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Abstract: This paper presents a thermal convection–based sensor fabricated using simple
microelectromechanical systems (MEMS)-based processes. This sensor can be applied to both
acceleration and inclination measurements without modifying the structure. Because the operating
mechanism of the accelerometer is the thermal convection of a gas medium, a simple model is
proposed and developed in which the performance of the thermal convection–based accelerometer
is closely associated with the Grashof number, Gr and the Prandtl number, Pr. This paper discusses
the experiments that were performed by varying several parameters such as the heating power,
cavity size, gas media, and air pressure. The experimental results demonstrate that an increase in the
heating power, pressure, and cavity size leads to an increase in the accelerometer sensitivity. However,
an increase in the pressure and/or cavity size results in a decrease in the frequency bandwidth.
This paper also discusses the fact that a working-gas medium with a large thermal diffusivity and
small kinematic viscosity can widen the frequency bandwidth and increase the sensitivity, respectively.
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1. Introduction

Microelectromechanical systems (MEMS)-based devices integrate various mechanical elements,
sensors, actuators, and electronics onto a silicon substrate to achieve a multitude of different tasks
over a diverse range of fields. MEMS-based sensors are increasingly being used for commercial
and industrial applications, such as pressure sensors, gas sensors, RF (Radio frequency) switches,
and flow sensors. One of the most important MEMS devices is the accelerometer. Many types
of accelerometers used to measure vibration, shock, and inertial motion have been developed for
application in various industrial fields. Most conventional accelerometers detect the acceleration
using a solid proof mass and are based on the changes in the capacitance [1,2] or the piezo effect [3,4].
However, MEMS-based accelerometers based on the proof-mass system suffer from problems such
as electromagnetic interference (EMI), the effect of parasitic electrostatic force, and fabrication
complexity [5–9]. To overcome these problems, a thermal type of MEMS-based accelerometer that
does not require a solid proof mass has been developed and fabricated, as described in previous
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papers [5–12]. The key features of these accelerometers are that they have no solid proof mass, and their
operation is based on air convection through a thermal exchange with a microheater in an enclosed
chamber. The researchers found that gas is a good working medium compared with solid or liquid
medium because no mechanical parts are present and they are anticorrosive and stable in the atmosphere.

Our group previously reported a thermal convection–based sensor for tilting measurement [13].
The sensor can be applied to both acceleration and inclination measurements without modifying the
structure. The current paper presents the experiments carried out to examine the parameters that affect
the sensitivity and frequency characteristics of thermal convective accelerometers. Special efforts were
made considering improvements to the frequency response of the accelerometer because currently
available reports on experimental studies concerning the frequency response are few [14]. To improve
the sensitivity and frequency response, the current study concentrated on optimizing these different
parameters: the heating power, operating frequency, gas medium, operating pressure, and cavity
volume of an encapsulated microchamber. In addition, the proposed thermal convection–based
accelerometer response was theoretically evaluated, and its operating characteristics were measured
through experimentation. Various simple models were used to better understand the sensitivity and
frequency response of the accelerometer. The more influential parameters were then taken into account
in the sensor design.

2. Materials and Methods

2.1. Device Structure

Figure 1a,b show the structure of the thermal convection–based accelerometer. It consists of
a central microheater to heat the gas medium in the cavity, and four temperature sensors located
from either sides of the heater where the gas medium flows across the temperature sensors through
free convection. Figure 1c illustrates the fabrication process of the sensor. The silicon (Si) substrate
was prepared with the 0.5 µm thickness of silicon dioxide layer. The back side of the Si wafer was
etched and the heater and temperature sensors at the bottom wafer are made of platinum (Pt), which
has very stable physical properties and operates with a high temperature coefficient of resistance of
3.93 × 10–3 (◦C)−1. The frond side of Si was removed by wet etching to form thermal isolation in
the microchamber. Finally, the sensor is packaged in a sealed microchamber that contains a working
medium, e.g., air or nitrogen (N2).
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2.2. Principles of Operation

Figure 2a shows the temperature distribution in the cavity when the accelerometer is not subjected
to acceleration. When power is introduced to the heater, the temperature around the heater rises,
creating thermal convection in the cavity. In this case, the temperature profile of the gas medium
in the cavity is symmetrically sensed by both temperature sensors, as shown by the straight line.
No temperature difference is detected between the two temperature sensors; thus, identical electrical
resistances and/or voltages are produced. When the accelerometer is subjected to acceleration,
the temperature profile shifts along the direction of the applied acceleration, as shown Figure 2b.
This condition results in an increase in temperature around one temperature sensor and a decrease in
temperature around the other sensor, generating a temperature difference between the two temperature
sensors that is proportional to the magnitude of the applied acceleration. By measuring the electrical
signal produced from the temperature difference, the acceleration can be determined.
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2.3. Theory of Operation

Because the working mechanism of the convective accelerometer is based on thermal convection,
a method to improve its performance is to provide an appropriate convection environment to the
accelerometer. Generally, two non-dimensional parameters, namely the Grashof number Gr and the
Prandtl number Pr, are introduced to investigate the effect of thermal convection [15].

