from 0 to 7,
and then expansion motion was achieved with phase shift from rt back to 0. The three targets moved
at unique, constant, and mutually-irrational stimulation frequencies. In accordance with the integer
division of the 60-Hz refresh rate, motion-reversal frequencies of 15 Hz, 12 Hz, and 8.57 Hz were
assigned to the lower right, lower left, and upper targets, respectively. With the same paradigm, but
adding a moderate visual noise, a noise-masked visual stimulation was applied as illustrated in
Figure 1. In the present study, the spatiotemporal noise referred to as dynamic changes of spatial
noise speckles. Each noise speckle subtended a square area of 5 min of visual angle and obeyed
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Gaussian intensity distributions with a mean gray level of 128 and a standard deviation of 40. The
spatiotemporal noise was masked to targets and was updated in 1/60 s. The stimulation design and
the motion reversal procedure were scheduled according to our earlier studies [37,43]. Presentation
of the stimulation was controlled by the Psychophysics Toolbox (http://psychtoolbox.org/) [44,45].

Non-noise paradigm Noise-tagged paradigm

00000000 oo o o O 00000000 oo o o O

T 1

Figure 1. Distribution of three noise masked targets on the computer screen with noise standard

deviations of 0 and 40. The cross indicating the center of the monitor was not presented on the screen.
The eccentricity from the center of the monitor to that of each target was in a visual angle of 7.2°.

2.3. Online BCI Tasks

The overall BCI system diagram was illustrated in Figure 2. The online BCI tasks were
categorized into non-noise and noise-tagged tasks. Participants were asked to attend to every 15 Hz,
12 Hz, and 8.57 Hz stimulation sequentially, which constitutes a stimulation sequence. For each
participant, each task contained 4-8 runs and each run consisted of five stimulation sequences with
15 trials. The experimental tasks alternated every two runs like “Non-noise run — Non-noise run —
Noise-tagged run — Noise-tagged run — Non-noise run — Non-noise run ...”, as illustrated in Figure 3.
The online BCI tasks were implemented in a semi-synchronous way wherein the duration of
stimulation varied from 2 to 10 s in steps of 0.5 s, with a fixed 5 s inter-trial interval (ITI). In every
trial, a one-second red cue displayed above a specific target and instructed participants to pay
attention to that target. The duration of stimulation increased until the target was identified twice as
being the same target in succession (either correct or not). Once the target was identified, a
one-second green cue appeared in the center of the screen to mark the result and this trial ended. If
brain responses failed to meet the detection criteria beyond 10 s for any of the three targets, this trial
would end with no cue. Resting spontaneous EEGs were collected at ITIs. Participants were not
allowed to blink eyes or move their bodies during each run and they were asked to fixate on the
center of screen during the ITI periods. Therefore, the horizontal or vertical electrooculogram (EOG)
signals were not recorded and trials contaminated by few artifacts were also not excluded.
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Figure 2. The overall BCI system diagram.
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Figure 3. The timing of the experimental sequence and behavioral task. For each participant, the

experimental tasks alternated every two runs like “Non-noise run — Non-noise run — Noise-tagged

run — Noise-tagged run — Non-noise run — Non-noise run ...”.

2.4. Online Target Identification

For each trial, a GT%ir test [46] was used to check the presence of SSMVEP on the statistics of
responses at each stimulation frequency. Three rectangular windows involving three cycles of each
stimulation frequency, i.e., 480 data points for 15 Hz stimulation, 600 data points for 12 Hz, and 840
data points for 8.57 Hz, were sequentially slid over each trial with one-cycle overlap, i.e., 160 data
points for 15 Hz, 200 data points for 12 Hz, and 280 data points for 8.57 Hz. The resulting data
segments were submitted to the fast Fourier transform (FFT), creating four-feature vectors with
complex Fourier components from each stimulation frequency and its sub-harmonic. The GT%ir test
provides a probability to determine whether feature vectors are consistent with random fluctuations
alone or if they infer the presence of periodic components beyond a given confidence level. In our
study, the confidence level was set at 0.99. The stimulation with the maximal confidence probability
exceeding the confidence level would be statistically identified as the attended target.

