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Abstract: A Smart Grid (SG) facilitates bidirectional demand-response communication between
individual users and power providers with high computation and communication performance
but also brings about the risk of leaking users’ private information. Therefore, improving the
individual power requirement and distribution efficiency to ensure communication reliability while
preserving user privacy is a new challenge for SG. Based on this issue, we propose an efficient
and privacy-preserving power requirement and distribution aggregation scheme (EPPRD) based
on a hierarchical communication architecture. In the proposed scheme, an efficient encryption and
authentication mechanism is proposed for better fit to each individual demand-response situation.
Through extensive analysis and experiment, we demonstrate how the EPPRD resists various security
threats and preserves user privacy while satisfying the individual requirement in a semi-honest model;
it involves less communication overhead and computation time than the existing competing schemes.

Keywords: smart grid; smart meter; privacy-preserving; power requirement and distribution;
homomorphic aggregation; hash message authentication code

1. Introduction

With the advance of information and communication, the transition of the traditional electrical
grid into modern power system promotes the generation of Smart Grid (SG). The utility provider has
also switched from the original arbitrary power distribution into the current bidirectional information
exchange according to the user’s individual requirement and current power level. The bidirectional
communication between the power companies and end users in SG facilitates mutual information
exchange, by which SG has become a platform playing an important role in power generation,
transmission, distribution, managing and monitoring system [1–3].

As one key element of SG, the advanced metering infrastructure (AMI) further develops the smart
metering, smart billing, demand response system, fault-tolerance and attack monitoring, but also
bring the risk of revealing user privacy [4,5]. To this end, privacy-preserving aggregation protocols
has emerged in secure metering of SG since the aggregate sum for smart metering is computed
without leaking user measurements. The existing scheme, such as in [6], presents a comparison
of four concrete protocols for secure aggregation smart metering, namely interactive protocols,
the Diffie–Hellman Key-exchange based protocol, Diffie–Hellman and Binary mapping based protocol,
and low-overhead protocol. The last three protocols adopt secure and a relaxed Diffie–Hellman
key exchange protocol that lowers the computation and communication overheads. However, this
work does not consider smart meter authentication, while our scheme extends Diffie-Hellman-based
authentication. Bartol et al. in [7] provide a privacy aggregation scheme in which messages of smart
meters are concatenated to generate a single aggregated message. This scheme can preserve the privacy
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of every user. However, the aggregator must sequentially decrypt all messages in an aggregated
message to generate the data total, which generates a lot of computational overheads. In order
to reduce computational overheads after aggregation and prevent the middle nodes or aggregator
from compromising the individual data, additional homomorphic encryption occurs, in which the
encrypted individual measurements are added to generate the ciphertext of sum, and then is decrypted
into the plaintext of the sum. In [8–15], the proposed homomorphic encryption does not need
sequential decryptions at the aggregator, so aggregation time is short and overhead is low. Garcia et al.
in [11] provide a privacy-preserving aggregation scheme without compromising individual data with
secret sharing and Paillier homomorphic encryption. The aggregator is responsible for receiving,
computing, and distribution of N nodes, but the number of homomorphic encrytions per user is
linear. Li et al. in [9] deploy a distributed incremental aggregation approach in hop by hop (HBH)
networks, which aggregates the node data of its children and relays them to its parents’ nodes.
The scheme constructed a breadth-first traversal tree corresponding to the graph of the networks
within a neighborhood. Erkin et al. in [15] realizes improved homomorphic aggregation scheme in
which any user can aggregate total power consumption for all users at a time stage or a user smart
metering for a series of time, and random numbers are added into every individual user to encrypt
individual measurements. However, a lot of interaction among smart meters aggravates the whole
computation burden.

In addition to Paillier homomorphic encryption, Diffie-Hellman-based, ElGamal and the BGN
homomorphic encryption scheme are also used in homomorphic aggregation of SG data. [16] ensures
the aggregator oblivious with the shared keys and uses Diffie-Hellman homomorphic encryption
and distributed differential privacy. However, the aggregation sum must be achieved through the
brute-force search; consequently, the decryption time is the square root of the length of the plaintext
even when Pollard’s method is used. The blinding shares of zero to each user as private key involves
a presentation for every user, and distributing new share keys when new nodes are added or existing
nodes leave, which aggravates the computational burden on the system. The employed method in [5]
encrypted user data homomorphically on demand using ElGamal encryption and transmited the data
to the utility provider based on an HBH network communication model.

However, most of the above schemes do not provide individual user services; they only provide
the total required power consumption and requirement to the utility provider. Therefore, the current
research issue in SG is to study schemes that can meet individual demands and adjust the power
distribution according to the current power level [17]. Lu et al. in [12] applied a multi-dimensional
individual data aggregation method in an ETE (end-to-end) network model and reported that batch
verification saves a considerable amount of communication overhead. User privacy was ensured
in [17] by separating the users’ real identities from their fine-grained metering data; thus, attackers
can discover either the user’s identity or their fine-grained metering information, but not both.
However, [17] focused on the anonymity and privacy scheme and did not address authentication issues.

Existing authentication schemes [18–22] all include encrypted hash functions, especially hash
message authentication codes (HMAC), which are applied to protect the integrity of messages against
deliberate alterations. A simple authentication scheme was designed in [18] for upward communication
that used digital signatures for downlink communications. The approach in [20] ensured secure
bidirectional communications between the smart meters and the aggregator using bitwise exclusive-OR
operations for encryption and a Lagrange interpolation formula for authentication.

Different smart grid applications have different network requirement in terms of data payloads,
sampling rates, latency, and reliability [3]. As revealed in [3], in a smart grid environment,
a communication network can be represented by a hierarchical multi-layer architecture, which is
divided into several area networks (i.e., Home Area Network (HAN), Building Area Network
(BAN), Industrial Area Network (IAN), Neighborhood Area Network (NAN), Field Area Network
(FAN), and Wide Area Network (WAN)). A comprehensive and hierarchical structure for smart
grid communications was proposed in [19,22] that used a three-layer network: HANs at the user
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level, BANs at the building level, and NANs at the substation level. In this configuration, different
gateways are responsible for aggregating data, namely, the HAN Gateway (GW), BAN Gateway
(GW), and NAN Gateway (GW), which reside in each corresponding layer of the network. Based on
this hierarchical architecture, they proposed an authentication scheme based on computational
Diffie–Hellman encryption to maintain data integrity. We adopt a lightweight authentication method
in combination with our hierarchical network architecture to satisfy the scalability and the real-time
and efficient communication requirement while preserving privacy.