Gr =
gρ2βL3∆T

µ2 (1)

Pr =
µ

α
(2)

Here g, ρ, β, L, ∆T, µ, and α are the applied acceleration, gas density, coefficient of
volumetric expansion, characteristic size (generally denotes the cavity size), temperature difference
between the heater and boundary of the sensor, kinematic viscosity, and thermal diffusivity,
respectively. As expressed in Equations (1) and (2), these parameters can be used to predict the
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effects of the working-fluid properties on the sensitivity and frequency response of the thermal
convection-based accelerometer.

Previous works have shown that the temperature difference in the thermal convection-based
sensor is linearly proportional to the Gr number; thus, a larger Gr number results in higher sensitivity
of the thermal convection-based accelerometer for a given acceleration [10–12]. Therefore, increasing
the value of the Gr number is essential to obtain good sensitivity of the thermal accelerometer.

According to Equation (1), the following design parameters can be considered to increase the
sensitivity of the thermal accelerometer:

(i) Large heating power and lower ambient temperature, which corresponds to increasing T,
(ii) Increase in the characteristic size, which corresponds to increasing L,
(iii) Selection of a gas medium with large gas density ρ and small kinematic viscosity µ.

Previous papers on thermal accelerometer have discussed the dependence of performance
on Gr and Pr, important factors in sensitivity and frequency response [11–14,16,17]. In particular,
the frequency response of a thermal accelerometer can therefore be improved by taking into account
the thermal variations in the gas properties and the dependence on the air thermal conductivity [12].
To obtain a fast and wider frequency response, we need to highly influence the thermal physical
properties of the gas medium. A large thermal conductivity (α) and a small gas density (ρ) will
accelerate the thermal diffusion, which consequently facilitates the heat balance in the cavity of the
accelerometer and provides a fast frequency response to the accelerometer.

In addition, the frequency response is associated with the cavity dimensions and the distance
between the heater and temperature sensor. We can deduce that achieving heat uniformity in a larger
cavity of an accelerometer at given heater power takes a longer time and shows a slower frequency
response. On the other hand, the gas medium around the heater can quickly reach the temperature
sensor when the distance between the heater and temperature sensor is small.

All the above-mentioned methods to improve the sensitivity and frequency response of the thermal
convection-based accelerometer must be experimentally carried out based on Gr and Pr parameters to
optimize the sensor structural design and maximize the performance of the accelerometer.

3. Results and Discussion

3.1. Effects of the Heating Power

The sensitivities of the thermal accelerometer were measured by two methods that rely on
field applications. One method that measures the sensitivity, which is called static sensitivity, was
undertaken from −90◦ (−g) to +90◦ (+g) by rotating the accelerometer under standard conditions
(room temperature and atmospheric pressure) where the axis is parallel to the Earth’s gravitational
force. Figure 3a shows the sensitivity of the accelerometer under gravitation. This result demonstrates
that the accelerometer operates well and exhibits quite a linear performance even in the whole range
from −90◦ to +90◦. With the rotation, the resistance of the temperature sensor changes due to the
shifting of the temperature profile in the cavity. The magnitude of the resistance change is measured as
the sensitivity of the accelerometer under given conditions. The static sensitivity of the accelerometer
is 360 µV·g−1 under a heater power of 50 mW.

The other method of measuring the sensitivity of the accelerometer, which is called dynamic
sensitivity, is to intentionally apply acceleration to the accelerometer using a vibration shaker within
a certain range of frequencies. Figure 3b shows that the accelerometer displays linear sensitivities
with the range from 0 to 10 g at 30 Hz. In this case, the slope of the graph can be considered as the
dynamic sensitivity of the accelerometer. We note that the dynamic sensitivity of the accelerometer is
277 µV·g−1 at an operating power of 50 mW. The static sensitivity is larger than the dynamic sensitivity
under equal heating power.



Sensors 2017, 17, 1765 5 of 9
Sensors 2017, 17, 1765  5 of 9 

 

 

Figure 3. The output voltage of the accelerometer as a function of (a) tilting angles and (b) 
accelerations. 

