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Abstract: Accurate tracking and modeling of internal and external respiratory motion in the thoracic
and abdominal regions of a human body is a highly discussed topic in external beam radiotherapy
treatment. Errors in target/normal tissue delineation and dose calculation and the increment of the
healthy tissues being exposed to high radiation doses are some of the unsolicited problems caused
due to inaccurate tracking of the respiratory motion. Many related works have been introduced for
respiratory motion modeling, but a majority of them highly depend on radiography/fluoroscopy
imaging, wearable markers or surgical node implanting techniques. We, in this article, propose
a new respiratory motion tracking approach by exploiting the advantages of an RGB-D camera.
First, we create a patient-specific respiratory motion model using principal component analysis (PCA)
removing the spatial and temporal noise of the input depth data. Then, this model is utilized for
real-time external respiratory motion measurement with high accuracy. Additionally, we introduce a
marker-based depth frame registration technique to limit the measuring area into an anatomically
consistent region that helps to handle the patient movements during the treatment. We achieved
a 0.97 correlation comparing to a spirometer and 0.53 mm average error considering a laser line
scanning result as the ground truth. As future work, we will use this accurate measurement of
external respiratory motion to generate a correlated motion model that describes the movements of
internal tumors.

Keywords: respiratory motion; radiotherapy; RGB-D camera; principal component analysis (PCA)

1. Introduction

Radiotherapy is one of the highly-discussed topics in the modern medical field. It has been
widely used in cancer treatments to remove tumors without causing any damages to the neighboring
healthy tissues. However, inaccurate system setups, anatomical motion and deformation and tissue
delineation errors lead to inconsistencies in radiotherapy approaches. Respiratory-based anatomical
motion and deformation largely cause errors in both radiotherapy planning and delivery processes in
thoracic and abdominal regions [1,2]. With respiration, tumors in abdominal and thoracic regions can
move as much as 35 mm [3-6]. As a consequence, inaccurate respiratory motion estimations directly
effect tissue delineation errors, dose miss-calculations, exposure of healthy tissues to high doses and
erroneous dose coverage for the clinical target volume [7-11].

Motion encompassing, respiratory gating, breath holding and forced shallow berating with
abdominal compression are some of the existing conventional respiratory motion estimation
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methods [1]. Difficulties in handling patient movements, longer treatment time, patient training and
discomfort are some of the most common drawbacks of these methods. On the other hand, real-time
tumor tracking techniques have started to gain much attention due to their ability in actively estimating
respiratory motion and continuous synchronization of the beam with the motion of the tumor.

Apart from radiotherapy, measurement of the respiration is an important task in pulmonary
function testing, which is crucial for early detection of potentially fatal illnesses. Spirometer and
pneumotachography are two of the well-known methods of pulmonary function testing.
These methods need a direct contact with the patient while measuring and may interfere with the
natural respiration. Furthermore, they measure only the full respiratory volume and cannot assess
the regional pulmonary function in different chest wall behaviors. Hence, there is a need for a
non-contact respiratory measurement technique, which can evaluate not only the complete, but also
regional respiration.

In this paper, we investigate the feasibility of using a commercial RGB-D camera as a
non-contact, non-invasive and whole-field respiratory motion-measuring device, which will enhance
the patient comfort. These low-cost RGB-D cameras can provide real-time depth information of a
target surface. We can use this depth information for respiratory motion measurement, but cannot
achieve higher accuracy due to a considerable amount of noise in the raw depth data. Therefore, we
proposed a technique of making an accurate respiratory motion model using principal component
analysis (PCA) and then using that model for real-time respiratory motion measurement. First, we
apply hole-filling and bilateral filtering to the first 100 raw depth frames and use that filtered depth
data to create a PCA-based motion model. In the real-time respiratory motion-measuring stage, we
project each depth frame to the motion model (principal components) and reconstruct back, removing
the spatial and temporal noise and holes in the depth data. We can achieve higher motion measurement
accuracy by using these reconstructed depth data, instead of raw depth data. The initial result of our
proposed method is published in [12].

The results of this study—accurate measurements of external surface motion—can be used to
predict the internal tumor motion, which is an important task of radiotherapy systems. Correspondence
models that make a relationship between respiratory surrogate signals, such as spirometry or
external surface motion, and internal tumor/organ motion have been studied in the literature [13-16].
Neural networks, principal component analysis and b-spline are a few example models that have been
used for predicting the internal motion.

This paper is organized as follows. First, a comprehensive review of related works is presented in
Section 2. An overview of the proposed method that describes the key steps and how to handle the
problems existing in related works is given in Section 3. A detailed description of all of the materials
and methods followed in the proposed method is presented in Section 4. The results of the experiments
we conducted to evaluate the accuracy of the proposed method are given in Section 5. Finally, Section 6
concludes the paper by discussing the results and issues of the proposed method.

2. Related Work

The Synchrony respiratory tracking system, a subsystem of CyberKnife, is the first technology
that continuously synchronizes beam delivery to the motion of the tumor [17]. The external respiratory
motion is tracked using three optical fiducial markers attached to a tightly-fitting vest. Small gold
markers are implanted near the target area before treatment to ensure the continuous correspondence
between internal and external motion. The Calypso, the prostate motion-tracking system integrated
into Varian (Varian Medical Systems, Palo Alto, CA, USA), eliminates the need for internal-external
motion modeling by implanting three tiny transponders with an associated wireless tracking [18].
The BrainLAB ExacTrac positioning system uses radiopaque fiducial markers, implanted near the
target isocenter, with external infrared (IR) reflecting markers [19]. Internal markers are tracked by an
X-ray localization system, while an IR stereo camera tracks the external markers. The Xsight Lung
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Tracking system (an extension of the CyberKnife system) is a respiratory motion-tracking system of
lung lesion that eliminates the need for implanted fiducial markers [20].