We propose an efficient privacy-preserving power requirement and distribution aggregation
scheme for a Smart Grid (EPPRD). The scheme focuses on securing the communications required to
implement individual power requirements and distribution suited to the current power level, in which
a lightweight, scalable authentication protocol is proposed for bidirectional communication based on
hierarchical communication networks. The main contributions of this paper are as follows:

• It may be necessary to adjust a user’s power distribution in the next time slot to flatten
demand peaks based on the power consumption in the current time slot, because power
changes dynamically over time. During peak demand, the Control Center (CC) reduces the
total distribution to users to adjust power consumption from peak time to non-peak time in the
next time slot. Therefore, our demand message is divided into two parts: an individual user
requirement based on RSA encryption for the next time slot and the total user consumption
based on Paillier encryption in the current time slot, which is one significant reference of power
distribution at the next time slot for the CC.

• To reduce the volume of transmitted traffic, we locate a regional concentrator in the BAN
for regional storage, aggregation, transmission, and distribution. After the BAN receives the
distributed regional power ratio from the CC, it immediately distributes individual power to the
users according to the stored requirement and the distributed regional power ratio.

• To ensure message confidentiality and integrity, we employ the Public–Private, Paillier
homomorphic cryptography and Hash-based Message Authentication Code authentication in the
HAN Smart Meter (HSM), BAN Gateway (BGW), and NAN Gateway (NGW). This scheme can
resist various attacks, such as replay attacks, man-in-the-middle attacks, eavesdropping attacks,
and so forth. This scheme offers stringent security and reliability guarantees.

• The remainder of the paper is organized as follows. In Section 2, we introduce related work
with EPPRD. In Section 3, we introduce an EPPRD communication model and security goal.
In Section 4, we introduce the basic preliminaries such as Computational Diffie-Hellman (CDH)
Problem and Paillier cryptosystem. In Section 5 we propose the EPPRD scheme and security
analysis and proof. After that we present our performance analysis and discussion in Sections 6
and 7, respectively. Finally, we draw conclusions in Section 8.

2. Related Work

Although multiple studies in [8,19,21–27] have already proposed methods to securely aggregate
user measurements in SG, they have focused primarily on total user power aggregation rather than on
individual information exchange between a user and a power utility, and such total aggregation is not
suitable for modern individual demand-response characteristics. Some of the proposed methods are
also vulnerable to various attacks because they lack a rigorous authentication process, and some are
inefficient due to their high communication overhead.

In [19,22], the authors introduce a simple authentication scheme. Two parties (in HAN and BAN
or NAN) establish a shared key using the Diffie-Hellman Technique, after the initial authentication,
they generate HMAC signatures for all subsequent communications. However, these studies
did not address the issue of privacy at all. A hierarchical communications architecture was also
adopted in [21], which proposed an individual security billing scheme based on the hierarchical
communications architecture. The user submits an encrypted power requirement to the aggregator.
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When billing, the user can show the CC the pre-submitted requirement and receives a reward or penalty.
Although the scheme adopts a method similar to ours regarding the hierarchical communications
architecture, HMAC authentication, and bi-directional communication, there are some differences
between [21] and our study:

• Our scheme focuses on preserving the privacy of individual power requirement and distribution
instead of on individual power billing. We adopt two different encryption modes for individual
power requirement and distribution, while [21] employs only Paillier homomorphic encryption
for its power requirement.

• Zhong et al. in [21] employ commitments to store an individual power requirement and transmits
it upward through nodes to the CC, which generates excessive communication overhead, while we
employ a regional concentrator to store and distribute the individual power requirement.

• From a security and data integrity perspective, [21] employs only one authentication key
throughout the entire authentication process; however, as is well known, a user’s smart
meter is more vulnerable to attack than a gateway is. Therefore, if the authentication key is
compromised, all the subsequent authentication processes are vulnerable to a man-in-the-middle
attack. Our scheme strengthens this aspect by adopting a stringent method of authentication
between the HSM and the BAN Concentrator (BC) to reduce the vulnerability of the HSM.
In our scheme, a new authentication key is generated randomly based on the Diffie-Hellman key
establishment protocol in every communication session. In comparison with [21], we show that
when the number of smart meters is very large, our protocol is more efficient and more stringent
than competing schemes.

The study in [8] presents a secure privacy preserving aggregation method to protect the electricity
consumption of an individual user. It can also resist internal attacks. However, it differs from ours in
its encryption scheme, authentication, and trustable nodes. TTP is employed in [8], while we employ
regional concentrators in the BAN layer.

Numerous authentication schemes have been proposed thus far [23–25]; however, all these
schemes suffer from too many authentication steps, which cause high communication overhead and
long delays. In this paper, these challenging issues are ameliorated [8] by proposing a robust, efficient,
and lightweight message authentication scheme to ensure secure communications between the GWs.
Our authentication scheme provides mutual authentication among smart meters located in different
area networks in a hierarchical communication network. The proposed authentication scheme is based
on the Diffie-Hellman key establishment protocol and keyed Hash-based Message Authentication
Code (HMAC K) in [19].

Of course, there are quite a few studies that involve regional concentrators. Of these, [26,27] are
closest to ours. The employed method in [26] provided a comprehensive performance analysis of the
Split and Aggregated TCP (SA-TCP) scheme. It studies the impact of varying various parameters on
the scheme, including the impacts of network link capacity and the buffering capacity of Regional
Collectors (RCs), and it uses RCs as the SA-TCP aggregators. It is noted in [26] that RCs are trustable
gateways that are installed at preselected locations in every region to route the meters’ data packets
through a wide area network to the utility server. The study in [27] compares the performance of
four different WSN architectures in terms of energy consumption, in which the CN (Concentrator
Node) in the third presented architecture is similar to the regional concentrator in our scheme.
A Ttrustable regional concentrator should have some storage and processing capability to allow
it to aggregate the periodically generated regional metering information and stores those values in its
memory. Then, for example, at the end of the day, the concentrator could aggregate the information
and send a summary message to the CC [27]. Using this approach, the traffic in the low-level network
can be greatly reduced.

