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Abstract: The conventional method of measuring foot-arch parameters is highly dependent on the 
measurer’s skill level, so accurate measurements are difficult to obtain. To solve this problem, we 
propose an autonomous geometric foot-arch analysis platform that is capable of capturing the sole 
of the foot and yields three foot-arch parameters: arch index (AI), arch width (AW) and arch height 
(AH). The proposed system captures 3D geometric and color data on the plantar surface of the foot 
in a static standing pose using a commercial RGB-D camera. It detects the region of the foot surface 
in contact with the footplate by applying the clustering and Markov random field (MRF)-based 
image segmentation methods. The system computes the foot-arch parameters by analyzing the 
2/3D shape of the contact region. Validation experiments were carried out to assess the accuracy 
and repeatability of the system. The average errors for AI, AW, and AH estimation on 99 data 
collected from 11 subjects during 3 days were −0.17%, 0.95 mm, and 0.52 mm, respectively. 
Reliability and statistical analysis on the estimated foot-arch parameters, the robustness to the 
change of weights used in the MRF, the processing time were also performed to show the feasibility 
of the system. 

Keywords: biomedical image processing; RGB-D camera; foot-arch; arch width; arch height; arch 
index; computer aided analysis 

 

1. Introduction 

The foot-arch, which plays a key role in supporting the weight of the body and providing 
propulsion force during push-off, is important because it enables a more natural and aesthetic gait 
and protects the foot from injury. It is well-known that filling the void space between the foot-arch 
and shoe reduces the plantar pressure, alleviates impact force, and improves shoe comfort [1,2]. 
Therefore, understanding the geometric shape of an individual’s foot and foot-arch is necessary to 
provide direct and useful information, not only for clinical and rehabilitative purposes, but also for 
designing personalized and comfortable footwear [3]. 

The arch index (AI), the arch width (AW), and the arch height (AH) are the representative 
parameters showing the foot characteristics of healthy individuals as well as subjects with foot 
functional abnormalities. These parameters are defined based on the shape of the footprint. The AI 
is defined by the ratio of the midfoot area to the entire foot area (excluding the toes) from the 
measured footprint [4]. The AW and the AH are defined as the vertical and horizontal distances 
from the midpoint of the medial border line (MBL), which is the line connecting the most medial 
border of the metatarsal and heel region of the foot [5], in the arch region of the footprint to the foot 
surface. Based on these definitions, the traditional methods measure these parameters manually 
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using a footprint on a grid paper. Therefore, the accuracy of the measurement is dependent on the 
measurement skill of the experimenter, and reliability and repeatability are thus usually poor. 

In order to overcome this problem, many scientific researchers have attempted to measure and 
analyze the foot shape via vision-based measurement (VBM) approaches. VBM involves producing 
measurement results using 2D/3D visual images and computational methods. The main idea of this 
approach in the context of biometric measurement of geometric shape of human body parts is that a 
camera or a scanner captures the human body surface and measurement is done by analyzing the 
captured visual and geometric data using hardware and software technologies [6]. Recent rapid 
advances in imaging devices and computing systems have allowed VBM to be easily used to 
measure, detect, monitor, recognize, and record physical phenomena in a variety of automated 
applications and scenarios: measurement of human body parts [7], human motion tracking [8], 
hand recognition [9], face recognition [10], gait analysis [11], palmprint-based identifications [12], 
and 3D human body reconstruction [13]. 

In this study, we aimed to develop an autonomous geometric foot-arch measurement platform 
that is capable of capturing the sole of the foot and estimating three foot-arch parameters: AI, AW 
and AH. The proposed system captures 3D geometric and color data on the plantar surface of the 
foot in a static standing pose using a commercial RGB-D camera installed below the transparent 
footplate. As explained in [4,14,15], three foot-arch parameters can be calculated based on the foot 
axis and the MBL in the footprint image representing the contact region of foot. Therefore, in this 
paper, we describe the process of detecting the contact region of foot and computing the foot-arch 
parameters using the 3D geometric and color data obtained from the RGB-D camera and validate 
the results of the estimated foot-arch parameters from human experiment. The main contributions 
of this work are: 

 A new methodology for sole of foot analysis: The proposed system, which automatically analyzes 
the plantar surface of the foot in a static standing pose, utilizes a commercial RGB-D camera 
installed below the transparent acrylic plate of the scanning stage. Some existing methods 
using separately designed wearable devices or visual markers involved adding an extra factor 
to the foot surface, but this is undesirable in a clinical environment. Also, some use 
camera-projector systems or multiple cameras to reconstruct the surface of the foot. However, 
these are more expensive than commercial off-the-shelf RGB-D cameras and require heavy 
computational processing. In contrast, our system can measure the plantar surface of the foot 
efficiently by using an RGB-D camera, which provides accurate 3D geometric and visual 
information. 

 An automatic foot-arch parameter computation method: To define and recognize numerically the 
characteristics of individual feet, the system automatically calculates the foot-arch 
parameters—AI, AW, and AH. The system detects the contact region from an input color and 
depth image set by applying image segmentation methods such as data clustering and Markov 
Random Field (MRF) techniques, and generates the foot-arch parameters by analyzing the 2D 
and 3D shape of the contact region. In contrast to other existing systems that focus mainly on 
surface reconstruction and footprint image generation, our system is capable of not only 
capturing the sole of the foot but also determining the three foot-arch parameters. 

2. Related Literature 

VBM-based foot shape analysis systems can be classified into passive and active 3D shape 
measurement techniques, depending upon the sensing method used [16]. The first is based on 
matching of corresponding pixels in multiple images captured by multiple cameras. The second 
involves measurement of the 3D shape by emitting and receiving light. As one of the earliest passive 
3D shape measurement systems, Lee et al. proposed a foot model reconstruction using 12  
cameras [17]. From the 12 captured images, the system calculates major foot parameters, such as foot 
length and ball width, to scale the foot model in their database. Reconstruction is completed by 
morphing and deforming the foot models in the database similar to the user’s foot. Coudert et al. 
proposed a six cameras-based method of measuring 3D foot deformation during the gait cycle [18]. 



Sensors 2017, 17, 1796 3 of 24 

 

The final foot model is reconstructed by image matching and triangulation techniques. Amstutz et 
al. used ten cameras to reconstruct the 3D foot shape [19]. They fitted the initial 3D model to the real 
foot by projecting the initial model to the 2D images of the real foot. In [20], Al-Baghdadi et al. 
applied a dense surface modeling algorithm to automatically obtain a 3D point cloud of a human 
foot. A mounting platform for three video cameras and a glass-top step-on platform were used to 
capture the foot. Alshadli et al. introduced a video based 3D foot modeling system to map the shape 
changes of the medial longitudinal arch during gait [21]. The imaging system they proposed 
consists of 4 high definition video camcorders and a force plate. Using this system, multiple images 
and force data synchronized with the camcorders can be captured simultaneously. The 3D foot 
shape is reconstructed by using multiple images. In [22], Alshadli proposed the method to calculate 
the foot mobility magnitude (FMM) and arch height index (AHI) using the system proposed in [21]. 
And the author tried to find the relationship between the dynamic FMM and AHI and the foot 
posture index (FPI). These camera-based reconstruction methods have limitations in that a texture of 
the foot surface for correspondence matching between multiple images is required for an accurate 
foot shape acquisition. To overcome these limitations, they proposed special socks or painting of the 
texture on the foot skin. Although these solutions were suitable for their reconstruction process, they 
are undesirable in a clinical environment and not comfortable. 