Another interesting respiratory motion modeling technique using 4D computed tomography (CT)
images was introduced in [21], where PCA is used to reduce the motion artifacts appearing on the
CT images and to synthesize the CT images in different respiratory phases. Mori et al. used cine
CT images to measure the intrafractional respiratory movement of pancreatic tumors [22]. Yang et al.
estimated and modeled the respiratory motion by applying an optical flow-based deformable image
registration technique on 4D-CT images that were acquired in cine mode [23]. In contrast to CT,
magnetic resonance imaging (MRI) provides lesser ionization and excellent soft tissue contrast that
helps to achieve better characterization. Therefore, 4D and cine-MRI images have been widely used
for measuring organ/tumor motion due to respiration [24-28]. Apart from that, researchers have been
experimenting with ultrasound images for tracking organs that move with respiration [29,30].

Radiography and fluoroscopy imaging techniques such as X-ray, CT and MRI have the problems
of higher cost, slow acquisition, low resolution, lower signal-to-noise ratio and especially exposure
to an extra dose of radiation [2,21,31,32]. Additionally, some of these systems have the disadvantage
of invasive fiducial marker implantation procedures that increase the patient preparation time and
treatment time.

To avoid these problems, researchers have proposed optical methods, which mainly consist of
cameras, light projectors and markers. With the advantage of non-contact measurement, optical
methods have no interference with the natural respiration of the patient. Ferrigno et al. proposed
a method to analyze the chest wall motion by using passive markers placed on the thorax and
abdomen [33]. Motion measurement is carried out by computing the 3D coordinates of these markers
with the help of specially-designed multiple cameras. In [34], the authors proposed a respiratory
motion-estimation method based on coded visual markers. They also utilized a stereo camera to
calculate the 3D coordinates of the markers and estimated the 3D motion of the chest wall according to
the movements of the markers. Yan et al. investigated the correlation between the motion of external
markers and an internal tumor target [35]. They placed four infrared reflective markers on different
areas of the chest wall and used a stereo infrared camera to track the motion of the markers. Alnowami
et al. employed the Codamotion infrared marker-based tracking system to acquire the chest wall
motion and applied probability density estimation to predict the respiratory motion [36,37]. Some
researchers have investigated respiratory motion evaluation by calculating curvature variance of the
chest wall using a fiber optic sensor and fiber Bragg grating techniques [38,39]. Even though the
marker-based methods provide higher data acquisition rates and accuracy, the marker attachment
procedure is time consuming and results in inconveniences for the patient. Furthermore, a large
number of markers is needed to achieve higher spatial resolution.

In contrast to marker-based methods, structured light techniques provide whole-field
measurement with high spatial resolution. Structured light systems consist of a projector and camera
and emit a light pattern onto the target surface, creating artificial correspondences. The 3D information
of the target surface can be found by solving the correspondences on the captured image of the
illuminated scene. Aoki et al. proposed a respiratory monitoring system using a near-infrared multiple
slit-light projection [40]. Even though they were able to achieve a high correlated respiratory motion
pattern to a spirometer, they could not measure the exact respiratory volume or motion due to the
variable projection coverage on the chest wall, which is caused by patient movements. Chen et al.
solved this problem by introducing active light markers to define the measuring boundary, offering a
consistent region for volume evaluation [41]. They also used a projector to illuminate the chest wall
with a structured light pattern of color stripes and a camera to capture the height-modulated images.
Then, the 3D surface calculated by triangulation is used to derive the respiratory volume information.
However, the long baseline and the restriction of the camera plane to be parallel to the reference frame
limit the portability of this method. In [31], the authors adopted a depth sensor, which uses a near-UV
structured light pattern, along with a state-of-the-art non-rigid registration algorithm to identified
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the 3D deformation of the chest wall and hence the tumor motion. Time of flight (ToF) is another
well-known optical method that has been used by researchers for respiratory motion handling during
radiotherapy [42—44].

With the recent advances in commercial RGB-D sensors such as the Microsoft Kinect and ASUS
Xtion Pro, these have been used in a broad area of research work. Have a relatively low cost and the
fact that these sensors can measure the motion without any markers or wearable devices encourage
researchers to use them in respiratory motion analysis. However, the low depth resolution of these
sensors, which is about 1 cm at a 2 m distance, restricts the usage mostly for evaluating respiratory
functions such as respiratory rate [45-51], where highly accurate motion information is not needed.
In the case of radiotherapy, respiratory motion induces tumor movements up to 2 cm in abdominal
or thoracic regions and needs less than 1 mm accuracy in motion measurements [52]. Xia and Siochi
overcome the low depth resolution of the Kinect sensor by using a translation surface, which magnifies
the respiratory motion and reduces the noise of irregular surfaces [53]. A few other researchers
utilized RGB-D sensors to acquire 3D surface data of the chest wall and applied PCA to capture
1D respiration curves of disjoint anatomical regions (thorax and abdomen), which is related to the
principal axes [32,54]. However, the respiratory motion measurement accuracy of these methods is
affected by the patient movements, as they have not provided a proper method for handling these.

3. Overview of the Proposed Method

In this study, we introduce a non-contact, non-invasive and real-time respiratory motion
measurement technique using an RGB-D camera, which is small in size and more flexible for handling.
Furthermore, we introduce a patient movement-handling method using four dot markers. These four
markers define the measurement boundaries of the moving chest wall, providing a consistent region
for respiratory motion estimation.