Based on this idea, we install also a trustable regional concentrator in the BAN layer, called a BAN
Concentrator (BC). Each set of n meters establish n TCP connections with a BC, which is a gateway that
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acts as a regional aggregator and distributor. The difference from the two studies mentioned above is
that the BCs in our scheme can not only store and sum up individual requirement but also aggregate
individual consumption homomorphically to distribute individual power to the specific user.

3. Models and Goals

In this section, we formalize a system communication model, security goals, and attack model
in EPPRD.

3.1. System Communication Model

The system communication model as shown in Figure 1 is based on the hierarchical
communication architecture. In EPPRD, the communication network framework includes
Neighborhood Area Network (NAN), Building Area Network (BAN), and Home Area Network (HAN).
HAN, BAN, and NAN communicate through Wimax, and NAN connects the CC with optical fiber.
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Figure 1. Hierarchical communication system model of smart grid.

We use the HSM to represent HAN Gateway Smart Meter; the BC represents BAN Concentrator;
NGW represents NAN Gateway; and the GWs stands for BC, and NGW below.

• CC: we assume CC is a highly trusted and powerful entity in charge of managing the whole
system. Its duty is to initialize the system and to collect, process, analyze the real-time data,
and provide power distribution according to the power level and real-time data.

• BC: we assume BC is a highly trusted gateway in charge of collecting, storing, aggregating,
and distributing real-time data. BC can also store regional individual power requirements and
aggregate regional power consumption and transmit it with regional requirement summation
through the NAN to the CC and distribute individual power to every user according to the power
ratio from the CC. BC needs enough secure storage, which can be used to handle the long-term
keys described above and protect their private reading; this can be achieved, for example, by TPM
chips to store the specific power requirements of HSM.
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• NGW: NGW is a power gateway, which connects real-time data from BC and CC. The duty of
NGW is to relay and aggregate real-time data. The duty of aggregation is aggregate the regional
consumption data from BC, whereas the duty of relay is to relay the regional requirement data
from BC in a secure way.

• HSM: we refer to HSM as a user with a smart meter and the HAN is made up of various smart
applications. The real-time data of HSM is collected and processed by BC and transmitted into
CC via NGW. Although HSM is tamper-resistant and interfering with measurements is not trivial,
it is not as powerful as the gateway (e.g., BC, NGW), so it may be vulnerable to attackers.

For the sake of simplicity, we assume every set of m HSMs establish m TCP connections with a BC,
every set of n BCs establishes n TCP connections with a NGW, and every set of p NGWs establishes p
TCP connections with CC.

3.2. Security Goals

We have the following three security goals:

• Confidentiality. Authorized limitation to access data and encryption is critical to protect personal
privacy and information—in other words, only the granted entity can receive the individual user
data or access the databases of the GWs, i.e., an attacker cannot decrypt the communication flows
between GWs and CC.

• Data integrity, authentication, and access control. Authentication and access control verify
authorized communication entity and ensure access to the power information, which prevent
an ungranted attacker from modifying and destructing the power data integrity and availability.

• Forward secrecy. Forward secrecy is a property of secure communication protocols in which
compromise of long-term keys does not compromise past session keys.

To satisfy these secure goals, not only should every node be encrypted with cryptographic
primitives but communication flows should be verified with an efficient and bidirectional
authentication method.

3.3. Attack Model

We assume smart meters (e.g., HSM, NGW) are semi-honest (also known as “Honest but curious”)
that faithfully follow all prescribed protocols and provide real measurements; however, they attempt to
know as much data as possible. Although HSM is assumed to be tamper-resistant, we do not rule out
the possible of data pollution (or DoS) attack. A data pollution attack is a kind of malicious participant
attack where the attacker lies about their values, resulting in incorrect measurement results. It is not
within the scope of this paper, but we would like to mention that one possible solution is interactive or
non-interactive zero knowledgeproof.

• We consider the following possible attack types in EPPRD.
• External Attack: The external attacker tries to infer the individual information by eavesdropping

on the communication and data flow from the HSM to the BC, from the BC to the NGW, and from
the NGW to the CC.

• Internal Attack: Internal attackers are usually participants of the protocol (e.g., NGW) who may
collude with as many compromised HSMs as possible to learn about the individual user’s privacy,
or a curious HSM who attempts to infer the private data of another HSM.

• Man in the middle attack: The attacker forges or alters the communication data once he is
authorized by any communication party, so the authentication key between HSM and BC should
be different from that between BC and NGW to prevent the authenticated attacker from altering
the communication data between BC and NGW.

• Replay Attack: Attacker tries to repeat or delay a valid data transmission while misleading the
honest sender into thinking they have successfully finished the data transmission.
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4. Preliminaries

In this section, we briefly provide some preliminaries for the security and authentication scheme
used in EPPRD.

4.1. Computational Diffie–Hellman (CDH) Problem

The CDH problem is stated as follows: Given the elements ga and gb, for unknown
a, b ∈ Z∗q, G = 〈g〉 be a group of large prime order q, it is hard to compute gab ∈ G. Based on the
CDH assumption, the lightweight message authentication scheme is described in detail in [19] and is
not repeated here.

4.2. Paillier Cryptosystem

The Paillier Cryptosystem was proposed in 1999 by Pascal Paillier and is one common homomorphic
encryption that is widely used in privacy-preserving applications [28]. Concretely, the Paillier
Cryptosystem is comprised of three algorithms: key generation, encryption, and decryption.

Key Generation: Given the security parameter κ, two large prime numbers p, q are first chosen,
where |p| = |q| = κ. Make N = pq, λ = lcm(p− 1, q− 1). Then define a function L(u) = u−1

N ,

after that choose g ∈ Z∗
N2,

so make gcd(L(gλ mod N2), N) = 1, Make α = (L(gλ mod N2))
−1

mod N.
Then the public key is PK = (N, g), then the corresponding private key is SK = (λ,α).

Encryption: Given one message m ∈ ZN, a random r ∈ Z∗N, the corresponding ciphertext can be
calculated as c = E(m, r) = gm·rN mod N2.

Decryption: Given one ciphertext c ∈ Z∗
N2,

the corresponding message can be calculated as

m = D(c) = L(Cλ mod N2)·α mod N.
Homomorphic aggregation: For random parameter between the GWs and CC m, m1, m2, r1, r2,

then E(m1, r1)·E(m2, r2) = E(m1 + m2, r1·r2)mod N2, (E(m1, r1))
m2 = E (m1·m2, r1

m2 ) mod N2.
Semantic Security: With the additional properties of the Paillier cryptosystem, the attacker cannot

distinguish the ciphertext of plaintexts even if the plaintexts are the same. The semantic security is
proved under the decisional composite residuosity assumption: Given N = pq, it is hard to decide
whether an element in ZN2 is an N-th power of an element in Z∗

N2 [18].