2.5. Statistical Analysis
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To investigate the mental load and fatigue effects in both non-noise and noise-tagged BCI tasks,
the changes of @ and 0 powers and the 6/a ratio were used in mental load evaluation, and «, 6, 0 + «
powers, SSMVEP properties of amplitude, SNR, and online accuracy were used to evaluate potential
fatigue effects. In this study, Fourier powers of a and 0 were quantified by calculating the band
power with Welch’s power spectral density estimation in bins of 0.4 Hz. To avoid the overlap of «
rhythms (~8-13 Hz) with 8.57 Hz stimulation, and to avoid the overlap of 6 rhythms (~4-7 Hz) with
the sub-harmonic of 8.57 Hz (i.e., the 4.28 Hz component), the @ and 0 powers were extracted
through the frequency band 9-13 Hz and 4.5-7 Hz, respectively. For the convenience of the analysis,
the 12 Hz stimulation was not included in the scope of this study due to the fact that this stimulation
frequency and its sub-harmonic were both involved in the dominant bands of a and 8 rhythms. The
SSMVEP amplitude spectra at stimulation frequencies of 15 Hz and 8.57 Hz, and their respective
sub-harmonics, were extracted by FFT. Similarly, the SNRs at stimulation frequencies of 15 Hz and
8.57 Hz and their respective sub-harmonics were computed as the ratio between the Fourier power
obtained at the target frequency f and the mean power value of its adjacent frequencies f+ 0.4 Hz
[47,48].

Repeated analysis of variance (ANOVA) procedure with Bonferroni correction was applied for
the statistical significance analysis of the indices. The Bonferroni correction was employed by means
of adjusting for all pairwise comparisons of dependent variables (e.g., noise mode, SSMVEP
strength, and EEG band index). ANOVA with polynomial curve fitting (i.e., least-squares
regression) statistics was conducted to evaluate the trend in the association between the
experimental order and indices. The objective of this trend analysis was to study the trend of the
index means across the experimental order and the separate contributions of linearity and
nonlinearity. The latter were evaluated by testing each linear and quadratic coefficient against the
null hypothesis that the best fitting straight line has a slope of 0 [49]. The level of significance for the
statistical tests was set at p <0.05.

3. Results

In the following, we first focused on the mental load. It was hypothesized that in BCI tasks, a
activity would decrease and 0 power increase along with the increase in mental load [50]. As a
consequence of the prolonged BCI usage, participants were then expected to experience mental
fatigue, which would be reflected by lower BCI performance, along with reduced SSMVEP
amplitude, SNR, and online accuracy.

3.1. Influence of Visual Noise on Mental Load

The mental load analysis was restricted to the grand average of @ and 6 powers and the 6/«
ratio changes for all participants. The SSMVEP findings concerning mental load were carried out in
within on-task EEGs and between non-task and on-task EEGs. To facilitate the subsequent
comparison of mental load between non-noise and noise-tagged BCI tasks, we first validated the
hypothesis stating that a lower mental load is associated with an increase in a power and a decrease
in O power in non-task resting spontaneous EEGs rather than in on-task EEGs during goal-directed
cognitive tasks [51].

Figure 4 shows the grand-averaged power spectra in @ and 6 bands and corresponding 6/«
ratio across twelve participants. The power spectra were measured from non-task and on-task EEGs
under both non-noise and noise-tagged stimulation procedures, for which each run consisted of 10
consecutive on-task trials at stimulation frequencies of 15 Hz and 8.57 Hz and 14 non-task inter-trial
intervals (ITIs) of 5 s, respectively. To test the above hypothesis in @ and 6 powers and
corresponding O/« ratio, a two-way repeated ANOVA including the factors of noise mode using
non-noise vs. noise-tagged conditions on non-task and on-task EEGs was conducted. We found a
main effect of non-task ITIs vs. on-task trials (p < 0.05 for all comparisons), but no interaction (p > 0.05
for all comparisons), implying that for a and 6 powers and corresponding 6/a ratios, respectively,
the relative magnitudes among non-task ITIs vs. on-task trials did not change with the noise mode.
Subsequent one-way ANOVA revealed a significant @ band synchronization in non-task ITIs rather
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than in on-task trials for both non-noise and noise-tagged BCI applications (p < 0.001 for all
comparisons). A reversed phenomenon was found significant in 6 power for both non-noise and
noise-tagged conditions (one-way ANOVA: p < 0.001 for all comparisons). The corresponding 0/a
ratio revealed significantly lower values during non-task ITIs than during on-task trials across all
participants under both non-noise and noise-tagged conditions (one-way ANOVA: p < 0.001 for all
comparisons). These implied that when performing BCls, the idle condition, during which
participants did not attend any stimulation, would result in apparent lower mental load than the
visual attention condition that includes a task.
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Figure 4. Comparison of mental load indices between non-task ITIs and on-task trials in both
non-noise and noise-tagged conditions across participants. The mean values and standard deviation
(SD) of a and 6 powers and the 6/a ratio were calculated across twelve participants. All statistics
were assessed by one-way ANOVA, *** p < 0.001 between non-task ITIs and on-task trials in both
non-noise and noise-tagged BCI applications.

