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Abstract: In this study, the preparation and electrochemical application of a chromium(III) oxide
modified carbon paste electrode (Cr-CPE) and a screen printed electrode (SPE), made from the same
material and optimized for the simple, cheap and sensitive simultaneous determination of zinc,
cadmium, lead, copper and the detection of silver ions, is described. The limits of detection and
quantification were 25 and 80 pg~L’l for Zn(I), 3 and 10 ug~L’l for Cd(II), 3 and 10 pg-L’1 for Pb(II),
3 and 10 ug-L~! for Cu(ll), and 3 and 10 pg-L~! for Ag(I), respectively. Furthermore, this promising
modification was transferred to the screen-printed electrode. The limits of detection for the
simultaneous determination of zinc, cadmium, copper and lead on the screen printed electrodes were
found to be 350 pug-L~! for Zn(Il), 25 pg-L~! for Cd(II), 3 ug-L~! for Pb(Il) and 3 pg-L~! for Cu(Il).
Practical usability for the simultaneous detection of these heavy metal ions by the Cr-CPE was also
demonstrated in the analyses of wastewaters.

Keywords: carbon paste; chromium; electrochemistry; heavy metals; screen-printed electrode; silver

1. Introduction

Toxic metals such as lead and cadmium are hazardous environmental pollutants which tend
to bioaccumulate [1-4] resulting in various pathologies including cancer [5-7]. These are toxic to
vertebrates and invertebrates even at lower concentrations [8,9]. Zinc and copper are essential elements
necessary for most organisms but overexposure to these elements can also be life threatening [9,10].
Therefore, it is not surprising that levels of metals both toxic and essential have to be monitored [1,3].
Electrochemical methods or atomic absorption spectrometry (AAS) are often used for the determination
of metals in cells, body liquids and/or tissues, as well as in environmental samples. AAS is a very
sensitive method; however, it has many disadvantages including cost and inability to be miniaturized.
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In contrast, electrochemical methods are low cost and can be applied in situ [1,3,11-13]. The gold
standard of electrochemistry is to perform a measurement with a mercury drop electrode. During the
last decades, any handling of mercury was subjected to strict rules because of its high toxicity. For that
reason, sensitive and suitable alternatives have been sought [13]. One of the recent trends is the
production and application of variously modified carbon paste electrodes (CPEs) [3,14]. CPEs have
a wide range of benefits as they are easy to use and prepare with high reproducibility and can
be easily modified. Carbon-based materials are often used for the preparation of paste electrodes
because of several advantages, including binding to other substances, good conductivity and their
ability to form a relatively homogeneous electrode. The benefits of carbon pastes include their
non-toxicity, environmental friendliness and their large electrochemical potential covering numerous
applications [3,15]. Last but not least, there is also the possibility of subsequent transfer into the screen
printed electrodes (SPEs) enabling low cost analyses [15]. Moreover, their production is relatively
inexpensive, especially when using a PET substrate as carrier foil. They also show good reproducibility
of measurements, and the foil SPE is portable, has a high sensitivity and is relatively easy to dispose
of. In combination with a portable potentiostat, it allows for easy in situ measurements [2,16-18].
This shows that SPEs provide very good alternatives to other types of working electrodes including
mercury ones.

Cr-based material was successfully approved in our previous study for simultaneous
determination of Cr(Ill) and Cr(VI), and therefore further use of similar insoluble Cr-based material
for another heavy metal detection was investigated [19]. The aim of this study was to design a
suitably modified SPE that could be used to detect as many metals as possible in one step—using one
electrolyte, and one method or setting ideally. It was found that the ability to detect said metals at very
low concentrations is determined not only by the chemical nature of the modifier but also by its shape
and active surface. Large-surface modified Cr,Os electrodes were used for this study. It was observed
that this type of modification had a very high sensitivity to silver ions, when Cr-CPE was able to detect
Ag(I) down to the microgram per L. A modification with bismuth, which has similar characteristics
to the mercury electrode, was used for detection of heavy metals recently [20-22]. The advantages of
bismuth modification include a very high sensitivity, as the modified SPE achieves detection limits of
the order of ng-L’l. However, their weakness is the inability to detect Cu(Il) ions [23]. Besides the
detection of one metal, the simultaneous detection of metal ions is also a central interest for numerous
researchers. The simultaneous detection of Zn(Il), Cd(II), Pb(Il) and Cu(ll) ions is often performed
using a mercury electrode and/or their amalgams [24-26]. Their sensitivity for for Zn(II), Cd(II), Pb(II)
and Cu(Il) is very low, with detection limits down to pg-L’1 or even ng~Tf1 [20-23,27-29], but these
again suffer from mercury toxicity. However, simultaneous detection of Zn(II), Cd(II), Pb(II) and Cu(II)
on the CPE and/or the SPE is not too common.