5. Our Scheme

5.1. System Initialization

For the given hierarchical communication system model in Figure 1, the CC can bootstrap the
whole system. We randomly select one HSM node, one BC node, and one NGW node and denote them
as HSMi, BCj, and NGWk, respectively. We assume that the BCj has m HSM nodes, the NGWk has n
BC nodes, and the CC has p NGW nodes. The specific notations in our scheme are listed in Table 1.

The special initialization process is as follows:

• Given the security parameter κ, CC first generates (p,q) by running Gen(κ), and calculates the
Paillier Cryptosystem’s public key denoted, PKCC (n = pq, g) and the corresponding private
key SKCC (λ,α), where p and q are two large prime numbers for which |p| = |q| = κ.
The <CC, PKCC> is distributed to each node in the network model, and the SKCC is kept private;

• For each user’s smart meter, HSMi generates a pair of public and private keys PKHSMi and SKHSMi

respectively. Then, <HSMIDi, PKHSMi > is stored at the control center and distributed to each user
after initialization, while SKHSMi is preloaded into the HSMi and kept private.

• Each BCj generates a pair of public and private keys, PKBCj and SKBCj respectively.
Then, <BCIDj, PKBCj> is stored at the control center and distributed to each user after initialization,
while SKBCj is preloaded into the BCj and kept private.
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• Each NGWk generates a pair of public and private keys, PKNGWk and SKNGWk , respectively.
Then <NGWIDk, PKNGWk> is stored at the control center and distributed to each NGW after
initialization, while SKNGWk is preloaded into the NGWk and kept private.

• CC generates an authentication key, s, encrypts it with the BC’s and the NGW’s public ciphertext,
and transmits it to the BC and NGW, respectively.

Table 1. Notations used in EPPRD.

Symbol Meaning

CC Control Center
GW All Gateways

NGW Neighborhood Smart Meter
BC BAN Concentrator

HSM Home Smart Meter
PKCC Public key of the control center
SKCC Private key of the control center
HSMi The ith HSM

BCj The jth BC
NGWk The kth NGW
PKHSMi Public key of HSMi
SKHSMi Private key of HSMi
PKBCj Public key of BCj
SKBCj Private key of BCj

PKNGWk Public key of NGWK
SKNGWk Private key of NGWk

Ep
r Public encryption of the requirement for next time slot

EH
u Homomorphic encryption of a user’s power consumption

ENCkey(M) Encryption of plaintext M using key
HMACx(M) HMAC of message M using key x

5.2. Upward Message Form

In our scheme, the CC collects one power requirement and consumption instruction per collection
period 4, which include two parts: every user power requirement for the next time slot and the total
power consumption for the last time slot. Respectively, these are the public RSA encryption part
denoted as EP

r , and the Paillier homomorphic encryption part denoted as EH
u , as shown in Figure 2.
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We encrypt each individual power requirement with public RSA encryption Ep
ri because the BC

needs to store the encrypted individual requirement and decrypt it later to distribute power according
to the power ratio at the power distribution phase.
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In addition, individual power consumption requires summation to act as a reference for power
distribution during the next time slot. For this, we employ homomorphic encryption EH

ui
, which also

prevents any intermediate nodes from leaking individual consumption.
HSMi computes the individual upwardly transmitted messages, msgi, as follows:

msgi =< IDi, Len, Ep
ri , EH

ui
>, (1)

where EP
ri

represents the public encryption value of the requirement plaintext ri with PKBCj and EH
ui

represents the homomorphic encryption value of the consumption plaintext ui with PKCC.
The header includes two parts: IDi denotes the sender ID and Len denotes the length of the public

encryption part, which separates the non-homomorphic part from the homomorphic part.
As seen in Figure 2, we define every BC as both regional aggregator and distributor. They store

encrypted individual power requirement, aggregate regional power consumption, and transmit it after
regional requirement summation via NGW to the CC. They also distribute individual power to each
user according to the power ratio from the CC.

5.3. Communication between HSMi and BCj

5.3.1. Authentication Part

In the Related Work (Section 2), we mentioned that the authentication scheme in [21] is not
sufficiently stringent because the only authentication key may be leaked. Therefore, we adopt
an authentication protocol based on the Diffie-Hellman key-establishment protocol proposed in [19]
between HSMi and BCj. The specific processes are depicted in Figure 3.

• HSMi

HSMi selects a random number a, b ∈ Z∗q from a positive integer in prime order. Let G = <g> be
a group of prime numbers. Given ga, HSMi computes ENCBCj(i ‖ j ‖ ti ‖ ga) (where ti is the current
time slot) and transmits it to BCj.

• BCj

After receiving ENCBCj(i ‖ j ‖ ti ‖ ga), BCj first decrypts it with its private key, SKBCj , to verify
the freshness of ti. Then, it sends an encrypted response consisting of gb ENCHSMi(i ‖ j ‖ tj ‖ ga ‖ gb)

to HSMi.

• HSMi

After receiving ENCHSMi(i ‖ j ‖ tj ‖ ga ‖ gb) from BCj, HSMi first verifies the freshness of tj.
Then, it recovers ga and gb using its private key SKHSMi , If the recovered ga is correct, BCj is authenticated
by the HSMi. Then, with a and gb, HSMi can compute the shared session key Kij = H(i ‖ j ‖ (gb)

a
),

where H : {0, 1}∗ → Z∗q is a secure cryptographic hash function, and computes the HMAC signature
using Kij as the key on i, j, ti, and msgi to form the Hash-based Message Authentication Code
HMACkij(i ‖ j ‖ ti ‖ msgi). Finally, HSMi sends (gb, i) to BCj to authenticate HSMi.

• BCj

After receiving (gb, i), BCj authenticates HSMi and then computes Kij = H(i ‖ j ‖ (ga)b) with the
known ga and b.
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5.3.2. Upward Transmission
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• HSMi

HSMi sends ENCpkBCj
(i ‖ j ‖ ti ‖ msgi ‖ HMACkij) to BCj .

• BCj

BCj decrypts ENCpkBCj
(i ‖ j ‖ ti ‖ msgi ‖ HMACkij) with SKBCj , verifies the freshness of ti,

and recomputes kij and HMACkij based on i, j, ti, and msgi to verify the sender and the integrity of
msgi. If it is not the same as the one attached, it requires the transmission to be resent.

