ﬂ SCNSors m\py

Article

Context- and Template-Based Compression for
Efficient Management of Data Models in
Resource-Constrained Systems

1,%,1 1

Jorge Berzosa Macho , Luis Gardeazabal Montén >* and Roberto Cortifias Rodriguez >

1
2

Electronics and Communications Unit, IK4-Tekniker, Calle Inaki Goenaga 5, 20600 Eibar, Spain
Computer Science Faculty, University of the Basque Country UPV/EHU, Paseo M. Lardizébal 1,
20018 Donostia-San Sebastidn, Spain; pedrojoseluis.gardeazabal@ehu.eus (L.G.M.);
roberto.cortinas@ehu.eus (R.C.R.)

*  Correspondence: jorge.berzosa@tekniker.es; Tel.: +34-943-20-6744

t These authors contributed equally to this work.

Received: 22 June 2017; Accepted: 27 July 2017; Published: 1 August 2017

Abstract: The Cyber Physical Systems (CPS) paradigm is based on the deployment of interconnected
heterogeneous devices and systems, so interoperability is at the heart of any CPS architecture
design. In this sense, the adoption of standard and generic data formats for data representation
and communication, e.g., XML or JSON, effectively addresses the interoperability problem among
heterogeneous systems. Nevertheless, the verbosity of those standard data formats usually demands
system resources that might suppose an overload for the resource-constrained devices that are
typically deployed in CPS. In this work we present Context- and Template-based Compression (CTC),
a data compression approach targeted to resource-constrained devices, which allows reducing the
resources needed to transmit, store and process data models. Additionally, we provide a benchmark
evaluation and comparison with current implementations of the Efficient XML Interchange (EXI)
processor, which is promoted by the World Wide Web Consortium (W3C), and it is the most prominent
XML compression mechanism nowadays. Interestingly, the results from the evaluation show that CTC
outperforms EXI implementations in terms of memory usage and speed, keeping similar compression
rates. As a conclusion, CTC is shown to be a good candidate for managing standard data model
representation formats in CPS composed of resource-constrained devices.

Keywords: cyber physical systems; data models; compression; resource-constrained devices; ad hoc
networks; Wireless Sensor Networks (WSN)

1. Introduction

The trend to integrate heterogeneous systems and devices into Cyber Physical Systems (CPS)
demands interoperable communications and data models. Nevertheless, since many systems are
composed of resource-constrained devices, a big effort is being made to provide those systems with
protocols and tools adapted to their limitations. A general approach is to tackle the challenge at
different layers. For example, we can find IEEE 802.15.4 [1] for the media access control layer, IPv6
over Low power Wireless Personal Area Networks (6LoWPAN) [2] in the case of the network layer
and the Constrained Application Protocol (CoAP) [3] at the application layer.

A more current trend is the Web of Things (WoT) [4,5], which takes the Internet of Things (IoT)
paradigm one step forward. WoT consists of supporting web standards directly on embedded devices
by reusing and adapting standard web protocols to the constrains of such systems. WoT is totally
based on application layer protocols, effectively abstracting lower layers, e.g., physical or transport
layers, which are the ones showing the highest degree of heterogeneity and the main source of
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clashes in traditional IoT networks. In short, WoT promotes generic/standard interfaces in order to
enhance overall interoperability and build loosely coupled services by providing mechanisms for
highly configurable services/interactions. Apart from enhancing overall interoperability, web services
enable the application of high level services, such as the “self-*”” services family (where “self-*" stands
for self-discovery, self-configuring, etc.), directly on top of the devices. In general, the benefits of
WOoT for all CPS domains are clear, but they are specially important for consumer electronics-targeted
domains (domotics, entertainment, etc.), where improved interoperability across services/vendors
and increasing richness of interactions with the “smart” environment would enhance user experience.

The efficient management of standard data model representation formats would ease the native
use of high level data models and protocols (such as web services) in resource-constrained devices.
In the context of this paper, we consider “resource-constrained” as low memory (<256 KB Flash/ROM
and ~10 KB RAM)), limited processing capability (<48 MHz, typically 8-16 MHz) and an average
consumption of a few A due to energy source limitations and autonomy requirements.

Thus, this work considers the representation of data, which can be done using many different
formats. We will focus on standard data model representation formats and, more precisely, W3C'’s
XML (Extensible Markup Language) as a main reference, even though other options such as
JSON (JavaScript Object Notation) could also be considered. XML is widely extended as a data
structuring format and is the basis for many application layer protocols, web services and related
protocols, e.g., Simple Object Access Protocol (SOAP) [6] or Extensible Messaging and Presence
Protocol (XMPP) [7].

XML has been designed to be human readable, with tokens codified as strings. This makes
XML documents too large and too CPU demanding to be efficiently managed by resource-constrained
devices. XML parsers need to deal with large amounts of string data and verbose documents, involving
too much processing for energy- and processor-constrained devices. The size of XML documents puts
some constrains on the required storing memory and transmission bandwidth. Resource-constrained
devices usually have small memories of tens of KBytes, which should be able to store the XML
document(s), as well as the application, operating system, communication libraries, etc. Additionally,
the size of the XML documents has a direct impact on the number of message packets needed to
transmit the whole document, which, as a consequence, affects the energy consumed by the device
that communicates and, in the case of multi-hop networks, also by routing devices. For a survey on
protocols targeted to resource-constrained devices, their characterization and limitations, readers are
encouraged to consult [8].

In this work, we propose an approach based on templates, namely Context- and Template-based
Compression (CTC). Roughly speaking, templates are extracted from the managed data model schema
documents so that their representation can be replaced in the data model instance documents with
a minimum number of references. Documents are then compressed (by using lossless-compression)
following an algorithm that takes into account the context(s) of the data model’s schema.

The purpose of CTC is to reduce the resources needed to transmit, store and process data
models compared to using the standard data representation formats (such as XML or JSON). First,
by compressing the data model document instance, the quantity of messages needed to transmit the
whole document is effectively reduced. Second, the use of templates minimizes the memory needed to
store the data models’ schemas and the structures of the instances. Finally, the data model is codified
in a more efficient format, resulting in a reduction of the required processing time. Tests have been
performed in real hardware in order to evaluate our proposal. Results show that CTC outperforms
other solutions and is a valid candidate for data model management in resource-constrained devices
and networks.