The aim of this study was to modify the CPE with chromium(IIl) oxide and to use such an
electrode for the simultaneous detection of zinc, cadmium, lead and copper ions. Moreover, we
used the fabricated electrode to detect Ag(I). In these cases, we tested various conditions to find
the optimal ones and tested several interferences to show the ability of an electrode to be used for
environmental purposes.

2. Materials and Methods

2.1. Chemicals

Chemicals (NH4),Cr,Oy, Cry O3, AgNOs3, Zn(NO3),, a-terpineol, ethyl cellulose and others) were
obtained from Sigma-Aldrich (Saint Louis, MO, USA) unless noted otherwise. Expanded graphite
EPGM for preparation of the CPE and SPE were purchased from Graphite Tyn Ltd. (Tyn nad Vltavou,
Czech Republic).

In the study, high-purity deionized water (Milli-Q Millipore 18.2 M()/cm, Bedford, MA, USA)
was used. Chromium(III) oxide for modification of the paste electrode was prepared by the thermal



Sensors 2017, 17, 1832 3of 14

decomposition of ammonium dichromate. The prepared chromium(IIl) oxide was washed 9 times
with water to prevent impurities caused mainly by trace contamination or residual dichromate.

2.2. Scanning Electron Microscopy (SEM) Analysis

The morphology of the commercially obtained chromium(Ill) oxide prepared by thermal
decomposition was compared using the scanning electron microscope MIRA3 LMU (Tescan, a.s.,
Brno, Czech Republic). An accelerating voltage of 15 kV and a beam current of approximate 1 nA were
used for visualization with satisfactory results regarding its maximum throughput.

2.3. Porosity Determination

Nitrogen adsorption/desorption experiments were performed at 77 K on a Quantachrome
Autosorb-1MP porosimeter (Quantachrome GmbH & Co. KG, Odelzhausen, Germany). Surface areas
(SA) and total pore volumes (Vi at p/po = 0.97) were determined by the volumetric technique [30].
Prior to the measurements, the samples were degassed at 20 °C for at least 20 h until the outgas rate
was less than 0.4 Pa-min~!. The adsorption-desorption isotherms were measured for each sample at
least three times. The specific surface area was determined by the multipoint BET method with eleven
data points with relative pressures between 0.02 and 0.30.

2.4. Cr-CPE Preparation

For the preparation of the paste electrode, 100 mg of expanded graphite and 25 mg of the prepared
chromium(IIl) oxide were mixed with 300 puL of paraffin oil. This mixture was homogenized in a
mortar for 25 min and subsequently transferred by spatula into the Teflon electrode body with inner
diameter of 2.5 mm.

2.5. Ink Formulation Preparation

The ink formulation for the screen-printing technique was made from a solution consisting of
ethyl cellulose (EC) as a binder and «-terpineol as a solvent. 4 g of EC was dissolved in 96 g o-Terpineol,
then stirred at 50 °C and 400 rpm for 120 min using the magnetic stirrer IKA RCT basic (IKA, Staufen
im Breisgau, Germany). The expanded graphite was further disintegrated using an agate mortar and
pestle. The ink formulation for the counter electrode and reference electrode (CE/RE) was prepared
by incorporating the expanded graphite into EC solution with the weight ratio of EC and expanded
graphite of 1:4. The expanded graphite was added to the EC solution while stirring using a magnetic
stirrer. The ink formulation was mixed for a further 24 h. The WE (working electrode) ink formulation
was prepared under the same procedure as the CE/RE ink formulation with the addition of the
prepared chromium(III), where the final weight ratio of EC : expanded graphite : chromium(III) oxide
was 1:4:1.