After receiving all the messages from its child nodes, the BCj aggregates all m E1H
ui

into E2H
uj

and

decrypts all E1p
ri with SKBC. Finally, it sums up the plaintexts and encrypts the summation using its

public key PKCC into E2p
rj to form the regional requirement. Therefore, the transmitted message packet

from BCj to NGWk can be represented as msgj = < IDj, Len, E2p
rj , E2H

uj
>. BCj reserves the individual

power requirement ciphertext <E1p
r1 ‖ E1p

r2 ‖ . . . ‖ E1p
rm> in its database to perform individual power

distribution for the next time slot (see Figure 2 for details).

5.4. Authentication and Communication in BC, NGW, and CC

CC pre-sends the parameter s as the shared key for the BC, NGW and CC during the
initiation stage.

• BCj

BCj computes the HMAC signature HMACs(j ‖ k ‖ tj ‖ msgj) using the system master secret s
as the key on j, k, and tj and encrypts the message with the public key PKNGWk . Then it transmits the
message to the corresponding NGWk.

• NGWk

The NGWk , upon receiving ENCPKNGWk
(j ‖ k ‖ tj ‖ HMACs(j ‖ k ‖ tj ‖ msgj), first verifies the

freshness of tj and then re-computes HMACs(j ‖ k ‖ tj ‖ msgj)). When the decrypted message equals
the received one, it decrypts ENCPKNGWk

with SKNGWk to obtain msgj. After obtaining msgj, NGWk

aggregates all E2H
u of its child nodes into E3H

u and concatenates E2p
r for all the BC nodes to generates

msgk = <IDk, Len, E2p
r1 ‖ E2p

r2 ‖ . . . ‖ E2p
rn ‖ E3H

u > where E3H
u = Homomorphic addition (E2H

u1
, . . . , E2H

un ),

and E2p
rj denotes the total regional power requirement for BCj . Then, it computes the HMAC signature

HMACs(k ‖ CC ‖ tk ‖ msgk) using the system master secret s and encrypts it with the public key
PKcc. Finally, it transmits the aggregate message to the CC.

• CC

After decryption and verification, the CC obtains msgk from p NGWs and then aggregates the
p groups of E3H

u into EH
u = homomorphic additions (E3H

u1
, . . . , E3H

up ) and concatenates the p groups

of <E2p
r1 ‖ . . . ‖ E2p

rn >. Therefore, the message received and stored in CC database is denoted as
<E2p

r1 ‖ · · · ‖ E2p
rn ‖ . . . ‖ E2p

r1 ‖ · · · ‖ E2p
rn ‖ EH

u >, as shown in Figure 4.

5.5. Power Distribution Generation

The CC decrypts p groups of <E2p
r1 ‖ . . . ‖ E2p

rn > into p groups of <S1, S2, . . . , Sn> (where
Si is the ith regional station requirement summation). Then, the CC combines it with EH

u to generate p
groups of <R1, R2, . . . , Rn> (where Ri is the ith regional power distribution ratio). Next, it encrypts p
groups of <R1, R2, . . . , Rn> with PKBC and sends them to the p NGWs , respectively. The NGW relays
the ratios to each BC. BCj decrypts the ratio ciphertext with SKBCj and retrieves the previously stored



Sensors 2017, 17, 1814 12 of 21

< E1p
r1 , E1p

r2 , . . . , E1p
rm> from its database. BCj decrypts these values and computes m users’ power

distribution <D1, D2, . . . , Dm> (Di = ri ·Rj) (where ri is the individual requirement plaintext) and
encrypts them into <E1, E2, . . . , Em> (where Ei is the ciphertext of Di with SK HSMi). Then, it transmits
them to every HSM. HSMi decrypts the power distribution message using its private key and obtains
its power distribution for the next time slot.

6. Security Analysis

In this section, through a security analysis, we show that the proposed EPPRD achieves all
the security goals defined in Section 3.2 and finally we prove EPPRD’s security using the plaintext
indistinguishability game.

6.1. Mutual Authentication and Data Integrity

In EPPRD, HSMi encrypts ga with BCj’s public key, which ensures that only BCj can recover ga if
the employed public key system is secure. Using the same reasoning, gb is only received by real HSMi

if the public key encryption technique is secure. After HSMi receives ga, BCj is authenticated by HSMi

because only the real BCj can send ga to HSMi. Thus, the scheme provides mutual authentication
among GWs and the CC.

The randomly generated shared key Kij ensures the data authentication and integrity between
HSM and BC, because an external or internal attacker (of an HSM or NGW) has no authority to access
other node’s databases to transmit invalid data. In [21], if the pre-sent shared key s is compromised
by an attacker, that attacker may be authenticated by BC with s and launch a man-in-the-middle
attack. In contrast, in our scheme, even if the shared key Kij is compromised, the attacker still cannot
be authenticated by the BC or NGW and the secrecy of previous keys remains intact because our
authentication scheme provides perfect forward secrecy.

6.2. Protection against Eavesdropping Attack

The confidentiality of our scheme is based on the RSA and Paillier encryption algorithms.
During authentication, ga and gb are encrypted with RSA encryption between HSMi and BCj.
In upward transmission, the power consumption message is aggregated using Paillier encryption,
and the requirement message is concatenated and encrypted with RSA encryption PKCC.

An attacker located in a HAN can eavesdrop on the communication flow between HSM and
BC. However, even if the attacker eavesdrops on the ciphertext E1p

ri from HSMi to BC, he cannot
recover the individual requirement from HSMi without the private key of BCj, and the encrypted
individual consumption E1H

ui
cannot be decrypted without the private key of the CC, because the

Paillier encryption’s semantic security resists chosen plaintext attacks.
Similarly, even if an attacker eavesdrops on the communication flow between BCj and the NGW,

he cannot obtain the regional requirement and consumption sum other than the individual data,
because the regional requirement and consumption sums (E2p

rj and E2H
uj

) can only be decrypted using
the private key of the CC.