The active shape measurement methods typically acquire 3D shape by the structured light 
method or time-of-flight (ToF) method. The structured light method calculates the distance by using 
the shape and location of the projected pattern. The ToF method calculates the distance by 
measuring the time-of-flight of a light signal to the subject. These methods are widely used, as users 
do not need to wear or attach sensors or markers to their feet. In [23,24], they introduced a 
camera-projector system to reconstruct the plantar surface. A pattern comprising small squares of 
random colors is projected onto the foot sole and the reflected patterns are captured by the camera; 
these are used to reconstruct the 3D geometric shape of the sole. JezerĹĄek  et al. presented a 
multiple laser plane triangulation technique for high-speed foot measurement [16]. They used four 
measuring modules, each of which comprised a laser projector and a digital camera. In [25], Novak 
et al. developed a 3D foot scanning system with a rotational laser-based measuring head. In their 
system, the measuring head, comprising a three laser line projection unit and two cameras, rotates 
around the center of the platform on which the customer stands, and measures both feet 
simultaneously. Herrewegen et al. used four structured light scanning modules to capture the foot 
shape [26]. To analyze multi-segmental foot kinematics, the proposed system tracks four segments 
(shank, calcaneus, metatarsus, and hallux) during walking using the iterative closest point (ICP). 
Using the ToF camera-based foot shape measurement system proposed in [27], Samson et al. 
proposed a new method of analyzing foot roll-over under dynamic conditions [28]. The system 
generates sequential images of lowest height data (LHD), which represent the distance from the 3D 
foot shape to the ground plane by projecting the foot surface. For each frame during foot roll-over 
motion, the change in mean height and projected surface in seven regions of interest (ROI) are 
computed. In [29], Chen et al. proposed a hand held RGB-D camera based 3D foot parameter 
estimation method. The user firstly rotates around the foot and captures the consecutive color and 
depth images using a hand held RGB-D camera. The system reconstructs the 3D shape of the foot 
with reference to the AR code located around the feet. And then using the 3D shape of foot, the 
system calculates the foot length, width, and ball girth. Even though their system uses 3D shape 
information and provides useful information for suitable shoe selection, they do not provide any 
essential information to calculate AI, AW, and AW such as the contact region of foot. Although 
some existing systems can measure the entire surface of the foot and some provide analytic 
information related to foot measurement, such as the deformation of cross-sections [23], global foot 
dimensions (foot length, width, height, and girth) [25,29], and changes in mean height and projected 
surface [28], the studies do not include any information regarding the AI, AW, and AH which can 
be used for clinical purposes and design of ergonomic personalized footwear. 

In this paper, among many features of the foot, we focus on automatic estimation of three 
foot-arch parameters, AI, AW, and AH. The AI is measured by counting the squares in the graph 
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paper with which the sole of foot is in contact. The AW and AH are measured manually using a 
ruler. These conventional methods are highly dependent on the measurer’s skill and undesirable in 
a clinical aspect since the subject must cover his/her foot in ink to create the footprint image. In [30], 
Chu et al. proposed an image processing-based system to improve the accuracy and repeatability of 
the footprint acquisition and AI calculation of the traditional method. However, it is impossible to 
compute and predict the AI, AW, and AH simultaneously using the footprint-based method. This is 
because the footprint does not contain 3D information of the foot, such as the height of the plantar 
surface—it represents simply the 2D contact region of the sole of the foot.  

The system proposed in this paper is a commercial RGB-D camera-based foot-arch 
measurement system for AI, AH, and AW computation. Compared with the passive 3D 
measurement methods, the system is easily able to obtain 3D shape of sole of foot from the 
geometric and visual data captured by the RGB-D camera, without special socks or painting the 
pattern on the foot skin. Another advantage that the proposed system includes that the used camera 
is compact, relative low cost, and the fast data acquisition frame rate. The frame rate and image 
resolution of the system in [28] are 40 Hz and 176 × 144. The frame rate and image resolution of 
the used camera in the proposed system are 60 Hz and 640 × 480. Even though the system in [23] 
has higher image resolution (1024 × 768) than the proposed system, the frame rate is slow (14 Hz). 
In [29], they use the low-cost RGB-D camera similar with the RGB-D camera used in the proposed 
system. However, the frame rate and image resolution are relatively low as 30 Hz and 320 × 240, 
and also their system cannot capture the plantar shape of the foot. In addition, unlike existing VBM 
studies that analyze the overall shape change of the foot, the proposed system calculates AI, AW, 
and AH that reflect the characteristics of the foot-arch. Therefore, for the foot-arch parameters 
estimation, the proposed system has advantages of better usability and convenience than the 
existing systems. 

In particular, the conventional footprint-based foot-arch parameter measurement method 
depends on manual operation, but the proposed system efficiently computes them through an 
image segmentation technique and computational 3D shape analysis of foot. Moreover, since the 
proposed system is able to estimate the AI, AW, and AH simultaneously using the advantages of 
the 3D shape information of foot, it is more convenient to measure than the conventional method. 
And also another advantage of the proposed system compared with the 2D footprint based method 
is the calculation time. The conventional method takes an average of 3 min or more, from painting 
ink on the foot to calculating the AI based on the inked area of the footprint and measuring the AH 
using a ruler or a caliper. The 2D digital image processing based method proposed in [30] takes 10 s 
or more to calculate AI. However, the proposed system is able to calculate not only AI but also AW 
and AH simultaneously within 10 s (Section 5.5). The other advantage is that the proposed method 
can be applied to the dynamic foot motion analysis. The camera used in the proposed system can 
capture shape and color data for continuous foot motion. This can be used to analyze how the user's 
feet change in the stance phase of the gait. For example, successive 3D shape and color information 
of foot can be obtained to analyze how foot shape changes at each stage of the stance phase, which 
consists of heel strike, foot flat, midstance, heel off, and toe off. However, 2D footprint based 
technologies cannot be employed for dynamic foot analysis, since the acquired data does not reflect 
the 3D dynamic foot shape change. In this system, we focus on the static foot measurement, and do 
not dynamic foot analysis. 

3. Foot-Arch Parameters 

To identify the important considerations in system development, foot-arch parameters must be 
examined. In this section, we briefly describe the considerations of our system with respect to the 
computational method for estimation of foot-arch parameters. 

The AI developed by Cavanagh and Rogers represents the ratio of the area of the middle third 
of a footprint relative to the total area (excluding the toes) [4]. The definition of AI is as follows: The 
line of the foot axis between the centers of the heel (point K in Figure 1a) and the second toe is 
measured. Next, a perpendicular line is drawn tangential to the most anterior point of the main body 
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of the footprint. The intersection point is then marked (point L in Figure 1a). The line L-K is divided 
into three equal parts. The main body of the footprint is divided into three areas by those points with 
the perpendiculars from the foot axis. The AI, the ratio of the middle area relative to the total area, is 
computed [14].  

 
(a) (b)

Figure 1. Definitions of foot-arch parameters: (a) arch index (AI) measurement from the footprint, (b) 
arch width (AW) and height (AH) measurement. 

The AW and AH are clinically important, as they are closely related to foot type. Low arches or 
flat feet can cause heel pain, arch pain and plantar fasciitis. High arches can cause plantar fasciitis as 
the plantar fascia is stretched away from the calcaneus or heel bone. The AW and AH are generally 
measured using the footprint and a ruler, as follows. The MBL is first drawn. Then, a perpendicular 
line is drawn from the mid-point of the MBL in the arch area to the mid-foot. The length of this line is 
the AW [15]. The AH is defined as the length of a perpendicular line from the mid-point of the MBL 
to the plantar surface of the foot. Figure 1b shows the lines and points required to measure AW and 
AH.  

To calculate the AI, AW, and AH, the region of the foot in contact with the floor, which can be 
easily measured using the footprint, must be defined. Also, the key points and lines, such as the 
center of the heel and the second toe and the MBL, are required. Therefore, from the next section, we 
describe how the proposed system calculates the foot-arch parameters by solving the following two 
technical problems: how to recognize the region in contact with the footplate using the color and 
depth image set and how to define the key points and lines. 

4. Method 

The system consists of measurement and analysis modules. The measurement module includes 
the scanning stage and a RGB-D camera underneath transparent acrylic board mounted on the 
scanning stage (Section 4.1). And the analysis module is programmed to process the obtained color 
and geometric data of foot and to extract the foot-arch parameters through the following three 
submodules: pre-processing (Section 4.2), contact region detection (Section 4.3), and foot-arch 
parameter computation (Section 4.4). The system flow is shown in Figure 2. 
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Figure 2. System flow of the proposed system. 