2.6. Production of the SPE

The SPE were fabricated from PET substrate (175 um thick DuPont Teijin Films, Melinex ST504,
Cleveland, UK). The layout of the printed panel of sensors consisted of 33 sensors in three rows with
eleven sensors in each row. All layers were printed out using the screen-printing machine EKRA
El. The drying of selected layers was performed in the hot air oven Memmert UN55 at 120 °C for
30 min with the exception of the UV curable dielectric layer CSP-5210, where the radiation dose under
a medium pressure mercury lamp was set to 600 mJ-cm 2. Printing stencils were created for all layers
based on Saati PES mesh with 120 threads per cm coated by Dirasol 915 diazo photopolymer emulsion.

The silver current collectors were fabricated using silver conductive composite paste Dupont
5029 and were printed as first layers. In the next step, the CE and RE electrode were printed using the
CE/WE ink formulation before printing the WE electrode. The last mask layer, which determines the
active area of sensors, was printed using the UV curable ink formulation CSP-5210.



Sensors 2017, 17, 1832 4 of 14

2.7. Electrochemical Detection

The electrochemical detection of Zn(Il), Cd(Il), Pb(Il), Cu(Il) and Ag(I) ions was carried out
using a three electrode system connected with the 663 VA Stand (Metrohm, Herisau, Switzerland).
Software NOVA 1.8 (Metrohm, Herisau, Switzerland) was used for data evaluation. As a reference
electrode, Ag/AgCl (3 M KCI) was used; as a counter electrode, platinum was used and as a working
electrode a Cr-CPE electrode was used. Prior to each measurement, approximately 0.1 mm of paste
from the carbon paste electrode was wiped on a filter paper to obtain a new surface. Square wave
anodic stripping voltammetry (SWASV) was performed in the presence of 2 M of acetate buffer,
pH 5. The dosage was 3.7 mL of the sample and 300 pL of the buffer. The parameters of the SWASV
measurement were as follows: an initial potential of —1.3 V, an end potential of +0.5 V, a deposition
potential of —1.3 V, an accumulation time of 100 s, a voltage step of 5 mV, a pulse amplitude of 150 mV,
a frequency of 150 Hz and an equilibration time of 5 s. Each result was expressed as the average of
5 measurements. The SPEs were measured with the same parameter setting and in the same bulffer.

Cyclic voltammetry (CV) was measured in the same buffer with the following parameters: start
potential —1.3 V, upper vertex potential 1.0 V, lower vertex potential —1.3 V, stop potential —1.3 V,
number of stop crossings 8, step potential 5 mV and a scan rate of 0.75 V-s~ 1.

2.8. Atomic Absorption Spectrometry

Measurements were carried out using a 240 FS AA Agilent Technologies flame atomic absorption
spectrometer with deuterium lamp background correction, or a 280Z Agilent Technologies atomic
absorption spectrometer with electrothermal atomization and Zeeman background correction, both
purchased from Agilent Technologies (Santa Clara, CA, USA). Zinc, cadmium, lead and copper were
detected on the following primary wavelengths: Zn(Il) 213.9 nm (spectral bandwidth 1.0 nm, lamp
current 5 mA); Cd(II) 228.8 nm (spectral bandwidth 0.5 nm, lamp current 4 mA); Pb(I) 217.0 nm
(spectral bandwidth 1.0 nm, lamp current 10 mA) and Cu(II) 324.8 nm (spectral bandwidth 0.5 nm,
lamp current 4 mA). Real samples for measurement were prepared using microwave mineralization,
according to the method [31].

2.9. Descriptive Statistics

Data obtained from the system NOVA were graphically and mathematically processed using
Microsoft Excel® and Microsoft PowerPoint®. Results were expressed as the mean + the confidence
interval (n =5, a = 0.05). The detection limits (3 signal/noise, S/N) were calculated according to
Long and Winefordner, while N was expressed as a standard deviation of noise determined in the
signal domain [32]. The relative standard deviation (RSD%) for repeated measurements at the LOD
concentrations for Zn(Il), Cd(II), Pb(II), Cu(Il) and Ag(I) using the Cr-CPE was less than 9.5% and
using the Cr-SPE it was less than 8.9%.