Using the RGB-D camera, we capture continuous depth images of the patient’s chest wall at
6.7 fps covering the whole thoracic and abdominal area. Then, we create a respiratory motion model by
applying PCA to the first 100 frames, decomposing the data into a set of motion bases that corresponded
to principal components (PCs). Before applying PCA, we use an edge-preserving bilateral filter and a
hole-filling method to remove the noise and the holes of the first 100 frames.

According to the experimental analysis, we found out that a respiratory motion model can be
accurately obtained using the first three principal components. The remaining principal components
represent the noise and motion artifact existing in the input data. We start the real-time respiratory
motion measurement from the 101st frame, projecting each new depth frame onto the motion model to
obtain the low-dimensional representation of the data. To evaluate the motion in metric space, depth
images are reconstructed using the projection coefficient. Figure 1 shows the flowchart of the proposed
respiratory motion measurement process.

Using an RGB-D camera for respiratory motion measurement has many advantages. First,
compared to the CT/MRI techniques, the proposed method prevents patients from being exposed to
an extra dose of radiation. The RGB-D camera is a non-contact optical method and has no interference
with the natural breathing of the target. Moreover, this can give real-time depth information of the
target surface. Therefore, we can provide a comfortable and efficient, but lesser duration, treatment
to the patients. Compared to marker-based methods, the RGB-D camera has high spatial resolution
and provides depth information of the entire target surface; hence, we can measure not only the entire
chest wall motion, but also the regional motions. The RGB-D camera we use in our system provides
depth data in 640 x 480 resolution, and we select a 200 x 350 ROI providing 70,000 data points for
motion measurement, which is much higher than marker-based methods (as an example, [36] used
a 4 x 4 marker grid providing only 16 data points). The smaller size and lower price of the RGB-D
cameras facilitate building a more portable and inexpensive respiratory motion measurement system
compared to some other optical methods.
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Figure 1. Flowchart of the proposed PCA-based respiratory motion-analyzing system. The first 100
depth frames are used to generate a PCA-based respiratory motion model. Then, that model (principal
components) is used for real-time respiratory motion measurement starting from the 101st frame.

However, there is a known problem of low accuracy of the RGB-D cameras. Depth data acquired
from low-cost RGB cameras has much noise and many holes that affect the accuracy of motion
measurement. Alnowami et al. and Tahavori et al. used depth data acquired from an RGB-D camera
for respiratory motion measurement, but could not achieve sub-millimeter level accuracy when it
comes to experiments with real persons [55,56]. Using the PCA-based motion model, we increase
the motion measurement accuracy by removing the spatial and temporal noise along with the holes
in the depth data. When the filtered depth data are used as the input of the PCA-based motion
model, we do not need to apply bilateral filtering or hole-filling for each depth frame during real-time
motion measurement. Comparing with a laser line scanner, we prove that our method can achieve
sub-millimeter accuracy in respiratory motion measurement using a low-cost RGB-D camera.

4. Materials and Methods

4.1. Data Acquisition

We use an Asus Xtion PRO RGB-D camera (consisting of an RGB camera, an infrared camera and
a Class 1 laser projector that is safe under all conditions of normal use) to acquire real-time depth data
and RGB images of the entire thoracic and abdominal region of the target subjects. The RGB-D camera
provides both depth and RGB-D images in 640 x 480 resolution and 30 frames per second. However,
due to the process of saving data to disk for later analysis, we could acquire only about 6.7 frames
per second. The OpenNl library is used to grab the depth and RGB data from the camera and to convert
them to matrix format for later usage. The depth camera covers not only the intended measuring area,
but also the background regions. Moreover, the coverage of the chest wall is variable due to the surface
motion and the patient movements. However, we should have an anatomically-consistent measuring
area during the whole treatment time for delivering the radiation dose accurately.

To handle this problem, we attach four dot markers to define a measuring boundary on the
chest wall covering the whole thoracic and abdominal area. Instead of using active LED markers or
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retroreflective markers, which can interfere with the RGB-D camera, we use small white color circles
made of sticker paper.

After obtaining informed consent from all subjects following the institutional ethics, we collected
respiratory motion data from ten healthy volunteers. All of the volunteers were advised to wear a
skin-tight black color t-shirt and lay down in a supine position. The four markers are attached to
the t-shirt, and the RGB-D camera is placed nearly 85 cm above the volunteer as shown in Figure 2.
According to the specification of the RGB-D camera, it can provide depth information within an 80 cm
to 350 cm range. However, [55] showed that the RGB-D camera gives the best accuracy within the
85 cm to 115 cm range. By keeping the camera closer to the volunteer, we can cover the measuring
area with a higher number of pixels, which eventually provides more data points for motion analysis.
Analyzing all of these facts, we place the RGB-D camera 85 cm above the patient. Along with the
continuous depth frames, visual images are also captured using the built-in RGB camera nearly for a
duration of one minute. The RGB images are used only for the purpose of detecting the markers to
determine the measuring ROL

Dot markers

Skin tight black color T-shirt

Figure 2. Experimental setup where the patient is laying down in the supine position wearing a
skin-tight t-shirt with four white color dot markers. The RGB-D camera is placed nearly 85 cm above
the patient.