In this paper, we also outline the communication model followed by CTC. Basically, templates
are registered at execution time and are made available to the rest of the system. In order to manage
data model schemas, nodes go through a preliminary discovery phase, where required templates and
identifiers are downloaded from their storing location.
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The paper is structured as follows: Section 2 presents the related work for this paper. Section 3
sets the concepts of CTC. Then, Section 4 introduces the compression and codification algorithm used
in CTC. Section 5 describes the management and communication model used together with CTC.
A performance study compared to Efficient XML Interchange (EXI) processor implementations is
presented in Section 6. Finally, Section 7 summarizes and concludes the paper pointing out future steps.

2. Related Work

Although there are several XML compression algorithms, currently the most promising one seems
to be EXI [9], adopted as a recommendation by W3C. For a comprehensible comparison of XML
compression algorithms, readers are encouraged to consult [10]. EXI relies on a binary representation
of XML, and it is designed to provide a considerable reduction on the size of the information in XML
format (70-80%, as shown in [11]) and a high performance when encoding/decoding (6.7-times faster
decoding and 2.4-times faster encoding according to [12]). In EXI, an XML document is represented
by an EXI stream, which is composed of a header (containing encoding information) and a body
(representing the data). Data are represented based on formal grammars to model redundancy.
EXI uses a string table to assign “compact identifiers” to string tokens (such as qualified names and
literals). Occurrences of string tokens found in the string table are represented using their associated
compact identifier. The string table is dynamically expanded to include additional string values
encountered in the document. When XML Schema information is available, the string table is initially
pre-populated, allowing a much more efficient coding and compression.

However, EXI may be too complex to be efficiently implemented in resource-constrained devices.
On the one hand, the implementation may require too much code memory or processing time.
On the other hand, EXI requires the use of runtime memory allocation in order to accommodate
schema deviations and grammar learning. The EXI Profile [13] recommendation proposes a series of
configuration parameters and practices in order to reduce the memory needs of EXI implementations.
EXI Profile is targeted to devices that are not allowed (either by design or convenience) to use arbitrary
memory growth at runtime. The use of runtime memory is bounded by restricting the growth of
string tables and the evolution of grammar(s), sacrificing some of the compression efficiency. However,
these recommendations may not cover the resource limitations of the most resource-constrained
devices. In contrast, CTC is specifically targeted to resource-constrained devices and makes use of
templates and schema context information for energy-efficient management of standard data model
representation formats.

The exploitation of XML templates is not a new concept. Extensible Style sheet Language
Transformation (XSLT) [14] is the W3C standard for transforming XML documents into a different
format, and its core is also based on template matching. An XSLT document is used to specify templates
that match different portions of the original document. The XSLT document is in XML format, and
templates are matched using XPath queries. When the XSLT processor finds a match, the code assigned
to the template is executed, and the result is added to the output document. This turns XSLT into a
very versatile and powerful tool. However, XSLT provides the template matching mechanisms, but
does not specify any coding or compression algorithm, leaving this task to the user. XSLT also requires
the parsing of two XML documents each time a transformation is performed: the XSLT document and
the document/stream to be transformed. Thus, if XSLT were natively used in the device, it would
have all of the drawbacks of natively parsing XML (the XSLT document) plus the overhead of parsing
a second document/stream. In its last specifications, XSLT has been extended and also supports
the transformation of non-XML documents through ad hoc parsing filters. In contrast, CTC defines
templates as raw character strings, and it is not tied to any specific format.

Hoeller et al. [15-17] identified the inefficient management of XML formatted data in
resource-constrained devices as a barrier to overcome in order to achieve full interoperability.
They defined a series of mechanisms to efficiently manage XML in terms of processing, storing
and transmission. They also provide a pre-compiler tool called XOBEgy [17]. This tool allows an easy
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integration of XML structures in C programs that are later translated into plain C, compilable with
standard compilers. Additionally, it makes use of reused structures to efficiently store and process
XML documents. The client/server communication model is based on XPath queries and optimized
for this purpose. The use of pseudo XML structures in the code makes the solution proposed by
Hoeller et al. heavily tied to XML. CTC uses a more natural data binding technique by using native
C structures, giving a convenient abstraction of the underlying original data representation format.
The work presented by Hoeller et al. does not provide a formal encoding or compression format for
data transmission. The use of templates is suggested for the transmission of data, but few details
are given.

3. Context- and Template-Based Compression Components

The main philosophy behind CTC is to use a data model representation encoding that is more
efficient than standard formats, but that allows seamless transformation between the CTC format and
the original format. CTC is conceived of as a part of a more complex distributed system. Figure 1
shows the simplified architecture of such a system, which is similar to communication architectures
found in traditional Low Power Wireless Personal Area Networks (LPWPAN) and CPS in general:
resource-constrained devices are deployed in a dedicated network, and an edge-router or gateway is
used to access external networks (such as the Internet) and clients.

Remote client

Constrained Devices Network = | '
- - /—V ]

Gateway

Figure 1. Basic architecture.

Devices interchange data with clients that either reside in the same local network or in external
networks. Devices with constrained resources will be able to take advantage of CTC, while more
powerful devices use the original format at the same time. On the one hand, when both the
resource-constrained device and the client implement CTC, the communication will be end-to-end,
with the gateway acting as a mere router. On the other hand, if the client does not implement CTC
and makes use of the data models in their original format, the gateway will act as an application level
gateway and translate the original format to CTC and vice versa. CTC allows for the transformation
between the two formats to be done in a transparent way so as not to break interoperability.

Thus, CTC defines a data model structure representation that is able to describe the links between
the items and templates that compose a data model. The proposed approach is intended to be generic and
not tied to a specific data description format (such as XML or JSON). The data model’s specific schema is
used to extract a generic graph that is independent of the schema’s original representation format, as well
as the templates used to build the schema instances. We denote this graph a Schema Context.

A Schema Context contains all of the relevant schema information including individual nodes
and links. This approach is similar to the W3C Document Object Model (DOM [18]), which is one of
the most popular data models for representing, storing, accessing and processing XML documents.
DOM represents XML documents as a tree-structure where everything is a node: the document itself,
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elements, attributes, etc. DOM also specifies a low-level Application Programming Interface (API) for
accessing, processing and modifying XML documents. In a Schema Context, the data model schemas
are also represented as graphs, and the same terminology is used to refer to the relationships between
nodes (parent, child, sibling, etc.).

However, unlike DOM, a Schema Context only considers two types of nodes: Elements and eContexts
(short form of “Element Context”). An Element node encapsulates the properties of an item of the
original schema and its associated template. For instance, an Element contains the cardinality and
whether it is a basic type (“string”, “integer”, etc.). An eContext node basically groups child Element
nodes. Depending on its type, an Element node may have an eContext, which contains the list of child
Element nodes. An Element with no eContext is a leaf of the Schema Context graph.