3. Results and Discussion

3.1. Modification of Carbon Paste with Chromium(II1I)

SEM analysis was used to confirm the porosity of chromium(Ill) oxide, the first thermally
produced from ammonium dichromate or the second commercially purchased. Figure 1 shows the
difference in the structure of the purchased chromium(Ill) oxide (Figure 1(A1,A2)) and the thermally
produced one (Figure 1(B1,B2)). The purchased chromium(Ill) oxide creates a rod-like structure.
On the other hand, the structure of the chromium(III) oxide produced by the ammonium dichromate
decomposition is uniform and more porous, thus the prepared compound has a larger surface area [3].
According to the BET analysis, the surface area of the purchased chromium(III) oxide was 2.51 m?.g~!.
The adsorption/desorption isotherm of the thermally produced Cr,O3 was type Il according to IUPAC
classification, with hysteresis H3, which corresponds to very weak adsorbate-adsorbent interaction
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and very large pores. The surface area was 60.3 m?-g~!, the total pore volume was 0.245 cm?-g~! and
the average pore diameter was 17.16 nm.
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Figure 1. (A) Structure of the purchased chromium(IIl) oxide and (B) structure of the thermally
produced chromium(IIl) oxide. Enlargement (A1,B1) is 15,000, (A2,B2) 25,000 .

The structure of both tested compounds was responsible for their differences in affinities for
detected metals. In Figure 24, it is shown that when the purchased chromium(III) oxide was used,
a significantly reduced sensitivity of the electrode for the Zn(Il) and Cd(II) ions was attained. On the
other hand, the sensitivity to lead and copper ions was slightly improved. It is known that the
determination of Zn(II) by anodic stripping voltammetry is affected by the presence of Cu(Il) [33].
The objective was to achieve a balance of sensitivity for both Cu(Il) and Zn(II). This equilibrium was
attained using a carbon paste enriched with synthesized chromium(Ill) oxide, as this material even
showed improved composition and sensitivity of the working electrode for Cd(II) ions.

After the optimization of the source for chromium(IIl) oxide, we turned our attention to the
optimization of amounts of the individual carbon paste components. Figure 2B shows the results
of this optimization process. Primarily, the ratio of expanded graphite and chromium(Ill) oxide
was optimized. The batch size of the expanded graphite was 0.1 g and then various amounts of
chromium(III) oxide (15 mg, 25 mg, 35 mg and/or 45 mg) were added. The same level of response for
all metal ions was achieved using 25 mg and 35 mg of chromium(IIl) oxide. However, when the batch
size chromium(III) oxide was increased to 45 mg, an unwanted peak appeared in the voltammogram at
the potential of 0.0 V. Therefore, 25 mg of chromium(III) oxide was used in the following experiments.
For testing the CPE, the weight ratio of 1:4 was chosen. To achieve the proper consistency in the CPE,
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300 pL of paraffin oil was used. The Cr-CPE was also compared with a bare paste electrode (without
modification). The results of this comparison are shown in Figure S1.

Finally, the following measurement parameters were optimized as follows (not shown): deposition
potential (from —1.5 to —1.3 V), accumulation time (from 60 to 300 s), amplitude (from 60 to 200 mV)
and frequency (from 60 to 220 Hz). We found the following to be optimal: deposition potential (—1.3 V),
accumulation time (100 s), pulse amplitude (150 mV) and frequency (150 Hz).

The precision of the Cr-CPE was determined by repeatability (same day) and intermediate
precision (inter-day). Repeatability was evaluated by analyzing the standard metal solution three times
a day. Measurement accuracy was evaluated by comparing the results obtained on three different days.
The RSD of the predicted concentrations from the regression equation was taken as precision. For the
measured concentration, the relative values of the standard deviation were in the interval and between
days <9.34%.

The bare electrode, the Cr-CPE and the Cr-SPE behaviour were examined in the range from —1.3
to 0.3 V with CV. The recordings are shown in Figure S2. There are no signals in the case of the bare
electrode and the Cr-CPE. For further measurements, the range from —1.6 to 1.6 V was used.

A

— CPE modified with thermally produce Cr,0;
— CPE modified with Cr,O; purchased
Cu(II)

Pb(II)
Cd(IT)

TZOpA

Current intensity (uA)

T T T

-1.5 -1.0 -0.5 0.0 0.5
Potential (V)

Figure 2. (A) Comparison of the influence of the heavy metals detection with the CPE modified with
purchased CryO3 compared to CPE modified with thermally produced CryOs. (B) The effect of CryO3
addition on detection sensitivity for selected metals.