4.2. Measuring Region

To define the measuring region, we detect the dot markers on the RGB image by applying few
image processing techniques. Otsu’s global binary thresholding method followed by contour detection
and ellipse fitting [57] are applied to identify the center coordinates of each dot marker accurately.
Using the intrinsic and extrinsic parameters of the depth and RGB cameras, which are acquired by
a calibration process [58,59], depth images are precisely aligned (with sub-pixel accuracy) to the
visual (RGB) images. Therefore, the marker coordinates found on visual images can be directly used
on depth images to define the ROI, which marks the measuring area. The position, shape and size of
the ROI are not consistent throughout all of the depth frames due to the motion of the chest wall and
the movement of the patient. In order to make it consistent, the selected ROI on every depth frame is
mapped into a predefined size of a rectangular shape using projective transformation [60]. Figure 3
shows the steps followed for detecting the dot markers and creating the rectangular ROI. We use this
rectangular ROI for further processing of our proposed method.
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Figure 3. The process of rectangular ROI generation. (a) Captured visual image; (b) after binarization
using Otsu’s method; (c) defining the measuring area after finding the center coordinates of the
four markers; (d) identified measuring area projected onto the aligned depth image; (e) generated
rectangular ROI using perspective transformation.

4.3. Respiratory Motion Modeling Using PCA

4.3.1. Depth Data Pre-Processing

We use the first 100 depth frames to create a respiratory motion model using PCA. Since we use
this model for real-time respiratory motion measurement, a precise model should be created using
accurate input data. Due to the slight reflection of the t-shirt and device errors, holes can appear in the
same spot of the chest wall area for a few continuous depth frames as depicted in Figure 4a. Moreover,
there is much noise existing in the raw depth data provided by the sensor. If we directly use these data
as the input for PCA without any pre-processing, we will encounter erroneous results as in Figure 4b,
where most of the data variation is concentrated in the areas of holes.

To avoid this problem, we first apply a hole-filling technique on depth images using the
zero-elimination mode filter. If there are enough non-zero neighbors, this filter replaces pixels with
zero depth values with the statistical mode of its non-zero neighbors. Next, we remove noise from
depth images using an edge-preserving bilateral filter [61]. Figure 4c shows the PCA result when we
use filtered depth data as the input.

Large data variation

@) | (b) (©

Figure 4. (a) Two example depth frames where holes appear in the chest wall region; (b) erroneous
PCA result (eigenvector) where large data variations appear near the hole regions; (c) PCA result after
applying hole-filling and bilateral filtering to input depth data.

4.3.2. Principal Component Analysis

After applying filtering to the first 100 depth frames, PCA [62] is applied to make a respiratory
motion model that is integrated into the major principal components. By column-wise vectorization
of the depth data (d;) on the selected rectangular ROI, we create an input data matrix D of
dimension m X n:

Dysn = [12'1/5{'2/-.-/5{;1 ’ (1)
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where 7 is the total number of depth frames (1 = 100) and m is number of pixels in the rectangular
ROL. First, we subtract the mean vector d calculated as:

= 1%
d=-3d @)

i=1
from the input data matrix to create a normalized matrix D:

z - =2 - :]

D=|d-dd-d- - d-d. )

Since m > n, we use Equation (4) to calculate the n x n covariance matrix C, reducing the

dimensionality of the input data.
1 ara
= DD 4
C=-—"" @)

The transformation, which maps the high-dimensional input depth data into a low-dimensional
PC subspace, is obtained by solving the eigenvalues (A;) and eigenvectors (q?]-) of the covariance matrix
using Equation (5).

Ch; = Aip; (5)

All of the eigenvectors, which correspond to principal components, are then arranged in
descending order {1, ¢, 3, -+ ,¢n} according to the magnitude of the eigenvalues (A; > Ay >
A3 2o 2 Ap).

Using an experimental analysis, we found out that the first eigenvalue dominates the rest of the
eigenvalues and accounts for over 98% of the data variation during regular respiration. However,
when the respiration is irregular, three eigenvalues are required to cover 98% of the data variation.
Figure 5 depicts the first ten eigenvalues of the covariance matrix calculated from five samples on
regular breathing and three samples on irregular breathing. Figure 6 shows three graphs of projection
coefficients (explained in Section 4.4.1) corresponding to the first three principal components calculated
for regular breathing, while Figure 7 shows examples of irregular breathing. An apparent respiratory
motion pattern is visible only on the first PC for regular breathing, while the first three PCs show a
respiratory pattern in irregular breathing. Following this analysis, we represent the respiratory motion
model W using the first three principal components (¢, ¢», ¢3), reducing the dimensionality of input
depth data.

100 100

" Dataset 1 —o— " Dataset 1 —o—

Dataset2 —&— Dataset2 ——
Dataset 3 Dataset 3
80 Dataset 3 4 80
\ Dataset 3 —o— A

Eigenvalue (%)

60 \
40

Eigenvalue (%)

)
o
\

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
(@) Principal Component (o) Principal Component

Figure 5. (a) Comparison of the first ten principal components using five sets of input data taken during
regular breathing and (b) three sets of input data taken during irregular breathing. The first principal
component is dominant over others and represents over 98% of data variance for regular breathing,
while three principal components are needed to cover 98% of data variance for irregular breathing.
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Figure 7. Projection results of 300 depth frames on the first three PCs for irregular breathing. The first

two principal components show an apparent respiratory pattern, while the third one also shows a

smaller respiratory signal. Graphs (a,b) represent two datasets.

4.4. Real-Time Respiratory Motion Measurement

After creating a respiratory motion model using the first 100 depth frames, we start the real-time
respiratory motion measurement from the 101st frame. The data we use for respiratory motion
modeling should cover a few complete respiratory cycles in order to generalize the input data.
By following this rule, we can make sure that the motion model represents all of the statuses of
the respiratory cycle. After observing all of the experiment datasets, we empirically select 100 as the
number of depth frames for PCA-based motion modeling.