4.1. Measurement Module 

The scanning stage used to capture the plantar surface of the foot is 45 cm in height and 70 cm 
in width. A transparent acrylic board of 45 cm × 35 cm is embedded at the middle of scanning stage. 
This acrylic board is used as the footplate where the targeted foot is measured on. For stable 
lighting condition, a led desk lamp is installed inside of the scanning stage. A RealSense F200 
RGB-D camera (Intel, Santa Clara, CA, USA) is installed 30 cm beneath the footplate to measure the 
sole of the foot (Figure 3). 

The camera captures and sends the input data in the form of a color and depth image set 
containing visual and geometric information on the plantar surface of the foot to a server via a USB 
cable. Using the data obtained, the system analyzes the foot shape in terms of the contact region, 
arch index, width, and height. These outputs can be transferred to other foot analysis systems. 

 
(a) (b) (c)

Figure 3. System installation: (a) scanning stage of the proposed system, (b) RGB-D camera beneath 
the transparent acrylic board, (c) sole of foot measurement using our system. 

4.2. Pre-Processing Module 

The preprocessing module (PM) performs noise removal measured from an input depth image 
and maps the input color image to the depth image. Each pixel in an input depth image represents 
the distance from the camera to the surface along the optical axis of the camera, and can easily be 
converted into 3D points (ݔ, ,ݕ  However, direct use of the depth image are not recommended .(ݖ
due to optical noise, lost depth information on shiny surfaces, and flickering artifacts. To increase 
the quality and stability of the depth image, the PM reduces the noise in the input depth image 
using median filtering to preserve foot edges while removing noise [31]. In the proposed system, a 3 × 3 sliding window is used, and the median depth value among nine pixels in the window is 
taken as the filtered depth value.  

To use visual and geometric information simultaneously, their coordinate systems must be 
unified since the color and the depth images captured from the RGB-D camera have different 
coordinates. The calibration process is necessary to find the intrinsic parameters of each camera, 
such as lens distortion and focal length, as well as extrinsic parameters representing relative poses 
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between two cameras. In our system, the camera is calibrated using the method proposed in [32]. 
Using the calculated intrinsic and extrinsic parameters, the system maps the input color image to 
the depth image. As a result, a pixel in the depth image becomes a 6D point (ݔ, ,ݕ ,ݖ ,ݎ ݃, ܾ), where 
,ݔ) ,ݕ ,ݎ) is the 3D position of the point in the depth camera coordinate, and (ݖ ݃, ܾ) is the color 
information mapped from the input color image.  

Additionally, the system first filters out the points whose distances from the camera are more 
than the predefined threshold (600 mm in this system) to remove the points which does not 
corresponds to the foot-point (Figure 4c). then retains only the largest component by applying 
connected component labeling to remove other unnecessary minor noisy points [33]. Connected 
component labeling involves identifying all connected components in an image and assigning a 
unique label to all pixels in the same component. The computation of size, position, orientation and 
bounding rectangle can be carried out using the result labels. The system applies the labeling 
algorithms to detect foot points by retaining only the largest component and filtering out the others. 

(a) (b)

(c) (d)

Figure 4. Results of preprocessing module: (a) input color image, (b) input depth image color-coded 
by depth value, (c) depth image filtered by depth thresholding, (d) foot point image filtered by the 
connected component labeling and color mapped image (left bottom). 

To find the largest component as the group of foot points, the system first converts the filtered 
depth image to a binary image. In the binary image, two-pass-based connected component labeling 
is applied. In the first pass, the system scans the binary image left to right and top to bottom. If the 
pixel is 1, the system assigns a label to the pixel as follows: (1) If the left pixel is 1 and the top pixel 
is 0, assign the label of the left pixel. (2) If the top pixel is 1 and the left pixel is 0, assign the label of 
the top pixel. (3) If the top and left pixels are 1, assign the label of the left or top pixel. If the two 
labels of the left and top pixels are different, record that the two labels are equivalent. In the second 
pass, the system assigns a unique label to all pixels of a component using the lowest label for each 
equivalent set. Using the number of pixels in each label, the system finds the largest component, 
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and defines the corresponding pixels as the foot points. Figure 4d shows the detected foot points 
and depth information. Invalid points are filtered out and only the foot points are retained. 

4.3. Contact Region Detection Module 

The foot-arch parameters are computed based on the contact region. To identify the contact 
region, the system first detects the contact points and then defines the contact region by a Markov 
random fields (MRF)-based method.  

4.3.1. Contact Point Detection 

A contact point is defined as a point whose distance from the footplate (acrylic board) is 
ideally zero. If the RGB-D camera is ideally installed parallel with the footplate, the distance 
between the foot point and the footplate could be calculated as the difference between the depth 
value of a point in the depth image and the distance of the footplate from the camera. However, it is 
almost impossible to install the camera in such a way, and the camera is generally rotated. 
Therefore, recognizing the rotation and translation of the footplate in 3D space is required to 
calculate the distance from the foot point to the footplate. One of the simplest ways to recognize the 
footplate is to model the plane using, for example, a checkerboard. However, this plane modeling 
method must be performed whenever the camera installation is changed. To overcome this problem, 
the proposed system automatically estimates the footplate from the previously filtered foot points 
based on the following assumption: among the foot points in the depth image, those in the contact 
region comprise the greatest proportion and their surface normal vectors are identical. Using this 
assumption, the system calculates the unit normal vectors of the foot points, clusters them, and 
finds the largest cluster. Finally, the system estimates the plane equation using the points included 
in the detected cluster. 

The point neighborhood-based surface normal vector estimation method is used in our system 
[34]. This approach first computes two 3D vectors between the left and right neighboring points 
and between the upper and lower neighboring points in the depth image. The normal vector is 
computed using the cross product of the two vectors. This method is considerably faster, but 
sensitive to noise. To alleviate this problem, the proposed system applies a smoothing filter to the 
normal vectors by averaging them.  

As mentioned above, we assume that most of the points are in the contact region and their 
surface normal vectors have similar directions. To identify the point set with similar normal vectors, 
the system performs clustering of the normal vectors [35]. The system constructs a 3D voxel grid 
and votes the normal vectors to the corresponding grid cell. In our system, each side of the 3D grid 
has a range of −1.0 to 1.0, and the grid consists of 20 × 20 × 20 cells. The size of each cell is 0.1 ×0.1 × 0.1. Each normal vector is voted according to its x-y-z coordinates. All non-empty cells are 
initial clusters. The system calculates the average normal vector of each initial cluster. To alleviate 
the discretization effects on the cell size, the system merges neighboring clusters and updates the 
average normal vector, if the difference between their averages is smaller than the cell size. After 
the merging process, the points in the largest cluster are used to compute the plane equation 
estimation. Figure 5a shows the results of our normal vector clustering algorithms.  

The plane equation is calculated using the least-squares plane fitting algorithms proposed in 
[36]. A plane equation can be specified by a point (ݔ଴, ,଴ݕ ܖ ଴) on the plane and the normal vectorݖ = (݊௫, ݊௬, ݊௭)୘  of the plane. Any point (ݔ, ,ݕ (ݖ  on the plane satisfies ݊௫(ݔ − (଴ݔ + ݊௬(ݕ − (଴ݕ +݊௭(ݖ − (଴ݖ = 0. The best-fit plane to ݉ given data points (ݔ௜, ,௜ݕ ݉ ௜), whereݖ ≥ 3, passes through 
the centroid (̅ݔ, ,തݕ  of the data, and this specifies a point on the plane. The first step is to find the (̅ݖ
average (̅ݔ, ,തݕ ௜ݔ of the points. A matrix A is formulated such that its first column is (̅ݖ −  second ,ݔ̅
column is ݕ௜ − ௜ݖ ത, and third column isݕ −  Then the matrix A is decomposed by singular value .̅ݖ
decomposition. The singular vector corresponding to the smallest singular value is chosen as the 
normal vector ܖ of the plane. Finally the plane with the best fit to the given data points is specified 
by ̅ݕ ,ݔത, ̅ݖ, and ܖ: ݊௫(ݔ − (ݔ̅ + ݊௬(ݕ − (തݕ + ݊௭(ݖ − (̅ݖ = 0. 
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(a) (b)

(c)

Figure 5. Contact point detection process: (a) foot points included in the largest normal vector cluster 
(green points), (b) detected contact points (green points), (c) number of corresponding points 
according to distance from the plane. 