A simple Schema Context graph example is shown in Figure 2. The figure depicts the eContext and
Element nodes, the links between them and associated templates. For instance, Element “el” has an
eContext “C1”, which in turn is the parent of child Elements “e3”, “e4” and “e5” with cardinalities “1”,
“0..1” and “1..*”, respectively. Additionally, “e3”, “e4” and “e5” Elements are linked to templates “t3”,
“t4” and “t5”, respectively. Note that Element “e4” shares its template (“t4”) with Element “e6”.

Templates

ROOT

ol
YELEE

Figure 2. Schema Context graph example. Rounded nodes denote Elements, square nodes eContexts
(short form of “Element Context”) and trapezium nodes templates. The numbers in the arrows indicate
the cardinality: “1” one child, “1..*” one to many children, “0..1” none or one child (optional).

There are some other fundamental differences between DOM and Schema Context. DOM nodes
only accept one parent (tree graph), while in the Schema Context, a node may have multiple parents.
Although DOM is conceived of as a generic data model representation, it is especially targeted to XML
and HTML formats, while the Schema Context does not make any specific assumption regarding the
original format. Finally, DOM is used to represent any type of XML document, while Schema Context
is only used to represent the data model schemas themselves, i.e., not the instances. Additionally,
DOM representation of XML documents consumes much memory because the in-memory copy of a
node keeps much information, and APIs tend to be heavy, producing verbose code. In contrast, the
Schema Context is targeted to a minimum memory fingerprint, and the in-memory representation of a
Schema Context only keeps the minimum information necessary to perform the codification.

CTC itself has two main components. Context Table, which contains the Schema Contexts, and
Template Table, composed by the templates extracted from the schemas. Figure 3 shows a simplified
representation of these two components. They are described with more detail in Sections 3.1 and 3.2.

The encoding and decoding processes are executed following a specific algorithm, denoted CTC
Codification Algorithm. In turn, the CTC Codification Algorithm uses the Context Table (or more specifically,
the Schema Contexts contained in the Context Table) as a reference in order to perform the encoding and
decoding processes. The CTC Codification Algorithm is described in detail in Section 4.
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“sc_2"” Schema
Context Table Context “C1” eContext Template Table

— @
sc_1 tl — “<abc@>0</abc>”
w2l (ed) _ _
2 — “attr=0
(e5)

sc_3
t3 — “<def>0@</def>"

Figure 3. Example of the representation of Context- and Template-based Compression (CTC) components.

3.1. Context Table

The Context Table contains all of the information of the data model schemas used by the device.
Each entry of the Context Table is a Schema Context that contains the information related to the nodes in
the schema, links between nodes, cardinality, links to templates and, in summary, all of the information
needed to process a data model instance described by the schema.

A Schema Context is identified by the URI (Uniform Resource Identifier) and Schemald attributes.
The URI attribute must be unique, and it is used to globally identify the Schema Context. The Schemald
attribute is assigned at the device’s bootstrapping phase (as described later) and must be unique within
the (sub-)network the Schema Context is used (for instance, within a wireless sensor local network).

A Schema Context is formally structured as a table where each entry is an eContexts node. In turn,
each eContext entry contains a list with the child Element nodes. The first eContext of a Schema Context
always belongs to the root Element node and indicates the entry point for the CTC Codification Algorithm.

Figure 3 shows a simplified representation of a Context Table, with the Template Table on the right
side. The figure depicts the detail of a Schema Context with a Schemald value of 2" and eContexts
“ROOT”, “C1” and “C2”. The figure also shows that eContext “C1” contains the child Elements “e3”,
“e4” and “e5” and that Element “e3” is linked to template “t3”.

An eContext has the following attributes:

e  Id: the unique identifier of the node, which is denoted by the eContext’s entry index within the
Schema Context.

e  MultipleParents: TRUE if the eContext node is referenced by more than one Element nodes.
FALSE otherwise.

e  Order: the value of this attribute depends on the order the child nodes may appear in a data model
instance document. If the order of the children is fixed and coincides with the order in which
they are defined in the schema, the value is fixed. If the order is random, the value is dynamic.
Finally, if only one single children can appear (among all of the ones defined in the schema for
that particular node), the value is choice.

o Children: it contains the list of child Element nodes.

The MultipleParents attribute allows the reuse of the same eContext node by more than one Element
node. The result is a better leverage of the memory as it avoids unnecessary duplicities. On the other
hand, the Order attribute is used to perform the most efficient encoding of the children, tailored to the
schema’s restrictions. This also avoids the parsing of irrelevant coded items, improving the overall
processing speed. The most efficient encoding is provided by fixed children, followed by choice and,
finally, dynamic as the worst case. The choice order value is a special case of dynamic order, where the
order is also unspecified, but only one children can appear.

An Element node is composed of the following attributes:
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o Template: a reference to the entry in the Template Table that contains the template for this
Element node.

e  Type: data type of the Element node. The data type can be either a basic type, a constant, a complex or
a schema. For the basic data type case, the following types (inherited from the EXI [9] specification)
are supported: binary, boolean, decimal, float, integer, date-time and string.

e IsOptional: TRUE in case the cardinality of the child Element is 0..m, where m > 0, and
FALSE otherwise.

o IsArray: TRUE in case the child Element can appear consecutively more than once, i.e., those
children that have cardinality n..m, where m > nand n > 1.

o  Context: if the Type attribute is complex, Context attribute contains this child’s eContext. In the case
in which the Type attribute is schema, Context is equal to the Schema Context that describes the
schema. A special value is used to represent a “<any>" schema, i.e., an unspecified schema. Basic
types and constant type do not make use of the Context attribute.

The Type attribute is key in order to use the most efficient compression encoding for each data
type. This also translates to average better processing performance as parsing/compressing with
dedicated encoding is usually more efficient than processing plain string texts.

The IsOptional and IsArray attributes are used to codify the cardinality of the Element node. On the
one hand, the IsOptional attribute identifies items that may not appear, removing the need to codify
and process missing items. On the other hand, the IsArray attribute allows the codification of items’
repetitions by reusing the same Element (and its template) without the need for in-memory duplications.
Additionally, a template can be referenced by more than one Element. In this way, Template Table entries
are reused when possible, reducing memory requirements.