4.4.1. Projection and Reconstruction

We project each new depth frame d; (i > 100) onto the motion model W = [q?l 472 (ﬁg} in order

to represent them using the first three principal components. The following equation is used as the
projection operation, where ; represents the projection coefficients.

=2

) (6)

Q

Bi=WT(d; -



Sensors 2017, 17, 1840 10 of 22

Even though the calculated projection coefficients represent a clear respiratory motion, we cannot
use these directly for measuring the motion as these coefficients are three separate values in the
principal component domain instead of the metric domain. Therefore, the following equation is used

to reconstruct the depth data (4;), which is in the metric domain, from the projection coefficient.

di~ d+ W, @)

Here, the advantage is that we do not need to apply hole-filling or denoising filters to the depth
data that we use for real-time respiratory motion measurement. By reconstructing the depth images
using the motion model, we can remove the spatial and temporal noise, as well as the holes in the data.
Figure 8 depicts the advantage of applying bilateral filtering and hole-filling to the input depth images
for PCA. Figure 8a,b shows the PCA results with and without using filtering on PCA input data,
respectively. As shown in Figure 8c,d, if we use the erroneous PC for projection and reconstruction,
many holes and much noise will appear on the reconstructed depth data even if there are no holes
in the input data. In contrast to that, if we use an accurate PC for projection and reconstruction, we
can remove the holes and noise appearing in the input depth data by reconstructing it as shown in

Figure 8e f.
| ] n ———-" 7
(c) (d) (e)

Figure 8. (a) PCA result (first eigenvector) using bilateral filtering and hole-filling; (b) PCA result

(a) (b)

(f)

(erroneous) without using bilateral filtering and hole-filling; (c) example input depth image without
any holes; (d) reconstruction results of (c) using the incorrect PCA results shown in (b); (e) example
input depth image with few holes; (f) reconstruction results of (e) using the PCA results shown in (a).

4.4.2. Motion Measurement

We use these reconstructed depth data for respiratory motion measurements. The rectangular
ROI of the reconstructed depth data is further divided into smaller regions as in Figure 9a to separately
measure the motion in smaller regions. Average depth values of these smaller regions along with
2D image coordinates and intrinsic camera parameters are used to calculate the 3D (X, Y and Z)
coordinates of the mid-points. Then, we use these 3D coordinates to construct a surface mesh model
composed of small triangles as in Figure 9b,c, which can be used to represent the chest wall surface
and its motion clearly. We define the initial frame (101st frame) as the reference frame and calculate
the motion of the remaining frames using the depth difference between the current frame and the
reference frame.
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Figure 9. The surface mesh generation process. (a) The rectangular ROI of the reconstructed depth is
further divided into smaller square ROIs; (b) a surface mesh is generated by finding the 3D coordinate
of the midpoints of smaller ROIs using the average depth value of the region; (c) a selected frame of a
video sequence, which shows the motion of the chest wall in a 3D viewer using a mesh model. Green
dots represent the 3D position of mesh vertices over time.

4.5. Evaluation of the Accuracy

We propose an experimental setup as shown in Figure 10 for evaluating the accuracy of the
proposed method. First, our proposed method is compared with a spirometer, which measures the
air flow volume using a mouthpiece device, and then with a laser line scanner, which provides very
accurate 3D reconstruction results.

Depth
“SENsor:

]

Projected
Laser Line

S
o ’ L

Laser Line Projector

Figure 10. Experimental setup for evaluating the accuracy of the proposed method using a spirometer
and a laser line scanner. (a) Volunteers are advised to lay down in the supine position and breath only
through the spirometer. The RGB-D camera and laser line projector are placed above the volunteer,
and the laser line is projected onto the abdomen area. (b) CareFusion SpiroUSB™spirometer. (c) The
configuration of the RGB-D camera and laser line projector.

4.5.1. Comparison with Spirometer

We compared the respiratory motion pattern generated using the proposed method with a
spirometer, which has been used for evaluating the accuracy of RGB-D camera-based respiratory
function evaluation methods [41,63,64]. During this experiment, the patient breathed through a
calibrated spirometer (SpiroUSB™, CareFusion) to record the airflow volume while the depth camera
captured the chest wall motion simultaneously (see Figure 10a,b). The spirometer provides the air flow
volume in liters, not the respiratory motion in millimeters. Therefore, with the help of surface mesh



Sensors 2017, 17, 1840 12 of 22

data, we developed a method to measure the volume difference of the current frame compared to a
reference frame. We found the volume difference by calculating the sum of the volume of small prisms
created by the triangles in the surface mesh of the current frame and their projection on the reference
plane as the top and bottom surfaces.

First, these prisms were further divided into three irregular tetrahedrons. Then, the volume
of a tetrahedron was calculated using Equation (8), where a(ay, ay, az), b(bx, by, bz), c(cx, ¢y, cz) and
d(dy, dy, d) represent the 3D coordinates of the four vertices.

ay by cx dy

_ det(A) _lay by ¢y dy
e P ®
1 1 1 1

4.5.2. Comparison with Laser Line Scanning

Laser line scanning, which is well known for providing high accuracy (<0.1 mm) [65], is a
3D reconstruction method consisting of a laser line projector and a camera. We used this method
to reconstruct a specific position of the chest wall accurately and to compare it with the PCA
reconstruction results. The setup for this experiment consists of a laser line projector and the RGB-D
camera as shown in Figure 10c. We projected the laser line onto the abdominal area of the target chest
wall and captured the illuminated scene using the visual (RGB) camera of the RGB-D sensor. We
prepared 15 datasets (D01, D02, ..., D15) from ten healthy volunteers ranging in age from 24 to 32 who
participated in the data capturing process. Volunteer information is given in Table 1.