To detect the contact points among the foot points, the system exploits the distance from the 
estimated footplate to the point. The distance can be easily calculated using the estimated plane 
equation: ݀ = ݊௫(ݔ − (ݔ̅ + ݊௬(ݕ − (തݕ + ݊௭(ݖ −  Ideally, the distances of all contact points would .(̅ݖ
be zero, but some are not zero due to the noise of the input data and the estimation error in the 
plane-fitting process. For this reason, the system identifies the set of contact points based on the 
following assumption: among the foot points, the points in the contact region comprise the greatest 
proportion among the foot points. The system calculates the distance from each point first and then, 
finds the distance to the footplate of the largest number of the foot points. Finally, the system 
defines the foot points with distances less than the detected distance as the contact points. Figure 5b 
shows the recognized contact points and Figure 5c shows the change in the number of foot points 
according to distance. Algorithm 1 explains the procedures of contact point detection. 

Algorithm 1 Procedures of Contact Point Detection 
Input data: foot points in the input depth image 
Output data: contact points 
Variables 
- ݅: index of the foot points in the depth image 
- ௜݂: i-th foot point in the depth image 
- ݊௜: normal vector of ௜݂ 
- ݀௜: distance from the footplate to ௜݂ 
 length of one side of a cell in the 3D voxel grid :݁ݖ݅ݏ_ܿ -
Procedures: 

1. Constructing a 3D voxel grid:  
create a 3D voxel grid having a range of −1.0 to 1.0 and divide the grid into cells of equal 
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size. 
2. Computing a normal vector:  

for all f୧,  
calculate the normal vector n୧ and apply a smoothing filter. 

3. Voting normal vectors:  
for all n୧,  
assign n୧ to the cell in the grid 

4. Setting initial clusters:  
set the non-empty cells as the initial clusters and calculate the average normal vector in the 
initial cluster. 

5. Merging adjacent clusters:  
for all inital clusters,  
calculate the distance between the adjacent cluster and merge them if the distance is smaller 
than c_size. 

6. Estimating footplate equation:  
find the cluster with the largest number of normal vectors of the foot points and estimate the 
plane equation using the correspoindng foot points.  

7. Calculating distances of foot points:  
for all f୧,  
calculate the distance from the footplate using the plane equation. 

8. Constructing a histogram:  
create a hisgtorm of the distance from the foot points and the footplate. 

9. Detecting the contact points:  
find the bin with the highest frequency and define the points corresponding to the bin as the 
contact points. 

4.3.2. Contact Region Detection 

As mentioned above, the foot-arch parameters are computed based on the contact region in the 
plantar surface of the foot. Therefore, the system must define the contact region before computing 
the foot-arch parameters. In this module, the proposed system extracts the dense and connected set 
of points in contact with the footplate. To solve this problem, a MRF is applied to detect the contact 
region [37]. A MRF enables incorporation of shape, color and distance from the footplate cues in a 
single unified model. Using the MRF, the system segments the foot point image into the following 
three classes: the contact, non-contact, and background regions. The contact and non-contact region 
are respectively the set of foot points in contact and not in contact with the footplate. The 
background region is the non-foot points in the image.  

Given a color image ܠ, set of distances ܌, and set of included angles between the normal 
vectors of the points and the normal vector of estimated footplate ࣂ, the energy function of the 
proposed MRF model for the class labels ܋ is defined as: ܋)ܧ, ,ߨ ,ݓ ,ܠ ,܌ (ࣂ =  ∑ ,ట߰൫ܿ௜ݓ ;௜ܠ ట൯ߨ + ,௜ܿ)ߣఒݓ ;௜܌ (ఒߨ + ,൫ܿ௜ߩఘݓ ;௜ࣂ ఘ൯௜ߨ + ∑ ߶൫ܿ௜, ௝ܿ , ,௜ܠ ௝൯(௜,௝)∈஌ܠ , (1)

where Υ  is the set of the edges in the four-connected grid, ߨ = ൛ߨట, ,ఒߨ ఘൟߨ  are the model 
parameters, ݓ = ൛ݓట, ,ఒݓ  ఘൟ are the weights for each term, and ݅ and ݆ are the index nodes in theݓ
grid (corresponding to positions in the image). 

As shown in Figure 6a, the contact and non-contact regions in the foot point set have different 
colors due to skin deformation caused by the effect of body weight on the contact region. The first 
term ߰൫ܿ௜, ;௜ܠ  ట൯, known as the color potential, is based on this idea and represents the colorߨ
distribution of the class given the point color. This term is proportional to the likelihood of the input 
color ܠ௜ given ܿ௜, and is defined as: ߰൫ܿ௜, ;௜ܠ ట൯ߨ = −log (2) ,(௜|ܿ௜ܠ)ܲ
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where ܲ(ܠ௜|ܿ௜) is the normalized distribution given by the Gaussian mixture models (GMM) using 
learned parameters ߨట. A RGB color model is used for the color potential. 

The second term ߣ(ܿ௜, ;௜܌ (ఒߨ , known as the distance potential, captures the distance 
distribution of the class given the distance of the point. This term is based on the notion that many 
contact points are closer to the footplate than are the non-contact points, as shown in Figure 6b. This 
term is proportional to the likelihood of the input distance ܌௜ given ܿ௜, and is defined as: ߣ(ܿ௜, ;௜܌ (ఒߨ = −log (3) ,(௜|ܿ௜܌)ܲ

where ܲ(܌௜|ܿ௜) is the normalized distribution given by a single Gaussian model using the learned 
parameter ߨఒ. 

(a) (b)

(c) (d)

Figure 6. Example of MRF-based contact region detection: (a) color image of the foot points (b) 
visualization of distance between the foot points and the estimated footplate, (c) visualization of the 
angle between the normal vectors of the footplate and the points, (d) MRF-based segmentation (red: 
contact region, green: non-contact region, and white: background). 

The third term ߩ൫ܿ௜, ;௜ࣂ  ఘ൯, known as the angle potential, captures the angle distribution of theߨ
class given the included angles between the normal vectors of the points and the normal vector of 
the footplate. The included angle can be calculated easily from the inner product of two normal 
vectors. This term is based on the idea that many contact points have normal vectors similar to the 
normal vector of the footplate, as shown in Figure 6c. This term is proportional to the likelihood of 
the input angle ࣂ௜ given ܿ௜, and is defined as:: ߩ൫ܿ௜, ;௜ࣂ ఘ൯ߨ = −log ௜ࣂ and (௜|ܿ௜ࣂ)ܲ = cosିଵ൫݊௣ ∙ ݊௜൯, (4)

where ܲ(ࣂ௜|ܿ௜) is the normalized distribution given by a single Gaussian model using the learned 
parameter ߨఘ, and ݊௣ and ݊௜ are the normal vectors of the footplate and the point, respectively. 

The last term ߶൫ܿ௜, ௝ܿ , ,௜ܠ  ௝൯, known as the smoothness potential, is a prior distribution thatܠ
discourages large differences in the labels of neighboring sites by assigning a low value to these 
configurations. We model this term using a contrast-sensitive Potts model, as follows:  ߶൫ܿ௜, ௝ܿ , ,௜ܠ ௝൯ܠ = Ι൫ܿ௜ ≠ ௝ܿ൯exp ቀ−ߚฮܠ௜ − ௝ฮଶቁ, (5)ܠ

where Ι(·) is an indicator function that is 1 (0) if the input argument is true (false), and ߚ is a fixed 
parameter. The color difference between two neighboring points is used in this smoothness 
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potential. In practice, this enforces spatial continuity of labels since the output of the term becomes 
large if the color difference is small and the corresponding labels are not identical. 