Table 1 shows the Scherma Context table associated with the example data model Schema Context in
Figure 2. For instance, as can be seen in Table 1, Element “el” is linked to template “t1”, is of the complex
type (thus, it has an eContext, “C1”) and is a non-optional array (cardinality “1..*”) with IsOptional to
FALSE and IsArray to TRUE. As another example, Element “e4” is a leaf node (no eContext) of string basic
type, and it is optional (cardinality 0..1) with IsOptional to TRUE and IsArray to FALSE. Additionally,
Element “e4” is linked to template “t4” together with Element “e6”. Finally, note how eContext “C2” has
MultipleParents attribute set to TRUE and its linked by Elements “e2” and “e5”.

Table 1. Schema Context table example. Each column represents an eContext. The content of the Children
row represents the tuple (Template, Type, IsOptional, IsArray, Context). x denotes complex, s string, f FALSE

and ¢t TRUE.
Attribute ld
ROOT (0) C1(1) C2(2)
MultipleParents f f t
Order fixed dynamic fixed
e3(t3,s,£,f,-)
. el(tl,xf,t,C1)
Children 22 xALC2) ed(td,s,t.f,-) e6(t4,s,t,f,-)

e5(t5,x,f,t,C2)

3.2. Template Table

The Template Table stores the list of templates of the schemas used by the device. Basically,
templates are represented by using a character string format. The Template Table also contains the
position of the place-holders that represent the extension/nesting points for each template, i.e., where
the templates of the child nodes or nested data models are inserted. Figure 4 shows the simplified
Template Table structure with example content. In the figure, the place-holders of the example templates
are represented with the character ‘@’.
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The Template Table is structured and designed to provide efficient template searching and matching.
As can be seen in Figure 4, the Template Table is divided in two sub-tables: Primary Table and Secondary
Table. The Primary Table only contains the templates of the valid starting items of a data model,
according to the structure described in the data model’s schema. That is, the schema defines which
items must appear first in a valid instance document and only the templates of these items are included
in the Primary Table. For instance, in the XML case, the Primary Table will include the templates of the
XML global elements. The Secondary Table contains the templates of all of the remaining items.

In addition to the information related to the template representation, each table entry also contains
information about the Element nodes that reference the template. This simplifies the matching between
the original format, the templates, the Elements and their eContexts, thus improving and optimizing the
searching, matching and codification processes.

Template Table “sc_2” Schema
_ T/ i 1
C1” eContext Context Context Table
Primary Table L
tl — “<?xml ...7>" ROOT ®1
sc_
t2 — “<abc@>0@</abc>” 4» )
I~ sC_

4’ sc_3

Secondary Table
t3 — “attr=0”

t4 — “constant”

t5 — “<def>0</def>"

Figure 4. Template Table structure detail.

However, templates are only needed when the data model has to be transformed from/to the
original format. As will be explained later in Section 5.2, resource-constrained devices do not need
to include the Template Table, reducing the memory needs. If the Template Table is needed in order to
transform from/to the original format, two distinct cases are considered: decoding and encoding.

When a coded stream is decoded to retrieve the data model in the original format, the coded
stream is parsed using the information in the Context Table, and templates are merged together as the
items are processed. In this case, the Template Table acts as a mere container of templates.

In the other case, when a data model in the original format has to be codified to CTC, the Template
Table assumes a more active role. First, the Primary Table is used as the entry point for the encoding
process, and it is searched for a valid match. Once a match is found, the associated Elements and
eContexts are recursively navigated until the full document is parsed. This searching strategy improves
the search speed by reducing the searching range.

In summary, the Template Table has two main purposes. On the one hand, the Template Table is
used during the decoding phase to rebuild the codified data model to its original format. On the other
hand, it servers as a pattern matching reference during the codification process in order to search data
model instances in their original format, match the template patterns and, finally, extract the associated
Element and eContext nodes.

3.3. Schema Context and Template Table Creation

As explained in Section 3.1, the Context Table contains the list of all of the Schema Contexts used by
the device. Each Schema Context is created by processing the individual data model schemas. As the
schema is processed, each eContext and Element is created strictly following the order in which the
items are defined.
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Basically, there are five pieces of information per item that need to be extracted from the data
model schema in order to build the Schema Context and Template Table: the links between the items,
the cardinality of those links, the order in which the children items can appear, the type of the
item and, finally, the template that represents the structure of the item in the original format. How
this information is gathered from the schema and processed is described in detail in the following
paragraphs together with Algorithm 1. In order to avoid confusion, we will use the more generic term
node to refer to a node of the original schema format (such as an “element” or “attribute” in XML or
“property” in JSON) and the specific terms Element and eContext to refer to the respective nodes of the
Schema Context.

Algorithm 1: Schema Context creation

forall the Node in Schema do
Element = Create();
if MinCardinality(Node) == 0 then Element.IsOptional = TRUE ;
if MaxCardinality(Node) > 1 then Element.IsArray = TRUE ;
Element. Template = AddTemplate(TemplateTable, Node);
Element.Type = GetType(Node);
if Element.Type == complex then
Element.Context = FindEContext(SchemaContext, Node);
if Element.Context # NULL then
Element.Context.MultipleParents = TRUE;
else
Element.Context = Create();
Element.Context.Order = GetOrder(Node);
AddEContext(SchemaContext, Element.Context);

else if Element. Type == schema then
| Element.Context = FindSchemaContext(ContextTable, Node)

| AddChild(Parent.Children, Element)

If the cardinality related to the node is 1, the IsOptional and IsArray attributes are set to FALSE.
If the node has cardinality n..m, where n = 0, IsOptional is set to TRUE. If m > 1, then IsArray is also
set to TRUE. Then, the template is added to the Template Table, and the Template attribute is set to the
assigned index within the Template Table.

Once cardinality attributes and templates have been processed, the node’s type is added to the
Type attribute. In case the node’s type is complex, the algorithm checks whether its context already
exists in the Schema Context. In case the context already exists, the MultipleParents attribute is set to
TRUE. On the contrary, if it does not exist, a new eContext is created, and the MultipleParents attribute is
set to FALSE.

In Case (a), the order of appearance of children is fixed, and in (b) the appearance matches the
order defined in the schema; the Order attribute is set to fixed. If the appearance order of the children
can vary dynamically, the Order attribute is set to dynamic. In case only one of the children can appear,
the Order attribute is set to choice.

Finally, the eContext is added to the Schema Context.

If the node’s type is schema, the Context attribute is set to the associated Schema Context. For those
cases where the nested schema is unknown a priori, the Context attribute is set to the special
value “<any>".

Finally, the new child Element is added to the eContext of the parent Element.