6.3. Protection against Internal Attack

There are two possible avenues for internal attacks in the semi-honest model in EPPRD. One is
the communication flow between a HSM and a BC and the other is the communication flow between
a BC, NGW, and the CC. In the first, messages are intentionally eavesdropped and stored by curious
internal participants such as the NGW or another HSM. However, they cannot obtain the individual
measurements because they lack the private keys of the BC and CC. The second communication
flow may be intentionally eavesdropped on and stored by curious internal participants such as
an HSM. However, using this approach, the attacker can only obtain the regional requirement sum
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and aggregated consumption. Even if he were to have access to the private key of CC, he would not be
able to decipher the individual requirement and consumption values.

Therefore, the proposed scheme provides not only confidentiality but also integrity.

6.4. Protection against Replay and Man-in-the-Middle Attack

Not only the ciphertext ENCBCj(i ‖ j ‖ ti ‖ ga) during authentication but also the ciphertext
ENCKij(i ‖ j ‖ ti ‖ HMACKij(i ‖ j ‖ msgi) in each transmission all contain freshly generated time
stamps. Therefore, parties to the communication first verify the freshness of the time stamp and then
verify that it is the same time stamp present in the encrypted message. In this way, EPPRD can resist
replay attacks.

Consider the communication flow between HSMi and BCj. After receiving the ga sent by the
BCj, the HSMi can authenticate the BCj. Even if an attacker were to impersonate the BCj or HSMi,
he cannot be authenticated because of the RSA encryption and HMAC signature. Therefore, EPPRD
can resist a man-in-the-middle attack.

6.5. Security Proof

Since the BC is highly trusted, the security notion of EPPRD focuses mainly on the semi-honest
aggregator NGW and HSM. In what follows, we further analyze whether the collusion of the NGW
and the compromised HSMs affects the leakage of other users’ privacy, especially requirement and
consumption plaintext. The security of EPPRD is based on the cryptosystem and security notion
of Paillier.

Theorem 1. Assume semi-honest adversary ADV corrupts the aggregator NGW and at most n − 1 nodes (n is
the total number of HSM in a local region), then ADV cannot infer any privacy of other uncompromised users.
EPPRD achieves security.

To demonstrate that EPPRD can maintain the plaintext of requirement and consumption, we use
the plaintext indistinguishability game described below.

• Setup: The challenger initializes the smart meters set to participant aggregation process.
The challenger generates their keys including public and private keys during the secret key
generation phase in Section 5.1 and gives the public keys to the adversary.

• Queries: ADV can make “compromise” queries for private keys or plaintext to users. It can
compromise at most n − 1 meters. The challenger returns the private key and plaintext of
compromised smart meters. ADV may also compromise the aggregator NSM and receives the
aggregation from the challenger.

• Challenge: The ADV specifies an uncompromised set U ⊆ {1, 2, . . . , n}, in which ADV specifies
randomly two smart meters M0 and M1. The challenger flips a random coin b. If b = 0,

the challenger return to the ADV {E2p
rj , E2H

uj
}, else return {E2p′

rj , E2H′
uj

}.

• Guess: The ADV guesses b′ ∈ {0, 1}. The ADV wins if b′ = b. The advantage of ADV in
attacking the scheme is defined as follows:

ADVADV =

∣∣∣∣Pr
[
b = b′

]
− 1

2

∣∣∣∣. (2)

ADVADV denotes the indistinguishability advantage of ADV . In what follows, we prove the
advantage is zero.

Proof: Let us assume the n− 1 nodes are all compromised except for HSMi; if the extreme case satisfies
the security then it also holds for other cases. We prove that ADV cannot infer the requirement and
consumption plaintext of HSMi, even if ADV compromises the aggregator NGW and n − 1 HSMs.
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The ADV can compromise the NGW and n − 1 HSMs in th query phase and the challenger gives
access to the measurement of compromised users or aggregated measurement in NGW as described in
Section 5.2:

E2p
rj = E2p(r1 + . . . + ri + . . . + rn) (3)

E2H
rj

= E2H(u1 + . . . + ui + . . . + un). (4)

In Equation (3), ri refers to the requirement plaintext of HSMi and ui refers to the consumption plaintext
of HSMi in Equation (4). Assume the HSMi is the only smart meter that is not compromised by ADV ,
so the other nodes’ requirement and consumption do not contribute to the security; Equation (3) can
also be written as

E2p
rj = E2p(ri + ∑

j 6=i
rj). (5)

Equation (5) is encrypted with PKCC, and the ADV does not know SKcc, so it cannot learn about ri.
Similarly, Equation (4) can be written as

E2H
uj

= E2H(ui + ∑
j 6=i

uj) = E2H(ui) + E2H(∑
j 6=i

uj). (6)

Equation (4) can be written as Equation (6) according to the addition homomorphic property of
Paillier; however, the ADV still cannot learn about ui even if E2H(ui) can be inferred because of the
cryptographic measurement.

From Equations (5) and (6), we can conclude that the ADV cannot correctly infer the requirement
and consumption plaintext even if it compromises the aggregator NGW and at most n − 1 HSMs.
So the security of HSMi can be guaranteed.

7. Performance Analysis

A SG communication system has resource constraints and stringent security requirement
that make it difficult to perform computation-intensive operations such as symmetric public
cryptographic operations. Furthermore, limited communication bandwidth may lead to delays or
latency. Therefore, we analyze our scheme in terms of the communication volume, computational
overhead, and delay time.

We fix the number of users at 1 million. The number of NGWs is 50, there are 100 BCs, and we
vary the number of HSMs per BC from 1 to 200 with a step size of 20 to study the impact of the numbers
of HSMs on communication, computational overhead, and memory consumption. To accommodate
the highly frequent need for DS communications in SGs, we first adopt a HAN message transmission
interval of 10 s, denoted by ∆, for validating the above performance analysis. Furthermore, we
investigate the impact of different ∆ values on communication. Considering the same cryptography
and similar authentication platforms, we compare the following two schemes performance with ours.

• The no-consumption aggregation scheme. In this scheme, the BC receives publicly encrypted
consumption messages EP

u rather than homomorphic encryption from all the HSMs and transmits
them to the CC via NGW. The CC decrypts the encrypted messages based on its public key
successively rather than decrypting the message once as in our scheme. As we can imagine,
the no-consumption aggregation scheme requires excessive communication overhead, and its
security is not rigorous enough because it lacks the protection of homomorphic encryption.

• The no-regional-requirement aggregation scheme in [21]. In this scheme, the homomorphically
encrypted power requirements estimating the future time period and commitments are
transmitted upward. In these messages, the commitment is the evidence of the user power
consumption plan at each billing period. Thus, it obtains the same requirement object for
individual users as in our scheme. However, as described in the Related Works (Section 2),
we propose some improvements from various perspectives.
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7.1. Communication Volume

In the hierarchical architecture, we evaluate the communication volume performance from
encryption and authentication overheads by considering the handshake step and the traffic payload
through every GW during transmission.