3.2. Electrochemical Determination of Individual Zinc, Cadmium, Lead and Copper lons

Prior to the simultaneous detection of zinc, cadmium, lead and copper ions, calibration curve of
each individual metal ion was measured. The equations coefficient of the calibration curves (I, = acm +b)
and the coefficients of the determination (r?) of individual metals are shown in Table 1. A detailed
discussion to compare the results achieved by simultaneous detection and detection of individual
metal ions can be found in Section 3.3. Graphs of the calibration curves of individual metal ions are
given in Figure S3.

3.3. Simultaneous Detection of Zinc, Cadmium, Lead, Copper and Silver Ions

The Cr-CPE was optimized for the simultaneous determination of metal ions (Zn(Il), Cd(II),
Pb(ll) and Cu(ll)). The calibration curves for each metal are shown in Figure 3A and their
coefficients in Table 1, where the values of r?> are also presented showing the very good
reliability of this method. The error bars were calculated from the standard deviations of the
measurements. Typical voltammograms of simultaneous analyses of the metals are shown in Figure 3B.
When comparing the detection of individual metal ions and simultaneous ions detection (Table 1),
we reached the same LODs, which are shown in Table 2 at the bottom, but their slopes (sensitivities)
differ only where an increase in sensitivity for copper and lead ions is noticeable in the case of
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simultaneous detection. The Cr-CPE is therefore suitable for both types of detection (Table 1, Figures 3A
and S1). Moreover, the Zn(II), Cd(Il), Pb(Il) and Cu(Il) detection performance of the proposed sensor
was compared with other previously reported modified carbon paste electrodes and the results are
listed in Table 2. It clearly follows from the results obtained in this study that our electrodes have
comparable analytical accuracy to other electrodes published previously.

Besides the simultaneous detection of the mentioned metals, we also tested the developed sensor
to determine Ag(I). Prior to the measurement of the calibration curve of Ag(I) ions, optimization of
the selected experimental parameters was carried out. However, it was found that the most suitable
parameters were the same as in the case of simultaneous detection of Zn(II), Cd(II), Pb(II) and Cu(II)
ions. It can be concluded that the CPE modified with chromium(III) oxide can detect five metals at low
concentrations in a single mode measurement. As in the previous measurement, an acetate buffer of
pH 5 was used for the detection of silver ions. As it is shown in Figure 3C, silver ions can be measured
within the linear range of 10 to 500 ug-L 1. Ag(I) was characterized by the equation I, = 0.1525cm, — 3.1774
with the coefficient of determination of 0.9942. The limit of detection was determined to be 3 pg-L 1.
Typical voltammograms of analyses of Ag(I) are shown in Figure 3D.

Table 3 contains a comparison of the Cr-CPE with previous studies on the electroanalytical
detection of Ag(I). Some mentioned methods achieve lower detection limits of silver cations on the
surface of the modified electrode, having accumulation times which are several times longer than our
time of 100 s. A shorter accumulation time enables faster measurements, therefore in the same time
more analyses can be made. However, a great advantage of our modification is the simple and easily
reproducible manufacturing and low manufacturing cost.

A B
120 Zn()
A Zni . E u(II)
~100 4 & cdqn) R?=0.9934 800 pg'L™!
e Pb(IT) — 400 pgL!
[ Acetate buffer
2z 80 -
£ A Cu(Il) i
§ 20 R?=0.9941
g
< T 20pA
o 404 cd(n
= Zn(1I)
& gl x R?=09934  R2—0.9900
0 T T T T T T T
0 200 400 600 800 1000 -1.5 -1.0 -0.5 0.0 0.5
Concentration (ug-L™1) Potential (V)
C o0 =
70 4 AAg(D) — 500 pgL!
— 260 pgL! el
0 1 10 pg'L! &

— Acetate buffer

T 10pA

(=1
L

R?=0.9942

(=]
1

Current intensity (pA)
(3] ©) - wn (o))
(=] (=]

—
(=1
L

(=]

T T T

0 200 400 600 -0.1 0.1 0.3 0.5
Concentration (ug-L 1) Potential (V)