Once the schema has been processed and the Schema Context has been created, a process called
Context Collapsing is performed. This process reduces the number of eContexts, Elements and templates
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without any loss of information. If (1) the Order attribute of an Element’s and a child’s eContexts are
both fixed, (2) the child is neither optional nor array (i.e., IsOptional = FALSE and IsArray = FALSE)
and (3) the child’s eContext only has one parent (i.e., MultipleParents = FALSE), then the eContext and
template of the child Element are merged together with the eContext and template of the parent Element.

Context Collapsing is executed starting from the root node in a recursive way, for each eContext
and its child Elements. In practice, this process merges together nested fixed contexts, reducing the
effective processing time, as fewer iterations and accesses to the Context Table and Template Table will
be necessary.

3.4. From XML Schema to Schema Context

The previous section described the general algorithm and approach to create a Schema Context from
a generic data model schema. Although the algorithm is generic, it has to be specifically implemented
for each data format type, as the mapping of the schema to a Schema Context is data format specific.
This section describes the specific case of the algorithm application to an XML Schema. Although a
full detailed explication of the mapping of every single node type described in the XML Infoset is out
of the scope of this paper, we give here an overview of the most relevant and representative use cases.

XML complex and simple elements are transformed into CTC eContexts. The value of Order
attribute will vary depending on whether the containers XML order indicator is “all” (dynamic),
“choice” (choice) or “sequence” (fixed).

XML element particles are mapped as Elements. The cardinality of the Element will depend on
the XML occurrence indicators “maxOccurs” and “minOccurs”. XML attributes are mapped in a
similar way as XML elements, but they are grouped into a single child Element with a dynamically
ordered eContext.

An optional child Element containing the XML prolog is always added to the root eContext,
followed by any relevant global definition (such as namespaces and prefixes). Global XML elements
and attributes are also added as Elements to the root eContext.

Each XML namespace is transformed into a different Schema Context. If the XML type of an XML
element or attribute belongs to a namespace other than the current one, the Element Type will be of
schema type, and the Context will be assigned to the Schema Context of the relevant namespace. If the
XML element or attribute is of “<any>" type, the Element Type will also be of the schema type, but the
Context is specially marked to represent the special value “<any>".

Context Table and Template Table Example

We present an example of an Schema Context and Template Table generated from an XML Schema.
To this end, we use the Notebook XML document example proposed by Peintner et al. [19]. Figure 5
shows the original Notebook XML Schema example. Figure 6 shows the Template Table generated before
performing Context Collapsing (see Figure 6a) as described in Section 3.3 and after Context Collapsing
(see Figure 6b).

As can be appreciated in Figure 6, templates are merged together after Context Collapsing is
performed, eliminating in the process the unneeded eContext and Element nodes. The result is a more
compact Schema Context and Template Table. Finally, Table 2 shows the Schema Context generated after
Context Collapsing. This table is related to the Template Table shown in Figure 6b and contains the
eContexts and Elements after pruning the unneeded items.
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<?xml version="1.0" encoding="UTF-8"2>
<xs:schema xmlns:xs="http://wuw.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified">
<xs:element name="notebook">

<xs:complexType>

<xs:sequence maxOccurs="unbounded">
<xs:element name="note" type="Note"/>

</xs:sequence>

<xs:attribute ref="date"/>

</xs:complexType>
</xs:element>

<xs:complexType name="Note">

<Xs:sequence>

<xs:element name="subject" type="xs:string"/>
<xs:element name="body" type="xs:string"/>

</xs:sequence>

<xs:attribute ref="date" use="required"/>
<xs:attribute name="category" type="xs:string"/>

</xs:complexType>

<xs:attribute name="date" type="xs:date"/>

</xs:schema>

Figure 5. Notebook XML Schema document.

——————————————————————————————————————— t1
<?zml version="1.0" encoding="UTF-8"?>
——————————————————————————————————————— t2
<notebook @>

e

</notebook>
——————————————————————————————————————— t3
date=Q@
——————————————————————————————————————— t4
<note @>

e

e

</note>
——————————————————————————————————————— t5
category=0
——————————————————————————————————————— t6
<subject>@</subject>
——————————————————————————————————————— t7

<body>@</body>

(a) No Context Collapsing.

——————————————————————————————————————— t1
<?zml version="1.0" encoding="UTF-8"?>
——————————————————————————————————————— t2
<notebook @>

(¢]

</notebook>
——————————————————————————————————————— t3
date=@
——————————————————————————————————————— t4
<note category=@ @>

<subject>@</subject>

<body>@</body>

</note>
——————————————————————————————————————— t5
category=0

(b) With Context Collapsing.

11 of 24

Figure 6. Template Table Notebook example. Symbol ‘@’ is used to represent the place-holders’ positions.

Table 2. Schema Context Notebook example, after Context Collapsing. The content of the Children row
represents the tuple (Template, Type, IsOptional, IsArray, Context). Cn represents the eContext Id and tn
the template identifier; x denotes the complex value, s string, c the constant, d the date-time, t TRUE and

f FALSE.
Attribute 1d
C1(ROOT) C2(CONTENT) C3(NOTEBOOK) C4(NOTE) C5(NOTE-ATT)
MultipleParents f f f f
Order fixed choice fixed fixed dynamic
Children (tl,C,t,f,—) (t2,X,t,f,C3) (tsldlt/f/_) (_(I_X,f,ff,f(zi-)) (t3/d/f/f/')
¢ (-x££C2) (3,d4£,-) (t4,%,£,4,C4) o (t5,5,4£,)

(_/S/f/f/_)
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3.5. Other Data Model Representation Formats

In this paper, XML has been used as the primary example to show the capabilities and mechanisms
that form CTC. However, CTC can be used with any other data model representation format as long
as the information regarding the structure of the data model can be extracted from a schema or by
any other means. In a similar way as with the XML case, this information is used by CTC to build the
Context Table and Template Table that will be used for the CTC compression and management processes.

As a simple additional example, we can consider another popular format such as JSON. In this
case, the data model structure information needed by CTC can be extracted from a JSON Schema and
mapped to a Context Table and Template Table. For instance, cardinality information can be inferred
from the “required” and “array” JSON properties. The Order attribute of all of the eContexts would be
“dynamic” because JSON does not enforce any order for the properties of a JSON object.

As the complexity of the format and related schema grows, so does the CTC schema mapping
and encoding process. However, this complexity is mostly concentrated in the mapping of the schema
to the Context Table and Template Table. Additionally, different techniques can be applied (such as the
Context Collapsing method) to the table building in order to relieve the resource-constrained devices
from the runtime overhead.