Each of the potential terms is trained separately to produce a normalized model parameter. The 
training sample of each class is chosen from the result of contact point detection. The samples for the 
contact region class are randomly selected from the contact points. The samples for the non-contact 
region class are randomly selected from the non-contact points among the foot points. However, 
some points in the contact region are classified as non-contact points since the result point set of the 
contact point detection is sparse, as shown in Figure 5b. To prevent selection of points in the contact 
region as the samples for the non-contact region class, the system applies dilation to the contact 
points in the result image, removes them, and selects the samples for the non-contact region class 
from among the remaining foot points. The samples for the background region class are set to fixed 
values: ሾ0, 0, 0ሿ஋, 0, and 180° for the color, distance, and angle potentials, respectively. The system 
adds small noises to them. For the color potentials, an Expectation-Maximization (EM) algorithm is 
used to learn the GMM parameter ߨట. We use three Gaussian models to train the color distribution 
of a single class. For the distance and angle potentials, we train the Gaussian models of each class 
using the mean and standard deviation. Compared with the contact points in Figure 5b, the 
recognized contact region is dense (Figure 6d). The weights, ݓట, ݓఒ, and ݓఘ, for color, distance, and 
angle potentials are set to 2.9, 9.3, and 1.8, respectively. 

4.4. Foot-Arch Parameter Computation Module 

The foot-arch parameters—AI, AW, and AH—can be defined by using the contact region and 
the key points and lines, such as centroid points of the second toe and heel and the MBL. In this 
section, we describe computation of foot-arch parameters by 2D and 3D shape analysis of the 
estimated contact region. 

4.4.1. Arch Index Computation 

To compute the AI from the estimated contact region, the system performs following three 
processing: (1) foot axis definition, (2) toe removal, (3) AI computation. 

The system defines the foot axis based on the two key points, the centers of the second toe and 
heel. Some of existing method presented the automatic foot axis detection [28,29]. Their methods 
compute the first principal axis of foot point distribution and define it as the foot axis. However, 
these methods are not suitable for finding the correct foot axis, since the extracted foot axis based on 
these methods is generally not the line connecting the centers of the second toe and heel. And since 
the foot data distribution depends on posture changes, the resulting foot axis also is sensitive to the 
posture changes. In order to accurately define the foot axis in the proposed system, the center of the 
second toe is manually selected by user input using a graphical user interface (GUI).  

The center of the heel (point K in Figure 1a) is automatically defined using the 
boundary-tracing technique. In [38], Chun et al. proposed a 3D human pose representation method 
based on the salient points in the silhouette boundary. To detect the salient points, they first 
calculated the distances from the centroid of the silhouette to the boundary points by boundary 
tracing clockwise or counter-clockwise and applied a smoothing filter to the sequentially detected 
distances. In the sequential distances, the system finds and defines the local maxima as the salient 
points. Our system performs boundary tracing on the heel side image of the foot center and detects 
the salient points. Before this process, to recognize the directions to the toe side and heel side, the 
system aligns the contact region image based on the principle axis computed by PCA, as shown in 
Figure 7a. The system splits the contact region into two parts based on the centroid. For both parts, 
the system calculates the maximum width of the contact region perpendicular to the first principal 
axis. The part with a greater maximum width is defined as the toe side part, and the other is 
defined as the heel side part. Finally, among the salient points detected in the heel side part, the 
point farthest from the centroid is selected as the center of the heel (red point in Figure 7b). The line 
connecting the centers of the second toe and heel is considered the foot axis (Figure 7c). Algorithm 2 
explains the foot axis detection procedures. 



Sensors 2017, 17, 1796 13 of 24 

 

 

 
(b)

 
(a) (c)

Figure 7. Key point detection process: (a) contact region alignment using PCA, (b) center of heel 
detection using boundary tracing, (c) definition of the foot axis as a line between the central points of 
the heel and second toe. 

Algorithm 2 Procedures of Foot Axis Detection 
Input data: contact region  
Output data: foot axis connecting the centers 
Variables 
- ܿ݊: centroid of the contact region 
- ݅: index of the boudnary point in the heel side part 
- ܾ௜: i-th boudnary point in the heel side part 
- ݈௜: distance between ܿ݊ and ܾ௜ 
- መ݈௜: smoothed distance between ܿ݊ and ܾ௜ 
- ݈′௜: first derivvatnormal vector of መ݈௜ 
- ݆: index of the salient point 
 ௝: j-th salient pointݏ -
Procedures 

1. Aligning the contact region:  
calculate the centroid of contact region ܿ݊ and rotate the contact region by using PCA 

2. Defining the heel side part:  

2.1. devide the aligned contact region into two parts. 
2.2. for each part, find maximum width perpendicular to the first principal axis. 
2.3. define a part with a larger maximum width as a heel side part. 

3. Calculating the distances from ܿ݊ to the boundary points in the heel side part:  
for all ܾ௜,  
calculate distance ݈௜ from ܿ݊. Smoothing the distances:  
for all ݈௜,  
compute the smoothed distance መ݈௜ using a 1D Gaussian smoothing filter. 

4. Deriving the derivative of the smoothed distances:  
for all መ݈௜,  

compute ݈′௜ the first derivative of the smoothed distance መ݈௜ using the central difference 
method. 

5. Detecting the salient points:  
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for all መ݈௜,  

find the local maximum of which ݈′௜ is a zero-crossing point, and define the local 
maximum as the salient point ݏ௝. 

6. Detecting the center of heel:  
for all ݏ௝,  
find the farthest point from ܿ݊ and define it as the center of heel. 

7. Defining the foot axis:  
detect the line connecting the detected center of heel and the center of second toe selected 
by a user. 

The AI is the ratio of the area of the middle third of the main body of the contact region to the 
entire contact region, excluding the toes. The next step is to segment the foot point image into the 
main body part of the foot and toe area. The edge detection technique is applied for this work, 
based on the significant color change between the main foot body and toe area due to skin 
deformation and the shadow, as shown in Figure 6a. To detect the color change, the system first 
rotates the foot point image based on the foot axis, and divides the image into three parts. The 
system scans horizontally each line in the toe region, and detects the vertical edges using 3 × 3 
Sobel operator (Figure 8a). And in order to find the strongest edge per each scan line, the system 
performs the non-maximal suppression. The system then applies the smoothing filter to the 
positions of detected edges by averaging the positions of their neighboring edges. Using these 
edges, the main part and toe area are divided (Figure 8b). And by applying AND operation to the 
segmented main part and the contact region, the system detects the main body part of the contact 
region. 

 
(b)

 
(a) (c)

Figure 8. AI computation: (a) foot point image rotated by the foot axis (top) and the detected edge 
(colored green) (bottom), (b) toe part and main body part segmented by the edge, (c) result of AI 
computation from the segmented main body part of the contact region. 

Finally, the system computes the AI by dividing the detected contact region into three parts 
and calculating the ratio of the area of the middle part to the entire region. Figure 8c shows the 
example of the AI computation. 

4.4.2. Arch Width and Height Computation 

The AW and AH are defined as the lengths of the lines from the mid-point of the MBL to the 
contact region and to the foot point in a direction perpendicular to the footplate. Therefore, the 
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MBL must be measured first. The AW and AH are computed after detecting the mid-point of the 
MBL.  

To find the MBL, the system exploits the convex hull detection algorithm [39]. This algorithm 
finds the convex hull of a 2D point set. The convex hull is the smallest set that contains the entire 2D 
point set. Through this algorithm, the system obtains the set of contour lines that contains the 
points in the contact region image (Figure 9a). The line with the greatest depth among the contour 
lines is defined as the MBL (Figure 9b). The mid-point of the MBL is computed by averaging the 
two 3D points; i.e., the beginning and end points of the line.  