Figure 3. The calibration curves of (A) Zn(II), Cd(II), Pb(II) and Cu(II), and (C) Ag(I) measured
by the carbon paste electrode modified with thermally produced chromium(IIl) oxide. Typical
voltammograms show the simultaneous detection of (B) Zn(Il), Cd(II), Pb(Il), Cu(Il), and (D) Ag(I),
at different concentrations.
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Table 1. The equation coefficients (I, = acm + b) and the coefficient of determination (r2) for each
individual heavy metal ion (Zn(II), Cd(II), Pb(II), and Cu(Il)) and for the mixture solution determined

by the Cr-CPE.
Electrode Type Detected Ion a b 2

Cr-CPE Zn(II) 0.0109 —0.4783 0.9905

(individual ions) Cd(I) 0.0177 1.5649 0.9890

Pb(II) 0.0566 —0.6693 0.9952

Cu(Il) 0.1104 0.4032 0.9904

Cr-CPE Zn(II) 0.0096 —0.4081 0.9900

(mixture solution) Cd(II) 0.0103 1.1684 0.9934

Pb(II) 0.0710 0.7963 0.9941

Cu(Il) 0.1244 3.9573 0.9934

Table 2. Comparison of the performance of the proposed electrode with other modified carbon paste

electrodes for simultaneous detection of heavy metals.

Electrode Type Detected Analysis LOD Linear Range Accumulation References
Metal Method (ug-L™1) (ug-L™ 1 Time (s)
BRMCPE ! Zn(II) SWASV 134 400-1000 300 [34]
Cdr) 155 400-1000
Pb(II) 15 50-200
Cu(II) 125 250-700
HMS-Qu/CPE 2 Cdr) DPV 7 0.1 0.5-229 120 [35]
Pb(II) 0.2 2-1658
Cu(Il) 0.3 1-381
N-BDMP 3 Cd(r) SWASV 7 10-2000 210 [36]
Hg(II) 8 10-2000
Ac-Phos SAMMS * Cdr) SWASV 0.5 10-200 1200 [37]
Cu(Il) 0.5 10-200
Pb(II) 0.5 10-200
MWCNT/CPE > Zn(1I) PSA 8 28 58-646 180 [18]
Cd(In) 8 58-646
Pb(II) 7 58-646
OPFP with bismuth film © Pb(1I) SWASV 0.1 1-100 120 [38]
Cd(r) 0.1 1-100
Cr-CPE Zn(1I) SWASV 25 80-800 100 This work
Cdr) 3 10-800
Pb(II) 3 10-800
Cu(II) 3 10-800

1 BRMCPE—black rice modified carbon paste electrode;

2 HMS-Qu/CPE—hexagonal mesoporous

silica immobilized quercetin carbon paste electrode; 3 N-BDMP—phosphorous ylide nitro benzoyl
diphenylmethylenphosphorane carbon paste electrode; * Ac-Phos SAMMS—carbon paste electrode modified
with carbamoylphosphonic acid self-assembled monolayer on mesoporous silica; 5 MWCNT/CPE—multiwalled
carbon nanotube electrode; ® OPFP with bismuth film—ionic liquid n-octylpyridinium hexafluorophosphate
modified carbon paste electrode with bismuth film; 7 DPV—differential pulse voltammetry; 8 PSA—potentiometric

stripping analysis.
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Table 3. Comparison of the performance of the proposed electrode with other reported electrochemical
silver sensors.

Analysis LOD Linear Range Accumulation

Electrode Type Method (ug-L—1) (ug-L=1) Time (s) References
MGCE modified with
Fe3O4-Au NPs 1 DPV 6 13-1910 300 [39]
CPE modified with AMQ 2 DPASV 8 0.4 0.9-302 720 [40]
CPE modified with 9
GSN-TH-DPA 3 POT 0.5 0.9-1079000 - [41]
CPE modified with IIP 4 DPsy 10 0.1 0.3-92 360 [42]
CPE modified with PAR ° DPASV 0.1 0.5-302 720 [43]
CPE modified with )
P-MWCNTs DPSV 0.01 0.05-30 180 [4]
CPE modified with
NBHAE-MWCNTs 6 DPASV 0.09 0.5-194 540 [44]
CPE modified with DPSG 7 POT 11 54-10790000 - [45]
Cr-CPE SWASV 3 10-500 100 This work

1 MGCE modified Fes0;-Au NPs—Magnetic glassy carbon electrode modified iron oxide—gold

nanoparticles; 2 CPE modified with AMQ—3-Amino-2-mercapto quinazolin-4(3H)-one; * CPE modified
with GSN-TH-DPA—Graphene nanosheets—thionine-diphenylacetylene, 4 CPE modified with IIP—Ion
imprinted polymer—poly(vinyl chloride); > CPE modified with PAR—4-(2-pyridylazo)-resorcinol; ® CPE modified
with NBHAE-MWCNTs—N,N’-bis(2-hydroxybenzylidene)-2,2’(aminophenylthio)ethane; 7 CPE modified
with DPSG—dipyridyl-functionalized silica gel; 8 DPASV—differential pulse anodic stripping voltammetry;
9 POT—potentiometry; ' DPSV—differential pulse stripping voltammetry.