4. CTC Codification Algorithm

In this section, we describe the generic rules that, applied together, form the CTC Codification
Algorithm, used to perform the encoding and decoding processes. The rules define the actions
to perform for each node, based on the information available in the Context Table. The rules are
grouped and formalized using a set of equations that represent the different steps involved in the
encoding/decoding process of each node.

We define the following terms:

e Wedenoteeg ...e,_1 € C as the ordered list of child Elements of the eContext C where n is the
total number of C’s children.

e  We denote e(’) . efn_l € C as the unordered list of child Elements of the eContext C, where m,
m < n, is the number of C’s children actually appearing in the data model instance document.

e The Trim(x,y) function trims the representation of x to [log, y| bits. Optionally, the form x, is
also used to represent x with y bits. Thus, Trim(x,y) = x,.

e  The symbol @ represents the concatenation of two bit arrays.

e The Pos(C, ¢) function returns the position index of the child Element e within eContext C. Note that,
for an ordered child e, Pos(C,e;) = i where 0 < i < n. However, for an unordered child ¢/,
Pos(C, e}) = i may not be TRUE.

Four set of rules are defined together with the corresponding equations: Cods(s) for Schema
Contexts, Codgc(C) for eContexts, Codg(C, e) for child Elements and Codr(e) for data types. Cods(s) is
always applied first.

Rulel: If the Schemald of a (nested) schema is not known a priori (i.e., =<any>), the Schemald
must be codified before the root eContext of the schema is processed. Otherwise, the codification of the
root eContext of the (nested) schema is processed directly.

Codgc(s) Schemald(s) #< any >
Cods(s) = 1
Schemald(s) ® Codgc(s) Schemald(s) =< any >

At the beginning of a coding/decoding process, Equation (1) is always used first. Thus, all CTC
streams start with the Schemald of the data model’s schema, followed by the root eContext.
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Rule2.a: If the order of the child Elements is fixed, the codification of the eContext is equal to the
concatenation of the children’s codification, following the same order the children are defined in the
Children list attribute.

Rule2.b: If the order of the child Elements is independent of the order defined in the schema,
a prefix equal to the child Element’s index plus one is added to the codification of each of the children.
If not all of the children are present, a prefix of 07 is used to indicate the end of the children list.

Rule2.c: If only one of the children can appear, a prefix equal to the child Element’s index is added
to the codification of the children.

The following equation groups Rules 2.a, 2.b and 2.c.

Codg(C,e0) ®...® Codg(C,e,—1) Order(C) = fixed

Trim(Pos(C,ep) + 1,1+ 1) @ Codg(C,e)) @ . ..

Codgc(C) = ... ® Trim(Pos(C,¢}) + 1,n+1) & Codg(C,¢;)  Order(C) = dynamic )
@®Trim(0,n +1)
Trim(Pos(C, e),n) @ Codg(C,e}) Order(C) = choice

Codpc is used to codify eContexts. As can be seen in Equation (2), the codification of an eContext
depends mainly on the Order attribute. CTC defines a strict mode where the items of a schema are
always codified strictly following the order defined in the schema. In this mode, all of the eContext
nodes where condition Order = dynamic applies are considered to be fixed. The strict mode provides a
more compact compression at the cost of some of the flexibility of CTC. However, this mode is ideal
for resource-constrained devices, as it is straightforward for the device to codify the data models
respecting the items’ definition order.

Rule3.a: If an Element is not an array, nor optional, the codification is equal to the codification of
the Element’s type.

Rule3.b: if an Element is optional, but not an array, a 1; prefix is added to the codification, followed
by the Element’s type codification. In case the Order of the parent eContext is not fixed, the prefix is
omitted. If the optional Element does not appear, a 0; will be added to the codification.

Rule3.c: if an Element is an array, a 1 prefix is added to each of the Element occurrences, and a 0;
is added when no more occurrences remain.

Equation (3) groups Rules 3.a, 3.b and 3.c.

(IsOptional(e) = TRUE) & (IsArray(e) = FALSE)
1. ¢ CodT(e) ,
& (e # null) & Order(C) = fixed
0 (IsOptional(e) = TRUE) & (e = null)
Code(Ce) =19 1,0 Codr(e) ® ... ®)
... @11 @ Codr(e) (IsArray(e) = TRUE) & (e # null)
@©0q
Codr(e) otherwise

Finally, the following rules are used to process Element’s types:

Rule4.a: If the Element is a basic type, the built-in EXI data type representation is used to codify
the Element’s value.

Rule4.b: When the Element is of complex type, the equation Codgc is used to codify the
Element’s context.
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Rule4.c: If the Element is of schema type, the equation Cods is used to codify the Element’s context.
Codgc(Context(e)) Type(e) = complex
Codr(e) = Cods(Context(e)) Type(e) = schema 4)
EXI_basic_type(e) otherwise

Codification Example

In order to clarify the application of the rules and equations explained in the previous section, the
step by step codification of the XML instance shown in Figure 7 (which follows the Notebook schema of
Figure 5) is described here. For simplicity, the example below only expands the first occurrence of the
XML element “note”.

<?zml version="1.0" encoding="UTF-8"2>
<notebook date="2007-09-12">

<note category="EXI" date="2007-07-23">
<subject>EXI</subject>

<body>Do not forget it!</body>

</note>

<note date="2007-09-12">
<subject>Shopping List</subject>
<body>milk, honey</body>

</note>

</notebook>

Figure 7. Schema example instance.

First, the Schemald of the schema is codified, followed by the root eContext:

Cods(snoTeBOOK) = Schemald(snotepook) ® Codec(Croor)

Next, the prolog Element of the root eContext is processed, followed by the content of the data
model instance:

Codrc(Croor) = Codg(Croor, erroroc) ® Codg(CrooT, €CONTENT)

Codg(Croor, econtent) = Codr(econtent) = Codec(CcoNTENT)

The notebook XML element is codified into the stream taking into account that the eContext Order
is choice:

Codgc(Ccontent) = 01 ® Codr (CCONTENT, enotebook)

COdE(CCONTENT/ enotebook) = COdT(enotebook) = COdEC(Cnotebook)

notebook eContext contains two Elements, one for the XML attributes and another for the note XML
element:

e \

COdEC(Cnotebook) = COdE (Cnotebook/ enotebookfatt) @ COdE (Cnotebook/ €note )

note Element is an array with length two:

COdE(Cnotehook/ enote) =>1;® COdT(enote) ©1; @ COdT(enote) @ 0q

\ J

note eContext contains three Elements, one for the XML attributes and another two for the subject
and body XML elements:
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COdT(enote) = COdEC(Cnote) = COdE (Cnote/ enote_att) @ COdE(Cnote/ esubject) ) COdE(Cnote/ ebody)