The AW and AH are calculated by defining the two lines perpendicular to the MBL at the 
mid-point of the MBL. The line for the AW estimation is on the plane (the estimated footplate), 
begins at the mid-point of the MBL, and intersects with the contact region. The system draws a line 
perpendicular to the MBL on the contact region image and defines the distance between the 
mid-point of the MBL to the point on the line intersecting with the contact region as the AW (Figure 
9b).  

The line for the AH begins at the mid-point of the MBL and intersects with the foot point in a 
direction perpendicular to the footplate. The system first estimates the line equation using the 
mid-point of the MBL and the normal vector of the footplate. Using the line equation, the system 
finds the foot point closest to the line, and defines the distance between the closest foot point and 
the mid-point of the MBL as the AH (Figure 9c). 

(a) (b)

 
(c)

Figure 9. AW and AH computation: (a) result of convex hull detection algorithm applied to the 
contact region image, (b) the medial border line (MBL) and the mid-point of the MBL detection and 
AW computation, (c) 3D visualization of the AW and AH computation. 

5. Experiments 

In this section, we present experimental results to show that the proposed system facilitates 
accurate and stable foot-arch parameter measurement in repeat trials. In Section 5.2, we show the 
accuracy and repeatability of the foot-arch parameters estimated by the proposed system. And in 
Section 5.3, we show the reliability of the proposed method compared with the ground truth and 
analyze statistically the measured data. In Section 5.4, we discuss the weight choice for our MRF 
model used in the contact region detection module. In Section 5.5, the processing time of each 
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module is described. Before reporting the experimental results, we first explain the experimental 
setting. 

5.1. Experiment Environment 

The experiments to test the feasibility of the proposed system were performed on a 2.83 GHz 
CPU with 4 Gbyte of memory running 64-bit Windows 8.1 Enterprise K. The Intel Realsense 
Development Kit was used to capture the color and depth images. OpenCV library was used for 
image processing, and the Matlab wrapper for graph cut was used to infer the result of MRF-based 
labeling [40]. Eleven adult volunteers, nine males and two females, aged 25~35 years, participated 
in the validation. All participants were healthy, with no history of surgery or abnormality that 
could affect their stand pose. The subjects were asked to stand on the scanning stage and put their 
right foot on the acrylic board. For each subject, we collected three sets of depth and color images at 
three different times during a single day. We asked them to return to repeat the above scanning 
procedure for 3 consecutive days, thus a total of 99 image datasets were obtained.  

To evaluate the accuracy and repeatability of our system, we generated ground truth data for 
comparison. All the measurements for the ground truth data were performed by a clinical 
professional, who has more than four years of experience. We first painted the subject’s right foot 
with ink. Then, the subject placed his/her painted right foot on graph paper (Figure 10a). Using this 
footprint image, we measured the AI by counting manually the number of painted squares on the 
footprint image and the AW using a ruler. The AH data were collected by measuring the height 
from the floor to the skin externally covering the metatarsal bones using a ruler or a caliper, as 
shown in Figure 10b. We have collected 11 sets of ground truth data on the foot-arch parameters 
from 11 subjects. For the complete ground truth set, the AI was 23.59~31.14%, the AW was 28~41 
mm and the AH was 8~16 mm. 

 
(a) (b)

Figure 10. Measuring ground truth data: (a) generation of a footprint for AI and AW measurement, 
(b) AH measurement. 

5.2. Accuracy and Repeatability 

The accuracy was evaluated by comparing the similarity of the measured foot-arch parameters 
to the ground truth, and the repeatability was determined according to the similarity of the data 
taken at different time points over 3 days. 

Table 1 shows the results of the accuracy and repeatability tests. We performed the foot-arch 
parameter computation on 99 datasets collected from 11 subjects over 3 days, and compared with 
the ground truth by calculating the average error (AE). For the repeatability test, we computed the 
standard deviation (STD) of nine datasets for each subject. For AI computation, average of AE and 
STD were −0.17% and 0.70%. For AW and AH, averages of AEs were 0.95 mm and 0.52 mm and the 
averages of STDs were 1.63 mm and 0.68 mm, respectively. The coefficients of variation (CV, mean ÷ standard deviation) that is widely used to express the precision and repeatability are 0.023% for 
AI, 0.046% for AW, and 0.061% for AH respectively. 

Table 1. Accuracy and repeatability assessment. 
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Subject 
AI (%) AW (mm) AH (mm) 

GT AE STD GT AE STD GT AE STD 
1 29.06 1.63 0.89 29 1.86 1.77 8 −1.06 0.51 
2 31.14 −0.40 0.37 28 −0.86 2.49 8 0.95 0.63 
3 25.27 −1.35 1.12 30 0.67 0.99 11 1.93 0.87 
4 27.90 −0.81 0.96 37 1.71 1.93 12 2.06 0.56 
5 23.59 −1.29 0.28 28 −0.65 0.57 9 0.57 0.84 
6 26.66 0.95 0.36 40 1.38 2.90 12 0.49 0.56 
7 28.26 0.60 0.48 41 1.12 1.21 11 0.38 0.45 
8 25.86 −1.34 0.85 35 1.76 1.97 14 −1.00 1.15 
9 26.73 −0.02 0.79 38 2.24 0.41 16 1.29 1.07 

10 29.30 −0.21 1.23 41 −0.80 1.93 10 0.42 0.43 
11 27.75 0.33 0.38 39 2.05 1.74 11 −0.31 0.44 

AVG 27.41 −0.17 0.70 35.09 0.95 1.63 11.09 0.52 0.68 
CV(%) 0.023 0.046 0.061 

GT: Ground Truth, AE: Average Error, STD: Standard Deviation, AVG: Average, CV: Coefficient of Variation. 

5.3. Reliability and Statistical Analysis 

In this section, we investigate statistically the results of the proposed system to evaluate the 
reliability and feasibility. To compare the reliability of the estimated foot-arch parameters, 
correlation coefficients were calculated between the AI, AW, AH and the ground truth. And 
Spearman’s rank order correlation was also performed between the estimated results and the 
ground truth. The relationships among the foot-arch parameters, which are still controversial, were 
also tested.  

The correlation coefficients and Spearman’s rank order correlations between the AI, AW, AH 
estimated by the proposed system and the ground truth were calculated to evaluate the reliability 
of the proposed method [41]. The correlation coefficients of AI, AW, and AH are 0.798, 0.851, and 
0.811 respectively. All the ݌-value are less than 0.0001. These results show that the foot-arch 
parameters are significantly correlated with the ground truth. In case of the Spearman’s rank order 
correlations, the average AI, AW, AH of each subjects measured through the proposed system were 
used to rank. The result correlation coefficients of AI, AW, and AH are 0.945, 0.923, and 0.95 
respectively. All the ݌-value are less than 0.0001. These results suggest that there are strong 
positive relationships between the foot-arch parameter measurements collected using the 
conventional method and the proposed method. Tables 2–4 list the individual subject rankings of 
AI, AW, AH for the ground truth and the proposed method. In case of AI and AH, all of the 
absolute differences between the two ranks are less than or equal to 2. In case of AW, the absolute 
difference between two ranks is less than 2 in 10 out of 11 subjects. 

Table 2. Individual subject rankings based on AI. 

Subject 
Ground Truth Proposed Method

Rank Difference 
AI Rank AI Rank

5 23.59 1 22.3 1 0 
3 25.27 2 23.92 2 0 
8 25.86 3 24.52 3 0 
6 26.66 4 27.61 6 −2 
9 26.73 5 26.71 4 1 

11 27.75 6 28.08 7 −1 
4 27.9 7 27.09 5 2 
7 28.26 8 28.86 8 0 
1 29.06 9 30.69 10 −1 

10 29.3 10 29.09 9 1 
2 31.14 11 30.74 11 0 

Table 3. Individual subject rankings based on AW. 
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Subject 
Ground Truth Proposed Method

Rank Difference 
AW Rank AW Rank

2 28 1.5 27.14 1 0.5 
5 28 1.5 27.35 2 −0.5 
1 29 3 30.86 4 −1 
3 30 4 30.67 3 1 
8 35 5 36.76 5 0 
4 37 6 38.71 7.5 −1.5 
9 38 7 40.24 8 −1 

11 39 8 41.05 9 −1 
6 40 9 41.38 10 −1 
7 41 10.5 42.12 11 −0.5 

10 41 10.5 40.2 7.5 3 

Table 4. Individual subject rankings based on AH. 