3.4. Interferences

In this part of the study, the response of the chromium(IIl) oxide-modified CPE to various
interferences in the mixture was tested. Different ions (Fe>*, Mg2+, K*, Ca%*,Na*, NO;~, SO42~, Cl~
in the form of Fe(NOs)3, Mg(NO3),, KNO3, Ca(NO3),, NaNOs, HNO3, HySO4 and HCI) were added to
the mixture of Zn(II), Cd(Il), Pb(II) and Cu(Il) and the specific signals of Zn(II), Cd(II), Pb(II) and Cu(II)
were observed. The results are shown in Figure 4A-D. The first point of the curve represents values
free from the influence of interferences. The influence of these ions on the relative peak height of Zn(II)
is shown in Figure 4A, where it can be seen that with the addition of each ion, the sensitivity for Zn(II)
decreases. Figure 4B shows the influence of different ions on the relative peak height of cadmium.
It follows from the results obtained that the signal of Cd(Il) increases with the addition of ferric ions
and conversely this signal decreases with the addition of magnesium ions. The relative peak height
of lead increases with the amount of ferric and magnesium ions and decreases with chloride ions
(Figure 4C). Figure 4D shows the dependence of the Cu(II) relative peak height on the concentrations
of different salts. It can be seen that the Cu(ll) signal increases with the increasing concentration of
ferric and magnesium ions. On the other hand, this signal decreases in correlation to the increase of
the chloride ions concentration. The response of Cu(II) ions to interference has similar characteristics
to the case of Pb(Il). It can be summarized that with the increasing concentration of ferric ions the
relative peak heights of Cd(Il), Pb(I) and Cu(Il) increase. The same effect can also be observed in the
case of magnesium salts but for Pb(II) and Cu(Il) ions only. In contrast, in presence of magnesium ions
the response of cadmium ions achieves a markedly lowered value than expected. On the other hand,
different concentrations of KNOs, Ca(NO3), and HNOj did not have any influence on the Cd(II), Pb(II)
and Cu(Il).

As in the case of simultaneous detection, the influence of different types of anions and cations
on silver determination was studied. In this part of the experiment, it was necessary to realize that
in the case of chloride ions, it was important not to exceed the solubility equilibrium. If the value
of the solubility equilibrium was exceeded, precipitation of silver chloride from the mixture would
occur. For AgCl this value is equal to 1.8 x 107'°. Considering this fact, the same types of cations
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and anions as in the case of the simultaneous analyses of the abovementioned metals have been
tested (see above). Figure 5 shows that the increasing SO42~ concentration led to the increase of the
corresponding relative peak height of silver. In contrast, the addition of Mg?* and Na* decreased the

silver signal. The response of the silver ions was more stable in the presence of NO3 ™.
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3.5. The Chromium Modified Screen-Printed Electrode (Cr-SPE)

The carbon based paste modified with chromium(III) oxide was used for printing of sensors.
For comparison, the sensitivity was measured within the same range of concentrations under the same
optimal parameters as in the case of the Cr-CPE. The Cr-SPE sensor, based on silver collectors, means
it is not suitable to directly detect Ag(I). We therefore tested the Cr-SPE sensors without the silver
collectors. The results showed poor stability and a very high limit of detection for all tested metal ions.
Therefore, other experiments were performed using the Cr-SPE with silver collectors for the detection
of Zn(I), Cd(II), Pb(Il) and Cu(II). A comparison of the analytical parameters of the Cr-CPE and the
Cr-SPE is shown in Table 4. Figure 6 shows the comparison of results obtained from paste and printed
sensors. Since the production of these sensors is relatively inexpensive and the Cr-SPEs show good
detection limits for the simultaneous determination of selected metals, it could be used in the future
for practical application. Another great advantage is the speed, precision and high reproducibility.