Figure 4a shows the effect of the heating power on the sensitivity of the accelerometer. The 
sensitivity of the accelerometer is shown to increase under a large heating power. As shown  
in Figure 4b,c, increasing the heating power can raise the temperature difference in the cavity of the 
accelerometer, simultaneously providing high sensitivity. A powered heater with high temperature 
contains a large amount of thermal energy compared to an unpowered heater or a heater with a low 
temperature. The law of conversion of energy states that the total energy of an isolated system 
remains constant. Energy can neither be created nor destroyed. However, it can be transformed from 
one form to another. In other words, powered heaters with high temperature can transfer a large 
amount of thermal energy to the working gas medium, which leads to high sensitivity of the thermal 
convection–based accelerometer [18]. In practical applications, however, we need to consider the 
power consumption and sensitivity of the accelerometer. 

 

Figure 4. (a) The output voltage of the accelerometer as a function of acceleration with respect to the 
applied heater power and simulation results at a heater temperature of (b) 400 K and (c) 450 K 
(acceleration of 1 g and atmospheric pressure). 

3.2. Effects of the Medium Type 

Because the thermal convection–based accelerometer detects the temperature distribution 
profile of the gas medium that fills the cavity, cavity conditions such as the pressure, size, and gas 
medium are critical parameters that affect the sensitivity of the accelerometer.  

The performance of the accelerometer filled with different gas media has been experimentally 
tested and analyzed. Figure 5a shows the effect of a gas medium on the sensitivity of the 
accelerometer with respect to different gas media, namely air, N2, and CO2. We can clearly observe 
that the accelerometer filled with CO2 shows the highest sensitivity, whereas the lowest sensitivity is 
observed in the accelerometer filled with air. The difference in the sensitivities under different gas 

Figure 3. The output voltage of the accelerometer as a function of (a) tilting angles and (b) accelerations.

Figure 4a shows the effect of the heating power on the sensitivity of the accelerometer.
The sensitivity of the accelerometer is shown to increase under a large heating power. As shown in
Figure 4b,c, increasing the heating power can raise the temperature difference in the cavity of the
accelerometer, simultaneously providing high sensitivity. A powered heater with high temperature
contains a large amount of thermal energy compared to an unpowered heater or a heater with a
low temperature. The law of conversion of energy states that the total energy of an isolated system
remains constant. Energy can neither be created nor destroyed. However, it can be transformed from
one form to another. In other words, powered heaters with high temperature can transfer a large
amount of thermal energy to the working gas medium, which leads to high sensitivity of the thermal
convection–based accelerometer [18]. In practical applications, however, we need to consider the
power consumption and sensitivity of the accelerometer.
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3.2. Effects of the Medium Type

Because the thermal convection–based accelerometer detects the temperature distribution profile
of the gas medium that fills the cavity, cavity conditions such as the pressure, size, and gas medium
are critical parameters that affect the sensitivity of the accelerometer.

The performance of the accelerometer filled with different gas media has been experimentally
tested and analyzed. Figure 5a shows the effect of a gas medium on the sensitivity of the accelerometer
with respect to different gas media, namely air, N2, and CO2. We can clearly observe that the
accelerometer filled with CO2 shows the highest sensitivity, whereas the lowest sensitivity is observed
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in the accelerometer filled with air. The difference in the sensitivities under different gas media is
due to the different properties, densities, and kinematic viscosities. As shown Table 1, CO2 has the
largest density and smallest kinematic viscosity among these media, and its corresponding Gr value
is the largest. In contrast, air has a small density and a large kinematic viscosity, thus yielding a low
sensitivity. High viscosity makes a gas medium more resistant to gas flow, leading to lower sensitivity.

The frequency response of the accelerometers under different gas media has also been measured,
and the results are shown in Figure 5b. The frequency response of the accelerometer filled with air gas
media is nearly flat up to approximately 80 Hz. Beyond 80 Hz, the sensitivity substantially decreases
as the frequency increases. When the acceleration is kept constant, the accelerometer moves a shorter
distance at a higher frequency, which leads to a decrease in the sensitivity of the accelerometer [11].
Another reason is ascribed to the fact that higher frequencies induce a greater admixture of the
hot and cold gas media surrounding the temperature sensors in the microchamber, thus degrading
the sensitivity. Furthermore, the gas flow can change from a laminar to a turbulent flow at higher
frequencies (normally > 70 Hz) [19].