The note_att eContext contains the attributes of the note XML element. It is a dynamic eContext with
two child Elements:

COdE(Cnoter enote_att) = COdT(enote_utt) = COdEC(Cnote_att) =
=1L COdE(Cnotertt/ edate) ©2,D COdE(CHOfEJth/ ecutegory)

Finally, basic type Elements are directly encoded using the EXI codification standard for built-in
EXI data type representations. For instance, for the subject Element of type string, the value is codified as:

Codg(Chote, esubject) = COdT(esubject) = 33 @ “EXI"

5. Context Table Management and Communication Model

The functionalities provided by CTC are encapsulated in a library. These functionalities include
the management of the Context Table and Template Table, as well as the execution of the CTC Codification
Algorithm. This library is embedded and used by the resource-constrained devices in order to access
the functionalities offered by CTC and to encode/decode data streams.

However, CTC alone does not provide all of the functionalities needed to be directly used in
a CPS. CTC is conceived of as a component within a distributed system, such as the one shown in
Figure 8: resource-constrained devices are deployed in a local network, and an edge-router or gateway
is used to access external networks, such as the Internet.

. Schema server
Remote client

Constrained Devices Network = o
- - —vC

Gateway / Schema
repository

Internet

Figure 8. Template location. (a) at the node, (b) at an external server.

In CTC, devices need to know the Context Tubles and Template Tables (and their identifiers)
associated with the data models they are using. This information is made available by the Schema
Repository. Devices use the Schema Repository in an initial dissemination phase, in which Template Tables
and Context Tables are distributed and registered in order to manage the schemas of the used data
models. Although it is not required in all cases, for convenience, the Schema Repository is depicted at
the gateway itself in Figure 8.

Depending on the application domain, resource-constrained devices interchange data with clients
that may reside in the same local network or in external networks. If both the resource-constrained
device and the client implement CTC, the communication will be end-to-end, with the gateway acting
as a mere router. Note that the Schema Repository must be accessible from both the device and client, in
order to satisfy the Schema Context dependencies during the bootstrapping phase.
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In case the external clients do not implement CTC (i.e., they make use of the data models in their
original format), the gateway will act as an application level gateway and translate the original format
to CTC and vice versa. In this case, the gateway must contain a CTC Library in order to have access
to CTC functionalities. However, the use of CTC is effectively hidden to the clients, and thus, the
Schema Repository does not need to be externally accessible.

The following sections explain in more detail the schema registration process, as well as the use
and implementation of the CTC Library in the resource-constrained devices and gateway.

5.1. Schema Registration

When a device joins the network for the first time, it can start a schema registration process.
Schemas are registered in a centralized Schema Repository, usually located at the gateway. Devices use
the URI of the data model schema to register. When the Schema Repository receives a registration
request, it first checks whether that schema is already registered. In that case, the associated Schemald is
returned to the device. If the URI is not registered yet, the Schema Repository generates a new schemald.

When registering a schema, an associated URL is provided so that its data model schema can be
accessed and downloaded. Schemas can be stored in the device itself (see Figure 8a) or at an external
server (Figure 8b). Once the Schema Repository has downloaded a schema, it generates the Context Table
and Template Table. As an efficiency improvement, the Schema Repository could also pre-load a set of
standard schemas or download already pre-compiled Context Tables.

Note that resource-constrained devices only need to store the schemas of the data models they
actually use. Moreover, if the schemas are stored in an external server and are accessible by the clients,
they can be totally stripped from the device.

Once the registration process is finished, the schemald, Context Table and Template Table are
available in the Schema Repository and will be accessible from local and remote clients during the
bootstrapping phase.

The registration process does not assume any underlying protocol. For instance, a straightforward
approach could be implemented by using CoAP [3] and GET/POST actions to gather/register the
schemas together with CoRE Link Format [20] for discovery purposes.

5.2. CTC Library

As can be seen in Figure 9, the CTC Library follows a modular approach in order to tailor the
capabilities to the needs and resources of the device. A support tool for the CTC Library, called CTC
Compiler, is used to process the original schemas and automatically create the Context Table and Template
Table, as well as the necessary native code for the data model bindings (depicted as Binding Stubs
in Figure 9). This code is embedded in the devices’s application code at programming time and is
referenced by the CTC Library.

PP i Template | PP
cmTTTTTOS BT At N .---1_ Table ’l
i Context 3 ; BiSndli)ng 3 i ot i Sng?ric
Ll Table _/‘ ‘ tubs | L Table _/\ erializer
A X —F x
v A A 1 \ A
Manager Codifier Manager Codifier

B Dk VN 1 VI 1 VI 1 Y

Figure 9. Architecture of the CTC Library. Dotted components are generated by the CTC Compiler.
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The Manager component is responsible for the management of the external accesses
(either write or read) to the Context Table and Template Tnble including the schema register process.

As explained before, the Context Tuble component holds all of the Schema Contexts, whereas the
Template Table component contains the templates of all of the registered schemas.

The Codifier component is in charge of decoding/codifying the input data streams based on the
CTC Compression Algorithm and Schema Contexts stored in the Context Table.

The Binding Stubs component groups all of the data model binding code automatically generated
by the CTC compiler. These code stubs are used to directly map the data stream decoded by the Codifier
component into native structures and to transform native structures into coded streams through the
Codifier component. This results in a much more efficient processing of the data models as the parsing
of the data model’s original format is completely avoided. On the other hand, the Generic Serializer
component is used to rebuild the coded data stream to its original format (by processing the data
stream and merging the templates) and vice versa.

A resource-constrained device will use the Binding Stubs component, that produces native and
efficient structures, whereas devices that need access to the original format (such as gateways) will
use the Generic Serializer. Note that a device that uses the Binding Stubs component does not need to
include the Template Table and Generic Serializer components.

6. Performance Evaluation

In this section, two performance tests are presented in order to compare CTC and EXI
implementations. In the first test, a set of XML instances are compressed by using (a) EXIficient [21],
an EXI implementation, and (b) a prototype implementation of the CTC approach. In the second
test, the performance of the decoding process and memory usage is analyzed, using as input the
compressed streams obtained from the previous test. In order to decode the EXI streams, another
EXI implementation more suited to resource-constrained systems is used, Embeddable EXI Processor
(EXIP) [22]. EXIP is considered here because, to the authors” knowledge, it is the best suited to
resource-constrained systems. Other implementations targeted to resource-constrained systems,
such as the solution WS4D-uEXI [23] promoted by the Web Services for Devices (WS4D) initiative,
only implement a subset of the EXI specification and/or are somewhat outdated.