Figure 5 shows the mental load indices of @ and 6 powers and O/a ratio that were calculated
from on-task EEGs in both non-noise and noise-tagged BCI tasks across twelve participants. Since
participants were asked to attend to every 15 Hz, 12 Hz, and 8.57 Hz stimulation sequentially, which
constitutes a stimulation sequence, and also because each run consisted of five stimulation
sequences and the experimental tasks alternated every two runs like “Non-noise run — Non-noise
run — Noise-tagged run — Noise-tagged run — Non-noise run — Non-noise run ...”, the @ and 0
powers and 0/« ratio were summed over the stimulation frequencies of 15 Hz and 8.57 Hz in the 10
consecutive stimulation sequences (i.e., belonging to two sequential runs) with the same order across
twelve participants. To evaluate the interaction effect between the noise mode and the stimulation
sequence, a two-way repeated ANOVA including the factors of noise mode using non-noise vs.
noise-tagged conditions on consecutive stimulation sequences 1-10 was conducted. We found a
significant interaction effect between the noise mode and the stimulation sequence in 0/« ratio (p =
0.010), implying that the tendency of 6/a ratio over 10 consecutive stimulation sequences changed
with the noise mode. Here, the overall rising tendency of the 6/« ratio in the non-noise task and
decreased tendency in the noise-tagged task could be noticed in sequence order 6-10 of Figure 5.

Specifically, for the second runs (i.e., sequence order 6-10; Figure 5) of the non-noise BCI task, a
trend representing the increase in mental load as the decrease in o power and the increase in 0
power, and in the 6/a ratio, seemed to be present among the successive sequences, but did not reach
statistical significance (F(4, 95) = 0.66, p = 0.618 for o power; F(4, 95) = 0.34, p = 0.848 for 0 power; F(4,
95) =1.47, p=0.217 for O/a ratio; one-way ANOVA with Bonferroni-corrected post-hoc tests). For the
second runs of the noise-tagged task, the reversed phenomena of an overall rise tendency of a power
could be noticed across successive sequences (ANOVA testing for linear trend: p < 0.001), whereas 0
power and O/« ratio decreased progressively with increasing sequence order (p = 0.025 for 6 power;
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p <0.001 for O/a ratio). The sequence differences in @ power and in 6/« ratio were also significant
(F4, 95) = 3.57, p = 0.009 for a power; F(4, 95) = 5.68, p < 0.001 for 0/a ratio; one-way ANOVA with
Bonferroni-corrected post-hoc tests), whereas the difference in 6 power was not significant (F(4, 95) =
1.47, p = 0.216). These demonstrated a facilitation of visual noise in alleviating the mental load, as
indicated by the increase in @ power and the decrease in & power and in 0/a ratio. Additionally, the
mental load was worsened in the normal non-noise BCI task.

Non-noise
10— 10— I
2. 4
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1. 4
0 0 0
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Sequence order Sequence order Sequence order
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Figure 5. Comparison of mental load indices between on-task stimulation sequences in both

non-noise and noise-tagged BCI tasks across participants. The mean values and SD of a and 0

powers and 0/a ratio were calculated from 10 consecutive stimulation sequences with the same order

across twelve participants. All statistics were assessed by one-way ANOVA, ** p < 0.01 between five

p<

consecutive stimulation sequences in either the first or the second runs of two sequential runs, ***

0.001 between five consecutive sequences.