Subject 
Ground Truth Proposed Method

Rank Difference 
AH Rank AH Rank

1 8 1.5 6.94 1 0.5 
2 8 1.5 8.95 2 −0.5 
5 9 3 9.57 3 0 

10 10 4 10.42 4 0 
3 11 6 12.93 8 −2 
7 11 6 11.38 6 0 

11 11 6 10.69 5 1 
4 12 8.5 14.06 10 −1.5 
6 12 8.5 12.49 7 1.5 
8 14 10 13 9 1 
9 16 11 17.29 11 0 

Figure 11 shows the distribution of AI measured by the proposed system using 99 data. 
Cavanagh and Rogers proposed criteria for classifying foot type as high, normal and flat arches 
using AI calculated from the footprint [4]. Their method involves dividing the distribution of AI 
into quartiles. The first and third quartiles act as the boundaries to recognize the foot type. For our 
system, the first and third quartiles were 26.125 and 29.4375. Based on [4], these values suggest that 
a foot can be recognized as a high arch foot if its AI < 26.125; if the AI > 29.4375, then a foot can be 
recognized as a low arch foot. If its AI falls between these values, it can be recognized as a normal 
arch foot.  

 
Figure 11. AI distribution for the 99 test data. 

Figure 12 shows a linear regression analysis of the relationships among AI, AH and AW for 99 
datasets measured by the proposed system. The correlation coefficient between AI and AH was a 
negative value (r = −0.51) and was statistically significant (p < 0.0001). AI and AW were less strongly 
correlated (r = −0.06), and the result was not significant (p = 0.71). 
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(a) (b)

Figure 12. Linear regression analysis for 99 datasets: (a) scatter plot showing regression between AI 
and AH (correlation coefficient ݎ  and (b) scatter plot showing regression ,(0.0001 > ݌ ,0.51− = 
between AI and AW (correlation coefficient 0.71 = ݌ ,0.06− = ݎ). 

5.4. Weight for the MRF Model 

In the contact region detection, the system extracts the dense and connected point set to be the 
estimated region in contact with the footplate by minimizing iteratively the energy function in the 
proposed MRF model. The energy function consists of four terms-color, distance, angle, and 
smoothness potentials—and it has weights, ݓ = ൛ݓట, ,ఒݓ  ఘൟ, for the first three terms as the controlݓ
values that enable regulation of the relative importance of each term. In this section, we investigate 
the changes in foot-arch parameters according to the changes in weights, and propose the optimal 
weights. 

We search for an automatic criterion to find the optimal weights for the accurate estimation of 
foot-arch parameters. We first define a cost function relating the errors of estimated foot-arch 
parameters to changes in the weights: F(ݓ) = ଵଶ ∑ ൫ ௜݂(ݓ)൯ଶ = ଵଶ ଶ‖(ݓ)܎‖ = ଵଶ ௠௜ୀଵ(ݓ)܎୘(ݓ)܎ , ௜݂(ݓ) = ௜ܩ − (6) (ݓ)௜ܧ

where ݉ is the number of samples, ܩ௜ and ܧ௜(ݓ) are the ݅-th ground truth and estimated 
result, and ܎ is a vector function: ܎: ℝ௡ ⟶ ℝ௠  with ݉ ≥ ݊, ݊ is the dimension of ݓ. Here, we 
want to find the optimal weights ݓ∗ that minimize F(ݓ) and equivalently minimize ‖(ݓ)܎‖. To 
find the minimizer ݓ∗, we apply the Levenberg-Marquardt algorithm (LMA) [42]. We start with an 
initial guess, ݓ଴. In the iterations, ݓ is updated by ݓ୬ୣ୵ = ݓ + h only for the downhill step. The 
step h is calculated by solving (۸(ݓ)୘۸(ݓ) + μ۷)h = (ݓ)܎୘(ݓ)۸− , where ۸(ݓ) ∈ ℝ௠×௡  is the 
Jacobian of derivatives of (ݓ)܎  with respect to the weights and μ  is the adaptive damping 
parameter. If ଵଶ ଶ‖(୬ୣ୵ݓ)܎‖ > ଵଶ  adjust ,(ݓ)܎ and the old  ݓ ଶ, then reject the step, keep the old‖(ݓ)܎‖
damping parameter μ, and calculate the step h again. If (ݓ)܎ is converged during the iterations, 
return ݓ as the minimizer of the cost function  F(ݓ). The proposed system outputs three different 
estimation results for the AI, AW, and AH. Therefore, there are three minimizers for each foot-arch 
parameter. To calculate them, we applied the above LMA-based method for AI, AW, and AH 
separately. Among the 99 data, 22 were chosen randomly and used for the sample (݉ = 22), and the 
remaining data were used for the evaluation. The calculated optimal minimizers and the average 
error of the 77 evaluation data are shown in Table 5. 

Table 5. Assessment optimal minimizer and error of foot-arch parameter estimation of the 77 data. 

 AI AW AH 
minimizer  ݓ∗ = ൛ݓట∗ , ,∗ఒݓ  ఘ∗ൟ {2.9, 9.3, 1.8} {4.7, 6.7, 0.9} {6.2, 7.3, 1.2}ݓ

average AE  
{AI(%), AW(mm), AH(mm)} 

{−0.17, 0.95, 0.52} {0.57, 1.03, 0.74} {0.54, 0.99, 0.62} 
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5.5. Processing Time 

We tested the processing time using 99 dataset, and calculated the average time for each 
submodule of analysis module. As shown in Table 6, the processing times of three submodules, with 
the exception of the contact region detection, were less than 60 ms. The processing time of the 
contact region detection was 8301.62 ms, which is the most time consuming. 

Table 6. Processing time of the analysis module. 

Module Task Processing Time (ms) 
Preprocessing Noise removal/coordinate mapping 53.51 

Contact region detection 
Contact point detection 51.4 

MRF-based region segmentation 8301.62 
Foot-arch parameter computation AI, AW, AH estimation 39.97 

Total - 8446.5 

6. Discussion 

In this paper, we developed autonomous foot-arch parameter measurement system for 
estimating three foot-arch parameters, AI, AW, and AH, through the use of a RGB-D camera. The 
system makes use of well-known image processing techniques, such as normal vector clustering, 
MRF-based segmentation, and 2/3D morphology and shape analysis, to detect the contact region 
and key features of foot and to calculate the foot-arch parameters.  

In Section 5.2, we described the accuracy and repeatability of the foot-arch parameters obtained 
by the proposed system. And the mean error rates (= |AVG AE| AVG GT⁄ × 100) of AI, AW, and AH 
were about 0.6%, 2.7%, and 4.6%, respectively. This may result not only from computational errors 
in the processing of the data but also from inherent measurement noise of the RGB-D camera. In fact, 
the RGB-D used in the proposed system is known for having an around 0.5~0.6% detecting error on 
the distance [21]. Therefore, it is expected to obtain more accurate and sophisticated foot-arch 
parameters if the performance of the RGB-D camera has been improved. 

As far as we know, lots of existing methods estimate the parameters related with the foot or 
arch, but there is no system that calculates the AI, AW, and AH simultaneously. Therefore it is 
difficult to directly compare the accuracy and repeatability of the proposed method with the 
previous studies. The method proposed in [17] calculates the ball width, ball girth, instep height, 
and instep girth using several 12 RGB cameras. The average estimation error of their method is 
about 2 mm. The method proposed in [29] estimates the foot length, width and ball girth using a 
RGB-D camera. The standard deviations of measurements of 10 times for each subject’s foot length 
and width are both 3.5 mm. In the case of the ball girth, the variations are about 6 mm. The digital 
image processing based AI computation study proposed in [30] shows that the coefficient of 
variation (mean ÷ standard deviation) of AI measurements of 10 times is 1.16%. As shown in 
Table 1, although the comparison parameters and evaluation dataset are different, the accuracy and 
repeatability of the proposed system for AI, AW, and AH measurements are relatively better. 