We assume the time slot size and the GWs identities occupy 128 bits/16 bytes, while RSA
encryption is 1024 bits/128 bytes for a public/private key pair, the size of the Hash MAC is set to
16 bytes based on MD5 and Paillier encryption is 4096 bits/512 bytes. Therefore, the encryption
overhead for the consumption and requirement messages of HSMi is 512 and 128 bytes, respectively,
and can be completed during the preprocessing phase.

Encrypting ENCpkBCj
(i ‖ j ‖ t ‖ ga) requires 176 bytes and ENCpkHSMi

(i ‖ j ‖ tj ‖ ga ‖ gb) requires

304 bytes. Transmitting (gb, i) requires 144 bytes, and ENCkij(i ‖ j ‖ ti ‖ msgi ‖ HMAC(i ‖ j ‖ ti ‖ msgi))

requires 1392 bytes. Therefore, the total size of transmissions during communication between one
HSMi and BCj is 2016 bytes in our scheme. In contrast, ENCPKBC(Ei ‖ Hi ‖ Ci ‖ HMACS(Ei ‖ Hi ‖ Ci))

between one HSMi and BCj in the scheme in [21] requires 1424 bytes when m = 1 (m is the time period
in [21]). Obviously, our communication overhead between HSMi and BCj is larger than that of the
scheme in [21], as shown in Figure 3.

Figure 5 plots a comparison of the communication required by our scheme and [21] between
any BC and all HSMs. The regional overhead at a BC in our scheme exceeds that of the scheme
in [21] slightly due to our more rigorous authentication process during the handshake period and the
additional aggregated consumption report.
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Figure 5. Communication overhead between HSM and BC in the power requirement stage.

However, as shown in Figure 6, this additional overhead has little effect on the overall
communications compared with [21]. In fact, Figure 6 shows that our scheme outperforms [21]
in terms of overall communications overhead. Figure 6a shows how the communication overhead
of [21] changes when the number of HSMs increases. The total system communication overhead
increases significantly, and approaches 30 GB when the number of HSM per BC nears 200 and number
of BCs nears 100. In contrast, as shown in Figure 6b, the amplitude of growth for our proposed
scheme is not large and the total communication never exceeds 11 MB. This result occurs because every
transmitted upward message includes a requirement message, an individual commitment packet and
a hash packet in [21], but our scheme stores these in the BC and performs an upward transmission of
only one regional requirement and one encrypted consumption message. Moreover, our scheme uses
symmetric encryption, while the scheme in [21] adopts asymmetric encryption among GWs and the
CC, which requires more bytes. The results show that the regional requirement storage/aggregation
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at the BC and the power consumption aggregation play an important role in reducing the total
communication cost and memory consumption.
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7.2. Computation Overhead

In this evaluation, we ignore the computation overhead involved in the preparation phase
because it can be performed offline. The following performance evaluation and analysis combine the
authentication and privacy preservation processes.

We performed the experiments based on the FriendlyARM [29] library and the library from [21]
using a computer with a processor running at 2.5 GHz, 4 MB of RAM 4 MB and 1 MB of flash memory.
The results not only consider message authentication but also privacy preservation issues, although
our requirement may be higher than that required for conventional smart meters.

To consume the 160 MH of the BC, we expanded the experimental values by 16 times, including
the encryption and decryption time. We adopted the Paillier cryptosystem with 512 bits of modulus
and at least 1− 2−64 certainty of prime generation for homomorphic encryption and decryption [28]
and for RSA we used a 1024-bit key for asymmetric encryption, decryption [30]. For AES we used
a 128-bit key for symmetric encryption and decryption and the MAC is based on the RIPEMD-128
MD5 algorithm, which provides greater resilience against collision and pre-image attacks than does
MD5 [31]. The time cost of all primitive operations is listed in Table 2. Based on the test results, we
compare the computation cost.

Table 2. Experiment measured average time for each function.

Notations Descriptions Time Cost

Ta addition ≈0.004 ms
Tmul multiplication ≈0.13 ms
Taenc asymmetric encryption ≈3.57 ms
Tadec asymmetric decryption ≈0.0032 ms
Tsenc symmetric encryption ≈0.0054 ms
Tsdec symmetric decryption ≈0.0014 ms
Thenc Homomorphic encryption ≈2.7 ms
Thdec Homomorphic decryption ≈0.59 ms
Thash Hash ≈0.0025 ms

THMAC HMAC ≈0.0043 ms
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• For HSMi:

Encrypting (ga) with PKBCj for transmission to BCj requires RSA encryption and Diffie-Hellman
encryption successively, namely, 2× Taenc, and decrypting encrypted messages from BCj requires one
Tadec, Computing Kij and HMACKij requires one Thash and one Thmac. Therefore, one intact authentication
process requires 2×Taenc +Tadec +Thash +Thmac. Encrypting (i ‖ j ‖ ti ‖ HMACKij(i ‖ j ‖ msgi) requires
one Taenc. In addition to encrypting the consumption and requirement message packet, denoted as
EH and Ep, respectively, requires Thenc + Taenc which can be done during the preprocessing stage,
Therefore, the total time required is 3Taenc + Tadec + Thash + Thmac.

• For BCj:

The authentication process between HSMi and BCj costs the BCj 2×Tadec +Taenc +Thash +Thmac.

Decrypting a message requires one Tadec and decrypting m E1p
ri requires one (m− 1) × Tadec for

summation. Encrypting the summation into E2p
rj requires one Tsenc, and aggregating all the E1H

ui

messages into E2H
uj

takes (m− 1)× Tmul. Then, BCj takes one Thmac to generate the HMAC signature
and one Tsenc to encrypt (j ‖ k ‖ tj ‖ HMACs(j ‖ k ‖ tj ‖ msgj)) with shared key s. Therefore, the total
time is Taenc + Tsenc + (m + 2)Tadec + Thash + 2Thmac + (m− 1)Tmul.