Table 1. Clinical and demographic information of the volunteers who participated in the experiments.

Volunteer Gender Age (years) BMI (kg/m?) Datasets

1 M 29 26.4 D01, D02
2 M 32 28.7 D03
3 M 26 274 D04, D05
4 M 27 21.5 D06, D07
5 M 25 26.9 D08
6 M 28 26.5 D09
7 M 27 19.3 D10, D11
8 M 24 243 D12, D13
9 M 30 20.9 D14
10 M 25 24.0 D15

First, we calibrated the laser line projector and the RGB camera to find the 3D plane equation of
the laser line with respect to the camera coordinate system using a checkerboard pattern [65,66]. Then,
we separated the measuring area from the rest of the image by defining a rectangular ROI on the RGB
images the same as on the depth images. We took the red channel of the RGB image, applied Gaussian
smoothing and fit a parabola to each column of the ROI image according to the pixel intensities. Then,
by finding the maximum of the parabola, which corresponds to the laser line location, we can identify
the 2D image coordinates of it with sub-pixel level accuracy. We projected these image coordinates to
the 3D laser plane using the intrinsic camera parameters and calculated the 3D coordinates by finding
the ray-plane intersection points. These 3D coordinates are referred to as laser reconstruction in the
remainder of this paper. Next, we projected the 2D coordinates of the laser line onto the reconstructed
depth image d; to identify the 3D coordinates of the laser line according to the proposed PCA-based
method and referred to this as PCA reconstruction.

The purpose of the proposed method is not to reconstruct the chest wall surface, but to measure
the chest wall motion accurately. Therefore, instead of comparing the direct 3D reconstruction results,
we compared the respiratory motion; defined as the depth difference between the current frame
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and reference frame. We chose the 101st frame as the reference frame, as it is the starting frame of
real-time respiratory motion measurement. To have a quantitative comparison, we selected five points
(P1, P2, ..., P5) across the laser line and found the motion error of each point separately for 100 frames.
By taking the laser line reconstruction as the ground truth, we calculated the motion error E;; of the
j-th point on the laser line of i-th frame (1 < j < 5and 1 < i < 100) using;:

Eij = (DiLj - DrLj) - (D}} - ij) , )

where Dj; is the depth value of the j-th point on the laser line of the i-th frame. L and P represent the
laser reconstruction and PCA reconstruction, respectively, while r represents the reference frame.

5. Results

First, we present the accuracy evaluation results of the proposed respiratory motion measurement
method compared to the spirometer and laser line scanner. With the use of the spirometer, we examined
the respiratory pattern using volume changes. The laser line scanner was used to analyze the motion
measurement accuracy of the proposed method. Later, we compared our method with bilateral
filtering and then conducted isovolume maneuver to show the advantages of the proposed method
over existing ones. Finally, we analyzed how the proposed method works in a condition of longer and
irregular breathing. All of these experiments were performed in a general laboratory environment,
and the software components were implemented using C++ language with the help of OpenCV and
OpenNl libraries.

5.1. Comparison of Respiratory Pattern with Spirometer

Figure 11 depicts the volume comparison graphs of the spirometer and the proposed PCA-based
method. The sample rate of the spirometer is lower than the RGB-D camera. Therefore, we applied
b-spline interpolation on available spirometer data to generate a smooth motion curve to achieve a
similar frame interval as the RGB-D camera.

[ emgm ] [ el |
o N A R o S e Y o VO A R N
A AN AR Y A A
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SRR yVV VY2 Y Y Vo o\
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Figure 11. Comparison of respiratory volume measurement (normalized into —1:1 range) using the
proposed method (PCA) and a spirometer. Graphs (a—d) represent the selected four different datasets.
Black dots represent the original data points of the spirometer, while the blue line represents the
interpolated data.
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The magnitude of the respiratory volume is different between the spirometer and the proposed
method, as the measuring area and methodology are different. Therefore, we compared the data by
normalizing it to a —1:1 range. As shown in Figure 11, the proposed method could generate respiratory
motion patterns very similar to the spirometer with a 0.97 average correlation.

5.2. Accuracy Analysis Using Laser Line Scanning

Table 2 gives the motion error results of the five points on the laser line, calculated from 15 datasets.
We summarized the data on the table as the average, maximum and standard deviation of the motion
error (E;;) over 100 frames. The average motion error of all datasets on all five points is 0.53 £ 0.05 mm.
As a qualitative comparison, motion graphs of four datasets calculated on four different points of the
laser line are depicted in Figure 12. As a further analysis, we calculated the normalized cross-correlation
(NCC) between the PCA motion (Dﬂ — Dfx) and laser line motion (D{;C — D}x) for each x coordinate of
the laser line over 100 frames. The graph in Figure 13 shows the NCC results, which was separately
calculated for each X-coordinate of the laser line for all 15 datasets. The results indicate a very high
correlation between the two motion estimation methods as the average NCC for all of the datasets is
0.98 4 0.0009.

Table 2. Motion error of the proposed PCA-based method compared to laser line scanning calculated
on five locations of the laser line for 15 datasets. All data are given in mm.