For the first runs (i.e., sequence order 1-5; Figure 5) of the non-noise BCI task, the findings
regarding a power and 0/« ratio presented the characteristics of notably-significant inverted-U- and
U-shaped quadratic (i.e., non-monotonic) trends, respectively, as a function of the sequence order.
To test the U-shaped relation between the sequence order and the two indices, we entered both
linear and quadratic terms in trend analyses. The analysis indicates a U-shaped relation if the
quadratic term is significantly different from 0. Here, a positive and statistically significant quadratic
term would indicate a U-shaped correlation while a negative and statistically significant quadratic
term would indicate an inverted-U-shaped correlation. The polynomial trend analysis on a power
resulted in a significant negative quadratic term, indicating a significant inverted-U-shaped
relationship (ANOVA testing for quadratic trend: p = 0.043) against the linear association
(insignificant; ANOVA testing for linear trend: p = 0.444) between the sequence order and a power.
This demonstrated that a quadratic trend, in this case an inverted-U-shaped relationship, better
fitted a power than a linear relationship. Unlike a power, 0/« ratio showed a significant U-shaped
relationship associated with the sequence order (ANOVA testing for quadratic trend: p = 0.029). For
0 power, no significant quadratic relationship was noticed (ANOVA testing for quadratic trend: p =
0.543). Specifically, in the non-noise BCI task, the magnitude of the grand-averaged a power
progressively increased and then decreased, while the magnitude of the grand-averaged 0/a ratio
progressively decreased and then increased; both findings illustrate the same phenomenon: mental
load first decreased shortly but then increased during the last stimulation sequences of the first runs
and until the second runs. In the noise-tagged task, the a« and 0 powers and the 0/« ratio in the first
runs behaved with similar tendencies as compared to its respective second runs, but showing an
insignificant trend of mental load alleviation for a and 6 powers (ANOVA testing for linear trend: p
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= (.748 for a power; p = 0.472 for 6 power), but a significant trend of mental load alleviation for the
O/a ratio (ANOVA testing for linear trend: p = 0.015). This implied that the very first mental load
alleviation in the non-noise task may be derived from its preceding noise-tagged task, and the reason
why the mental load alleviation was not so significant in the first runs of the noise-tagged task may
result from its preceding non-noise task.

3.2. Influence of Visual Noise on Fatigue

Figure 6 indicates the amplitude, SNR, and accuracy differences between different trial orders
for both non-noise and non-tagged tasks at different stimulation frequencies across twelve
participants. The SSMVEP amplitudes and SNRs at stimulation frequencies of 15 Hz and 8.57 Hz,
and their respective sub-harmonics, were extracted from the spectral power of multiple runs of
successive trials with the same order. Inter-participant normalization was attained by dividing the
amplitude and SNR estimates by the average computed from all amplitude and SNR values of both
non-noise and noise-tagged conditions, respectively, but separately for each participant [52].
Three-way repeated ANOVA with Bonferroni correction, which included the factors of “noise
mode”, “stimulation frequency”, and “on-task trial”, showed a significant interaction effect between
the noise mode and the on-task trial in SSMVEP amplitude and accuracy (p = 0.039 for amplitude; p >
0.023 for accuracy), implying that the tendencies of SSMVEP amplitude and accuracy over five
consecutive on-task trials changed with the noise mode. Here the overall decreased tendencies of
SSMVEP amplitude and accuracy in non-noise tasks and their stable tendencies in noise-tagged
tasks could be noticed across consecutive on-task trials in Figure 6.

Overall, the normalized response traces for the noise-tagged BCI task remained stable
regarding amplitude, SNR, and accuracy over the range of successive trials at both stimulation
frequencies (i.e., 15Hz and 8.57 Hz). There was no significant linear (p > 0.05 for 15 Hz and 8. 57 Hz)
or quadratic (p > 0.05 for 15 Hz and 8.57 Hz) association between the trial order and amplitude.
Similar results were found for SNR and accuracy at both stimulation frequencies (ANOVA testing
for linear trend: p > 0.05 for all comparisons; ANOVA testing for quadratic trend: p > 0.05 for all
comparisons). The SSMVEP amplitude, SNR and accuracy differences were analyzed with one-way
ANOVA, and the significance level was adjusted by means of Bonferroni correction controlling for
all pairwise comparisons of the successive trials. Here, one-way ANOVA with Bonferroni-corrected
post-hoc tests also revealed no significant fatigue effect in amplitude (p > 0.05 for 15 Hz and 8.57 Hz),
SNR (p > 0.05 for 15 Hz and 8.57 Hz) and accuracy (p > 0.05 for 15 Hz and 8.57 Hz) between different
trial orders within the noise-tagged task. Furthermore, the overall amplitude and SNR performance
under the noise-tagged condition was significantly more superior beyond the non-noise condition at
15 Hz (one-way ANOVA: p < 0.001 for all comparisons). These indicated that visual noise could
facilitate the alleviation of mental fatigue during the noise-tagged BCI task.

For the non-noise task, the performance at 15 Hz still presented a roughly stable tendency
regarding amplitude, SNR and corresponding online accuracy across successive trials. No
significant SSMVEP amplitude, SNR and accuracy differences were found between different trial
orders (F(4, 270) = 1.63, p = 0.167 for amplitude; F(4, 270) = 0.96, p = 0.430 for SNR; F(4, 55)=1.25, p =
0.299 for accuracy; one-way ANOVA with Bonferroni-corrected post-hoc tests). Exceptions were
found at 8.57 Hz as dramatically-sig