• For NGWk:

Re-computing the HMAC signature HMACs(j ‖ k ‖ tj ‖ msgj) requires one Thmac, Decrypting

ENCs(j ‖ k ‖ tj ‖ HMACs(j ‖ k ‖ tj ‖ msgj)) requires one Tsdec. Upon receiving an E2H
uj

and aggregating

it into E3H
uk

takes (n− 1)× Tmul. Then, forming HMACs(k ‖ CC ‖ msgk) takes Thmac, and encrypting it
with PKs for the CC takes one Tsenc. Therefore, the total time is Tsenc + Tsdec + 2Thmac + (n− 1)Tmul.

• For the CC:

Upon receiving ENCs(K ‖ CC ‖ tK ‖ HMACS(k ‖ CC ‖ msgk), re-computing the HMAC signature
takes one Thmac and decrypting it takes one Tsdec . Then, aggregating p groups of E3H

uk
takes p× Tmul,

and it takes one Thdec to receive the total aggregation. Therefore, the total time is Tsdec + Thmac + p×
Tmul + Thdec .

According to the above time analysis, combined with the other two schemes, Figure 7 shows the
communication time delay of the three schemes in the power requirement stage. Figure 7a shows the
change of regional time delay for the three schemes as the number of HSMs increases. When the number
of users is 20, the employed method in [21] costs 2.17 s, the no-usage aggregation scheme costs 2.78 s,
and our scheme costs 3.18 s. The increasing amplification of the three schemes is 12.1%, 13.4%, and 18.65%,
respectively. As we can see, the computation overhead of our scheme is always higher slightly than
the other two, and its amplification increases slightly because bidirectional authentication costs more
time during the handshake period than the other two schemes. Moreover, the other two schemes do not
require regional decryption at the BC for each individual requirement. The no-consumption aggregation
scheme adopts the same authentication process as ours, but it does not require the decryption process;
therefore, its communication time delay is less than ours. The time delay of the scheme in [21] is
smallest because it uses only one session key throughout the authentication process and does not
require a bidirectional session key generation process between an HSM and a BC, nor does it require the
decryption process at the BC. Therefore, [21] has the least communication time delay cost at a BC of the
three schemes.
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Figure 7. The computation time delay for our scheme, the scheme in [21] and the no-consumption
aggregation scheme in the power requirement stage.

However, as shown in Figure 7b, regional delay time has little effect on the overall time delay
of our scheme compared with the other two schemes. On the contrary, it shows that our scheme
outperforms the other two schemes in terms of the overall time delay overhead. Figure 7b shows
a comparison of the total delay time. As shown, the total delay increases as the number of users
increases; however, the amplification is obviously different. When the number of users is 20, [21] costs
6.2 s, the no usage aggregation scheme costs 8.4 s, and our scheme costs 5.1 s. However, when the
number of users is 200, the delay time of the other two increases significantly: the delay time for
no-usage aggregation scheme approaches 34.8 and that of [21] is 25.1, while our scheme costs only
16.2 s, which indicates that the effect of regional time delay is insignificant compared to the time
delay during the overall communications between the BC, NGW, and CC. It is easy to conclude
that the time delay in the latter communication occurs mainly from decryption. In the no-usage
aggregation, the individual usage data is not decrypted at the BC; instead, it is transmitted upward
to the CC via NGW; consequently, the CC must decrypt all the individual usage data, which costs
much time. The scheme in [21] does not aggregate regional requirement data; therefore, it needs
to be decrypted by the CC, which is costlier than our scheme. Assume that m, n, and p stand for
the number of HSMs per BC, BCs per NGW, and NGWs per CC, respectively. Then, the decryption
time complexity degree is o(2 m·n·p) in the no-consumption aggregation scheme, o(m·n·p) in [21],
and ours is o(m·n + n·p) during communication between the BCs, NGWs, and the CC. Moreover, from
Figure 7b, we can conclude that the regional decryption and aggregation approach involves less total
time delay compared to the decryption amounts required in the other two schemes.

Therefore, we can conclude that regional requirement storage and homomorphic aggregation
play important roles in reducing the total communication and computation overhead.

7.3. Memory Occupancy Rate for Different Transmission Intervals ∆

The memory required by our scheme and the scheme in [21] with different numbers of users at
varying transmission intervals is shown in Figure 8. When ∆ is 15 s and 10 s, our scheme’s memory
usage is relatively small. It increases slightly (but no more than 0.16) as the number of users increases.
When ∆ is 15 s, the scheme in [21] requires relatively little memory, and it is similar to our scheme when
∆ is 5 s but has an obviously rising trend: eventually, its memory requirement become overwhelming
and use up all the available memory. This result demonstrates our scheme’s good performance. This is
due to the fact that BCs share lots of processing queue and aggregate fewer processing queue at CC.
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7.4. Affected Householders with Different Numbers of Attackers

Finally, we show the strictness of our bidirectional authentication by performing attacks in an SG
network. We assume that householders are affected if the message they transmit upward is not the
same as the one received by the BC, NGW, and CC. We evaluate our authentication by varying the
number of SG attackers. We assume the number of households can be up to 3 million, while the
number of attackers reaches 5000 at most. We also introduce man-in-the-middle attacks into the SG
network and study the number of affected householders with a randomly generated authentication key
and a fixed authentication key at the BCs. We distribute 10 attackers into 10 different BCs. As shown
in Figure 9, the number of affected householders continues to increase as the number of attackers
increases in both the scheme from [21] and our scheme; however, the number of affected householders
in our scheme is always lower than the number affected in [21], which does not use a randomly
generated authentication key. This result demonstrates that using a randomly generated authentication
key would strengthen the privacy preservation of the scheme [21] and help prevent man-in-the-middle
attacks. It also shows that our scheme reduces the impact of man-in-the-middle attacks.
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8. Conclusions

In this paper, we proposed an efficient privacy-preserving power requirement and distribution
aggregation scheme for Smart Grid (EPPRD). It is a novelty individual power requirement and
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distribution scheme while preserving user privacy with a light bidirectional authentication and
encryption technique. The existing schemes mostly focus on the total preserving authentication
technique or do not consider the whole communication and computation overhead. We locate
BC as a regional aggregation station in BAN to aggregate and transmit regional power total
and store individual requirement. On the other hand, power consumption in the last time slot
is the power distribution reference in the next time slot; its homomorphic encryption scheme
together with the authentication scheme ensures the rigorous privacy protection and data integrity.
Experiments demonstrate that it plays an important role in reducing computation and communication
overhead. In future work, we will further explore low-cost cryptographic algorithms against various
attacks and study light cryptographic and authentication algorithms in case there is no trusted model
for distributed communication network.
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