Position Parameters D01 D02 D03 D04 D05 D06 D07 D08 D09 D10 D11 D12 D13 D14 D15 Average

Average 023 066 018 027 039 036 036 021 083 045 032 036 094 043 055 0.44

P1 Max. 092 269 066 114 096 141 141 077 191 145 105 147 189 124 151 1.37
Standard deviation 0.19 0.66 0.13 024 022 032 032 016 047 031 023 029 050 027 038 0.31

Average 039 034 033 052 022 109 047 047 085 046 030 050 052 097 0.38 0.52

P2 Max. 110 134 084 162 066 187 137 131 172 134 079 155 156 251 1.38 1.40
Standard deviation 025 0.31 021 038 016 040 030 033 046 032 019 034 040 066 0.29 0.33

Average 031 085 042 050 059 041 044 074 078 070 040 063 104 057 0.64 0.60

P3 Max. 1.09 19 118 129 139 128 159 181 197 183 103 189 255 156 1.82 1.61
Standard deviation 0.25 044 026 032 034 031 034 044 050 046 026 047 065 036 040 0.39
Average 042 027 028 051 034 040 036 038 118 155 0.69 050 074 049 041 0.57

P4 Max. 095 138 077 172 091 09 1.03 124 245 318 152 152 18 111 1.02 144
Standard deviation 021 027 0.19 046 023 024 026 027 071 067 032 043 043 032 024 0.35
Average 032 043 033 029 051 08 053 070 037 043 038 070 087 063 073 0.54

P5 089 223 09 161 097 168 146 159 127 135 1.02 204 216 163 179 1.51

Max.
Standard deviation 022 049 021 027 023 037 040 040 029 033 025 059 056 037 042 0.36
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Figure 12. Comparison of respiratory motion measurement using the proposed method (PCA) and
laser line scanning. Measurements are taken from different places on the projected laser line. The 101st
frame of the dataset is selected as the reference frame, and we measure the motion of remaining frames
with respect to it until the 200th frame. Graphs (a—d) show the motion measurement results of four
different datasets.
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Figure 13. Normalized cross-correlation (NCC) between PCA and laser scanning across 100 frames.
NCC is calculated for each point on the laser line along the X-axis separately.

5.3. Comparison with Bilateral Filtering

To show the advantages, we compared our proposed method with bilateral filtering. In our
method, hole-filling and bilateral filtering are applied only to the first 100 frames that we used as the
input for PCA, and we do not use this during real-time respiratory motion measurements. During
this experiment, we measured the respiratory motion by applying bilateral filtering and hole-filling
to all frames and without using PCA, and the results are compared with the proposed PCA-based
method. Figure 14a shows a part of the motion comparison graph, where the bilateral filtering gives a
rough curve with more temporal noise, while the proposed method gives a smoother curve with less
temporal noise. The reason is that PCA provides both spatial and temporal filtering, not like bilateral
filtering, which provides only spatial filtering.

Furthermore, Figure 14b compares the proposed method and bilateral filtering with a very
accurate 3D reconstruction method of laser line scanning (details are given in Section 4.5.2).
Considering the laser reconstruction as the ground truth, we calculated the motion error (Equation (9))
of the proposed method and bilateral filtering on a selected location of the chest wall. In the case of
the motion comparison provided in Figure 14b, the average error is 0.35 4= 0.06 mm for the proposed
method and 0.85 & 0.08 mm for the bilateral filtering.

PCA —— PCA ——
Bilateral Bilateral

e
7/ \ ok Laser

Motion (mm)
Motion (mm)

0 5 10 15 20 25 30 35 40 45 50 0 10 20 30 40 50 60 70 80 90 100
Frame Frame

() (b)

Figure 14. Comparison of the proposed PCA-based method and bilateral filtering. (a) A part of the
motion comparison graph. The proposed PCA-based method provides a smooth curve, while bilateral
filtering gives a rough curve with more temporal noise. (b) Comparison of the proposed PCA-based
method and bilateral filtering with laser line scanning.
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5.4. Isovolume Maneuver

We conducted an isovolume maneuver to emphasize the capability of the regional respiratory
motion measurement of the proposed method. During the test, the subjects are advised to hold their
breath without air flow, but exchanging the internal volume between thorax and abdomen. Then, we
measured the motion of whole chest wall (which is covered by the four dot markers) and the regional
motion of thorax and abdomen separately, presented in Figure 15. We used a few additional markers
to separate the thorax and abdomen area on the chest wall. Theoretically, there should be no volume
changes for the whole chest wall, but as we measure the depth difference in an ROI defined by the
markers, which does not cover the entire chest wall area exactly, a motion pattern appears on the
whole chest wall. However, opposite phases of the whole thorax and the whole abdomen motion with
—0.99 cross-correlation reflecting the volume exchange between them, which we cannot determine
using a respiratory volume-measuring devices such as the spirometer.

15 Whole chest wall
10 | Thorax
Abdomen
5 L
E o0
E
c -5
Qo
2 10+ /\ \ /\
-20 | “
-25
0 10 20 30 40 50 60 70 80 90 100
Frame

Figure 15. Respiratory motion graph of a volunteer performing the isovolume maneuver. The opposite
phase of the whole thorax and the whole abdomen motion reflect the volume exchange between them.

5.5. Handling Irregular Breathing

We analyze how the motion model generated using the first 100 frames affects the accuracy
during longer and irregular breathing. For regular respiration that does not have much variation in
respiratory rate and volume, only the first principal component is enough to accurately measure the
motion. Figure 16 shows two graphs of regular respiratory motion that were calculated over 350 frames
compared with the laser line scanning (details are given in Section 4.5.2). Even though we use only the
first principal component calculated over 100 depth frames, the average error is about 0.3 mm and
0.8 mm for the two graphs, respectively.