On the other hand, the experiment results reveal that air can accurately detect the acceleration
in frequency ranges of up to 80 Hz, whereas the CO2 can barely measure up to 60 Hz. The medium
properties directly determine how rapidly the gases can move toward the temperature sensor.
Gases with a lighter density and larger thermal diffusivity are advantageous as a working medium
for a higher frequency response. A larger thermal diffusivity and a lighter density take less time to deliver
the heated gas from the central microheater to the temperature sensor. From these factors, we can assume
that the sensitivity of the accelerometer has a trade-off relationship with the frequency response.
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Table 1. The gas medium properties at 50 ◦C [20].

Density
(kg/m3)

Specific Heat
(kJ/kg·K)

Kinematic Viscosity
(×10−6) (m2/s)

Thermal Diffusivity
(×10−4) (m2/s)

Thermal Conductivity
(W/m·K)

Air 1.092 1.007 19.6 0.248 0.02735
N2 1.0564 1.042 17.74 0.249 0.02746

CO2 1.6597 0.8666 9.71 0.129 0.01858

3.3. Effects of the Gas Pressure

The physical states of a gas medium in the cavity highly influence the sensitivity of the thermal
accelerometer. A larger Gr number is beneficial for a sensitive thermal sensor. When the heater power,
structural dimensions, and gas medium are given, the gas density is the only variable to be considered.
The gas density ρ in Equation (1) corresponds to the ambient pressure. Thus, higher gas pressure
increases the Gr number, improving the sensitivity of the thermal accelerometer. Figure 6a shows
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that better sensitivities are observed at higher gas pressure, as expected. Mailly et al. reported that
the thermal boundary layer of the temperature profile decreases when the gas pressure (density)
increases (the thermal boundary layer is defined as the distance in which the temperature rise is 10%
of the heater temperature rise) [21]. As shown in the simulation results in Figure 6c,d, the reduced
thermal boundary layer was observed at higher gas pressure. Although the thermal boundary layer is
limited by the cavity size or volume of the accelerometer, according to this definition, the temperature
sensor can detect higher temperatures at higher gas pressures without structural modification of the
accelerometer. This feature is the special advantage of this sensor type because we can possibly achieve
high sensitivity by packaging at higher pressure. In contrast, the proof-mass–type sensor requires
modification of the structural parameters to improve the sensor performance.

On the other hand, an inferior frequency response is observed at higher air pressure, as shown in
Figure 6b. As revealed by the expression of the thermal diffusivity, α = k/ρ·c, the density (ρ) of the
gas is linearly proportional to the pressure, whereas the thermal conductivity (k) and specific heat
(c) undergo very small variations even if the pressure increases [22]. These factors explain why the
frequency response of the sensor decreases as its internal pressure increases.
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3.4. Effects of the Cavity Volume

The volume of the gas medium cavity also influences the sensitivity and frequency response of
the sensor because it is related to the gas density and the heat quantity per unit volume of the sensor.
The encapsulated microcavity is designed to accommodate various sizes to determine the optimum
cavity volume. Figure 7a shows the output characteristics of the accelerometer as a function of the
cavity size. The experiment reveals that the measurement results of the accelerometer show a higher
sensitivity for a larger cavity because a smaller cavity retards the flow circulation [23]. Gas flow is
restricted by a small cavity boundary, which substantially suppresses the flow action induced by
thermal convection and reduces the sensitivity. Therefore, manufacturing using a large cavity size
will increase the sensitivity of the accelerometer. These results are consistent with those of previously
reported papers [15–18]. Figure 7b shows the frequency response of the proposed convective sensor
with different cavity volumes. We find that a larger chamber has a lower frequency, which implies
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that a longer time is required for the temperature to reach equilibrium [12]. Thus, small sizes might be
more desirable to enhance the frequency response. Based on this result, we can see that simultaneously
improving both the sensitivity and frequency response by optimizing the gas medium, gas pressure,
and cavity size is not possible. Therefore, in designing the thermal accelerometer, we need to consider
the practical applications of the accelerometer.
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4. Conclusions

An accelerometer based on convection was fabricated and tested in this study. Several characterizations
derived through experimentation demonstrated that the thermal convection–based accelerometer exhibits
better linearity, preferable frequency response, and higher sensitivity by optimizing various parameters.
This study paid particular attention to the frequency response of the convection-based accelerometer
based on thermal exchanges. The characteristics of the sensor have been experimentally investigated as
a function of the gas medium, pressure, heater power, and cavity volume. The experiment results have
shown that the frequency response can be extended by optimizing various factors, such as a smaller
cavity volume, a lower gas pressure, and a gas medium with a large thermal diffusivity.
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