In Section 5.3, we firstly tested the reliability of the proposed system and showed that the 
foot-arch parameters estimated through the proposed method are strongly correlated with the 
ground truth measured by the conventional method. Also the ranks of foot-arch parameters using 
both methods are similar. This means that the foot-arch parameters measured by the proposed 
method can be used to identify the feature of individual foot as the foot-arch parameters measured 
by the conventional method do. However, in case of AI, the correlation coefficient is relatively 
smaller than the others. In the procedure of AI calculation, the system extracts the edge between 
main body part of the foot and toe area, and then calculates the ratio of middle area of main body 
over total main body. The edge is detected based on the color difference between the main body 
and toe area, and the system defines the edge if the color difference between the neighboring pixels 
is greater than a predefined threshold (in the proposed system, we defined the threshold as 50 
explicitly.). Thus, the stable lighting condition is important to solve this problem which is a 
common and significant issue in computer vision application systems. In order to alleviate the 
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problem caused by the different lighting condition, we installed a LED desk lamp inside of the 
scanning stage. We located the lamp in front of the toe direction to emphasize the color difference 
between the main body and toe area.  

Many studies reported the correlations among the foot-arch parameters have come to the 
controversial conclusion, particularly that between the AI and AH [4,30,43–45]. Despite these 
controversy, the correlation coefficient between the AI and AH generally demonstrated similar 
results showing negative correlation (e.g., −0.70 in [30], −0.67 in [43], −0.39 in [44], and −0.42 in [45]). 
As shown in Figure 12, the correlation between AI and AH obtained from our system is consistent 
with these previous studies. On the other hand, according to the results of the correlation between 
AI and AW, these two parameters are not related to each other. These results indicate that the 
analysis result based on the data extracted from the proposed system is not different from the results 
of existing researches, and show the availability of the proposed system to biomedical researches for 
foot analysis. 

In Section 5.4, we introduced a method to determine the optimal weight of each term to find the 
contact region by using the MRF method. We found that the optimal weights are different 
depending on the foot-arch parameter. Nevertheless, it was confirmed that the difference in arch 
parameters was calculated using different optimal weights. As shown in Table 5, the weight ݓఒ for 
the second term, distance potentials, is higher than the others in three cases, although their values 
are different. These results indicate that distance potentials are significantly considered for accurate 
foot-arch parameter estimation. This is also in accord with the definition of the contact region: the 
distance from the plane of the contact points is close to 0. The average errors of the estimation results 
using three different weight sets were less than 0.57%, 1.03 mm, and 0.74 mm, and the differences 
were less than 0.74%, 0.08 mm, and 0.22 mm, respectively. 

In Section 5.5, we presented the processing time of each submodule in the analysis module. The 
proposed system outputs the foot-arch parameters on average within 8.5 s. Compared with the 
system proposed in [30] that takes 10~30 s for AI computation from a footprint image, the proposed 
method is relatively fast. Among the submodules, the contact region detection consumes more than 
98% of the total processing time. This module solves the contact region detection problem by 
iteratively minimizing the energy function and finding the optimal label set for each pixel. To reduce 
the processing time of this module, GPU-based parallel processing can be applied. According to [46], 
a GPU-based solver for pixel labeling problems is 10–12-fold faster than the CPU-based solver used 
in this study. In the case of the proposed system, we did not apply a parallel-processing technique, 
since the system dealt with a single depth and color image set for a static pose. However, if the 
number of data processed by the system increases, the processing time of this module could be a 
problem. We are considering a parallel-processing technique to improve the applicability of the 
system as future works. 

From the automation perspective of foot-arch parameter computation, the proposed system 
automatically performs the rest of the processes except for the foot axis definition for AI calculations. 
In order to define the foot axis, the proposed system specifies the center point of the second toe 
through the graphical user interface. For this purpose, a color image of the foot obtained is displayed 
to the monitor, and the user sets the center point by clicking the mouse manually. In addition, it 
provides the function to correct the designated point so that accurate foot axis detection is possible. 
Although this manually selection does not require much time (less than 2 s on average in the 
experiment on 99 data), the usability of the proposed system will be more improved if this method 
becomes also automated. However, as opposed to automatically detected the center point of heel as 
the salient point on the boundary in the foot-heel, it is difficult to detect the center point of the 
second toe by image processing or computer vision techniques due to the lack of visual, geometrical, 
and topological features. In this case, machine learning-based detection method can be a good 
solution [8]. We will apply the automatic detection of the center point of the second toe to the 
proposed system. We will also apply the machine learning to estimate the position and area of 
important anatomic structures of foot, such as the calcaneus, the talus, the navicular bone, and the 
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metatarsal bones, which are known only through X-ray, CT or MRI, from color and depth images 
taken by the proposed system. 

One of the most difficult and important parts in the proposed system is the contact region 
detection. Most existing foot-arch parameters such as AI, AW, AH, arch length index, footprint 
index, arch angle, truncated arch index, and so on, are based on the shape of contact region [21]. 
This is since the individual musculoskeletal structures of the feet are reflected onto the contact 
region. Therefore, the detection of the contact region is very important and can be applied to lots of 
foot-related researches. The proposed system detects the contact region using the MRF as described 
in Section 4.3.2. Another possible method to detect the contact region is Active shape models (ASMs) 
[47]. The ASMs, widely used in facial image analysis and medical imaging, is a statistical model that 
iteratively deforms the shape of the given model to fit it to the desired shape of an object. Assuming 
that each person's contact region is not significantly different, the ASMs can be applied to contact 
region detection. In particular, this will allow the system to detect the contact region faster than 
used MRF based method, since the processing time of ASMs is very fast. 

One of the representative advantages of the proposed system is that the system is able to 
capture the full 3D geometric plantar shape of the foot sequentially. Unlike foot pressure-based 
method which measures the pressure due to the body weight applied to the foot contact region, the 
proposed system enables to obtain 3D information of the plantar shape of the foot including the 
contact region. Also, unlike the existing 3D foot shape acquisition method, the proposed method can 
be used for data measurement and analysis of 3D foot shape change according to continuous and 
dymamic motions, such as gait, running, squat, and jumping, since continuous data acquisition is 
possible. Especially, although the most of existing studies investigating the change of the arch 
according to the posture change only consider the static postural changes such as sitting and 
standing, it is possible to efficiently observe the continuous shape change of the foot-arch according 
to various motions using the proposed system.  

7. Conclusions 

In this paper, we presented a RGB-D camera-based geometric foot-arch measurement system 
that is able to capture the sole of the foot and estimate three foot-arch parameters: AI, AW and AH. 
To achieve these goals, the proposed system provides the following: (1) 3D measurement of the 
plantar surface of the foot, (2) detection of the contact region, and (3) AI, AW, and AH estimation via 
2/3D shape analysis of the contact region. 

The feasibility of the system was proven by the four tests which are the average estimation error 
measurements, statistical analysis, optimal weights used in the MRF, and the processing time. From 
the tests it was validated that the proposed system can be used to obtain reliable geometric 
information of the foot plantar surface and foot-arch parameters.  

Our future work will focus on expanding the applicability of our system to dynamic foot 
measurement and recognition, such as a gait and run analysis. More sophisticated methods that take 
into account automatic foot part tracking and recognition will improve the feasibility and suitability 
of the proposed system for dynamic foot analysis. As stated in the discussion, the parallel-processing 
technique for the contact region detection module and the machine learning for automatic foot 
region segmentation and landmark detection will be considered to reduce the processing time and 
increase the efficiency of the system. The use of our system to identify novel characteristics of static 
and dynamic foot analyses, such as the relationship between the foot-arch parameters and personal 
gait patterns, is an important future research topic. 
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