However, during irregular breathing (respiratory rate and amplitude change time to time),
accuracy gets lower when we are using only the first principal component as the motion model.
As shown in Figure 17, the large difference compared to the laser line scanning proves that only the
first principal component is not enough for handling irregular respiratory motions. Therefore, we
redo the accuracy analysis including the first three principal components of the motion model and
draw the results on the same graph. Using the first three principal components, we could achieve
sub-millimeter accuracy (~0.5 mm) even if the respiratory pattern of the first 100 frames is entirely
different from rest of the data.

As a further refinement step for a very long treatment duration, we can update the motion model
by recalculating the principal components with a new set of depth data at regular intervals.
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Figure 16. Motion comparison graphs generated for a regular respiratory patterns over a longer
duration (350 frames). The first 100 frames are used for PCA, and only the first principal component
is used as the motion model. All frames are then used for accuracy analysis. Higher accuracy could
be achieved even though only the first PC is used for reconstruction. Graphs (a,b) show the motion
comparison results of two different datasets.
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Figure 17. Motion comparison graphs generated for irregular respiratory patterns over a longer
duration (350 frames). The first 100 frames are used for PCA, and the first principal component and
first three principal components are used as the motion models, respectively. All frames are then used
for accuracy analysis. A large difference appears between the laser scanner and PCA method when we
are using only the first principal component. Higher accuracy could be achieved when we are using
the first three principal components as the motion model. Graphs (a,b) show the motion comparison
results of two different datasets.

6. Discussion and Conclusions

We have proposed a patient-specific external respiratory motion analyzing technique based
on PCA. A commercial RGB-D camera was used to acquire the depth data of the target respiratory
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motion, and PCA was applied to find a motion model corresponding to the respiration. Four dot
markers attached to the chest wall were used to define an anatomically-consistent measuring region
throughout the measuring period. Using an experimental analysis, we found out that only the first
three principal components are sufficient to represent the respiratory motion while the rest of the
principal components represent patterns of small perturbations. Therefore, all of the depth data were
projected onto the first three principal component and reconstructed removing the spatial and temporal
noise existing in the input data.

For the convenience of the volunteers who participated in the laboratory-level experiments, we
allowed them to wear a black-colored t-shirt and attached white color dot markers on it. Even though
we use a tight-fitting t-shirt, a few wrinkles can appear within the chest wall area and affect the accuracy
of the results. Therefore, we recommend not using any clothing that covers the measuring region
during the clinical treatment process. We can select dot markers with an apparent color difference with
the patient’s skin color and directly attach them to the patient’s body. Furthermore, it is advisable to
attach the dot markers on four locations of the chest wall where there is no compelling motion due to
the respiration, such as the end of the collar bones and hip bones.

During respiratory motion modeling using PCA, we used the first 100 depth frames as the input
data. The criterion for selecting this number is that input depth data should cover a few complete
respiratory cycles. All of our experiment datasets satisfy this criterion within 100 frames. The frame
rate during the experiments was about 6.7 fps on average because it takes time for writing/reading
data to hard disk frame by frame. However, during real respiratory motion measurement sessions,
reading and/or writing data to a hard disk is not necessary; thus, we can achieve a frame rate of around
20 fps. The frame rate was very stable during the experiments with only a 0.4 fps standard deviation.

The accuracy of the proposed method was first evaluated using a spirometer, which has an
accuracy level of 3%. Even though the magnitude of the measured volume was different, the spirometer
and the proposed method were highly correlated in motion pattern (0.97 average correlation). Second,
a laser line scanning technique, which is well known for high accuracy, was used to analyze the motion
measurement accuracy of the proposed method. A laser line that was projected onto the abdominal
area of the subject was reconstructed using a laser line scanning technique and compared with the
proposed PCA reconstruction method. The motion of the projected laser line is measured using
the both reconstruction results with respect to a reference frame. We could achieve high correlation
(0.98 NCC) between the laser line scanner and the proposed method. Considering the laser scanning
results as the ground truth, the measured average motion error of the proposed method is 0.53 mm,
which is very comparable to commercial respiratory tracking systems according to Table 3.

Table 3. Accuracy comparison of the proposed method with related respiratory motion tracking methods.

System Accuracy
Synchrony [17] <1.5 mm
ExacTrac [19,67] <1.0 mm

Calypso [18] <1.5 mm
Yang et al. [23] 1.1 £ 0.8 mm
Chen et al. [41] 4.25 4+ 3.49%

Alnowami et al. [55] 3.1+0.6 mm
Proposed Method ~ 0.53 £ 0.25 mm

The proposed method provides not only a high accuracy, but also a very simple system setup,
which is very flexible and portable. With the advantage of non-contact measurement, the proposed
method has no interference with the patient’s respiration and, hence, provides more accurate
measurements. Furthermore, the proposed method has the advantage of measuring the motion
in a particular location of the chest wall, instead of measuring the motion of the whole chest wall
at once.
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Finding a motion model that can be used to correlate the external respiratory motion with internal
tumor motion has been discussed in the literature [14-16]. Linear, polynomial, b-spline and PCA-based
models are a few techniques that have been investigated so far. As future work, we are also planning to
work on finding a correlation model, that can be employed to measure internal tumor motion, by using
external surface motion as the surrogate input data. Furthermore, we are planning to test the proposed
system in a real clinical environment using patients with different demographic and clinical properties.

Supplementary Materials: The Supplementary Materials are available online at http://www.mdpi.com/1424-
8220/17/8/1840/s1.
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