— 800 pg L Pb(II)

—400 pgL!
Acetate buffer
Cd(II
Zn(1I) (D)

-1.5 -1.0 -0.5 0.0 0.5
Potential (V)

Figure 6. Typical voltammograms of simultaneous detection of Zn(II), Cd(II), Pb(Il) and Cu(II) on the
Cr-SPE at different concentrations.

Table 4. Comparison of the results on the Cr-CPE and Cr-SPE for simultaneous detection of Zn(II),
Cd(II), Pb(IT) and Cu(Il) in mixture solution.

Electrode Type Detected Ion LOD (ug-L~!)  Linear Range (ug-L~1)

Cr-CPE Zn(I) 25 80-800
cd( 3 10-800
Pb(IT) 3 10-800
Cu(Il) 3 10-800
Cr-SPE Zn(I) 350 400-800
Cd(In) 25 80-800
Pb(ID) 3 10-800
Cu(ID) 3 10-800

3.6. Analysis of Real Samples

The Cr-SPE functionality was verified on real samples of industrial wastewater. The sample
was taken from a chemical factory in the Czech Republic. Results obtained by this method were
compared with those obtained by AAS. The determined concentrations of Zn(II), Cd(II), Pb(II) and
Cu(II) based on the present Cr-SPE method using Cr-SPE are presented in Table 5. Ag(I) ions have
not been detected. It clearly follows from the results obtained that there is a consensus confirming the
application potential of the developed Cr-SPE.
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Table 5. Comparison of Cr-SPE, HMDE and AAS for the determination of Zn(II), Cd(II), Pb(II) and
Cu(II) in real wastewater samples.

Type of Measurement Zn(II) (mg-L™1) Cd(I) (mg-L™1) Pb(II) (mg-L~ 1) Cu(I) (mg-L~1)
Cr-SPE 2.6+0.8 35+07 57+ 1.1 7.9+ 0.6
HMDE ! 6.2+ 0.5 3.9+03 47403 83+05
AAS 6.6 & 0.01 4240.04 4.8 +£0.02 8.8 £ 0.01

! HMDE—hanging mercury drop electrode.
4. Conclusions

Simultaneous analysis of Zn(Il), Cd(Il), Pb(Il) and Cu(Il) was successfully performed using the
Cr-CPE. This modification of the electrode showed good stability and high sensitivity. The sensitivity
of such prepared electrodes is satisfactory in comparison with other methods (see Section 3.2,
Tables 2 and 3). One may suggest that the main advantages of our proposed system are simplicity,
speed, very good repeatability and low cost of preparation. Moreover, it offers a good alternative where
electrochemical measurements using mercury electrodes cannot be used. In addition, it is possible
to successfully detect Ag(I) ions with a detection limit of 3 pg-L~! using the Cr-CPE. A practical
application for this Cr-CPE is its successful transfer to the printed sensors, also used in this study.
Cr-SPEs are very sensitive especially in the case of Pb(II) and Cu(Il). The same detection limits as
the Cr-CPE were achieved, however the Cr-SPE is useful for the simultaneous detection of all four
investigated metals (Zn(II), Cd(Il), Pb(ll) and Cu(Il)). Furthermore, the Cr-SPE proved to be a useful
tool for the detection of metals in practice, where the estimated detection limits comply with FAO
(Food and Agriculture Organization) and WHO (World Health Organization) recommended maximum
concentrations of trace elements in water irrigation and livestock drinking water [46]. Therefore, these
sensors can be put to practical use in portable field detection devices.

Supplementary Materials: The following are available online at http:/ /www.mdpi.com/1424-8220/17/8/1832/s1,
Figure S1: Comparison of the influence of the heavy metals detection with the bare electrode compared to the

CPE modified with thermally produced Cr,O3. The concentration of individual metals was 800 pg-L~; Figure S2:
Cyclic voltammetry of individual materials. (a) CV for the bare electrode, the range from —1.3 to 0.3 V, (b) CV for
the bare electrode, the range from —1.6 to 1.6 V, (¢) CV for the Cr-CPE, the range from —1.3 t0 0.3V, (d) CV for the
Cr-CPE, the range from —1.6 to 1.6 V, (e) CV for the Cr-SPE, the range from —1.3 to 0.3 V, (f) CV for the Cr-SPE,
the range from —1.6 to 1.6 V; Figure S3: The calibration curves for each metals ions Zn(II), Cd(II), Pb(II) and Cu(II),
measurement by the Cr-CPE.
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