The tests were performed in a CC2650 MCU [24] running at 48 MHz. The test applications,
as well as the code under test were compiled with the optimizations turned on.

The set of XML documents used in the tests is composed of the XML Schema instances for the
Network Configuration Protocol (netconf) [25], Media Types for Sensor Markup Language (SenML) [26],
Data Types definitions for OPC Unified Architecture of the OPC Foundation (OPC-UA Types) [27] and
ZigBee Smart Energy Profile 2.0 (SEP2) [28], presented in the EXIP evaluation paper [22]. As in [22],
three different documents per XML Schema are considered. Additionally, the Notebook XML instance
used as an example in the EXI Primer web page [19] is also included.

6.1. First Comparison: Compression Size

For this comparison, the XML documents were compressed using the EXIficient [21] EXI processor
implementation. In order to ensure fairness, the EXI compression options were carefully configured.
First, the EXI “schema strict” compression mode was selected. This mode takes into account the
XML Schema(s) that describe a XML document in order to achieve the most compact compression.
Additionally, all of the EXI preserve options were set to FALSE, reducing the overhead that may be
produced by compressing meta-data (such as comments). Finally, the EXI schemald option was set
to the constant string “1”. This assures that the schemald option is included in the EXI header, but
removes the arbitrary overhead of long identifiers. For each XML document, four cases are considered:
with/without EXI Profile parameters and with/without including the EXI options in the EXI header.
For the CTC case, the Context Tables and Template Tables were created from the XML Schemas, and the
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compression was performed using the CTC approach. Results in terms of size are shown in Table 3

and Figure 10.

Table 3. XML document compression comparative in bytes. EXIP: schema strict mode, all preserve
options to FALSE and schemald to constant string “1”. EXIP-EP: same options as EXIP column plus
EXI Profile. CTC: CTC normal compression mode. CTC-S: CTC strict mode. Numbers inside brackets
indicate the extra overhead due to EXI options embedded in the EXI header. The list of XML documents
stand for: Notebook, EXI Notebook example; netconf, Network Configuration Protocol; SenML, Sensor

Markup Language; SEP2, ZigBee Smart Energy Profile 2.0; OPC-UA, OPC Unified Architecture.

XML Original EXIP  EXIP-EP CTC CTC-S
Notebook 297 (3+)59 (13+) 59 62 61
netconf-01 395 B+)21  (13+)21 21 21
netconf-02 660 B+)51 (13+) 51 50 50
netconf-03 423 (3+)3 (13+)3 3 3
SenML-01 448 (3+)97 (13+)98 138 130
SenML-02 219 B+)61  (13+) 61 64 60
SenML-03 173 (3+)45 (13+)45 46 45
SEP2-01 406 (3+)64 (13+)64 65 64
SEP2-02 92 B+)19 (12+)19 19 19
SEP2-03 522 (B+)27 (13+)27 24 24
OPC-UA-01 936 B+)61  (12+) 62 73 73
OPC-UA-02 278 (3+) 4 (12+) 4 4 4
OPC-UA-03 300 (3+)4 (13+) 4 4 4
140 4 EER CTC-S
I CTC
[ EXIP-EP
/1 EXIP
120 4
100 H
Té;‘ 80
7 60
40
20
0 - - -
° = 2 s ] b5 b n v n g g

OPC-UA-03

Figure 10. XML document compression comparative in bytes. EXIP: schema strict mode, all preserve
options to FALSE and schemald to constant string “1”. EXIP-EP: same options as EXIP case plus EXI
Profile. CTC: CTC normal compression mode. CTC-S: CTC strict mode. Stacked columns indicate the
extra overhead due to EXI options embedded in the EXI header.
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Results show that CTC has a very similar compression size performance compared to EXI and an
average better performance if we take into account the EXI header. The overhead produced by the EXI
header can be overcome by providing the EXI options out of band, although this would imply a loss
of flexibility. However, it may be necessary in order to reduce communication bandwidth, especially
for the EXI Profile case. On the other hand, it is interesting to note that in the case of the SenML-01
document, EXI shows better compression results. The reason lies in the fact that our proposal is
not able to compress the occurrences of strings outside the schema, while EXI does not differentiate
between strings belonging to data and schema space.

6.2. Second Comparison: Decoding Speed

For the second test, EXI streams produced in the previous compression test were decoded using
the EXIP v5.4 [29] EXI implementation. The EXI grammars were statically created from the set of
test XML Schemas (using the tools provided by EXIP) and included in the EXIP test code. These EXI
grammars were then used at runtime by EXIP to perform the decoding of the EXI streams. In the case
of the CTC approach, the Context Tables and Template Tables were created using the CTC Compiler and
added to the CTC test code as described in Section 5.2. A prototype implementation of CTC was used
to decode the CTC streams produced in the previous test.

We performed 100 runs for each EXI and CTC compressed stream with no additional system
load. As in the previous test, we considered four EXI cases for each XML instance document decoding:
with/without EXI Profile parameters and with/without including the EXI options in the EXI header.
For the EXI Profile cases, EXI Profile options had to be stripped from the EXI header of the EXI
compressed streams because they are not supported by EXIP.

Table 4 and Figure 11 show the test results. For the CTC test, only one result column is presented
because there is no notable difference between the results yielded by CTC in normal and strict modes.

Table 4. XML document decoding time comparative. Numbers are in microseconds. EXIP: schema
strict mode, all preserve options to FALSE and schemald to constant string “1”. EXIP-H: same options as
EXIP column and EXI options embedded in the EXI header. EXIP-EP: same options as EXIP column
plus EXI Profile. EXIP-EP-H: same options as EXIP-EP column and EXI options embedded in the EXI
header, but no EXI Profile parameters. CTC: CTC normal and strict modes. The list of XML documents
stand for: Notebook, EXI Notebook example; netconf, Network Configuration Protocol; SenML, Sensor
Markup Language; SEP2, ZigBee Smart Energy Profile 2.0; OPC-UA, OPC Unified Architecture.

XML EXIP EXIP-H EXIP-EP EXIP-EP-H CTC

Notebook 684 929 574 808 625
netconf-01 290 531 314 629 152
netconf-02 814 1049 946 1251 518
netconf-03 286 518 320 621 183
SenML-01 1576 1817 1409 1635 1493
SenML-02 726 966 615 840 618
SenML-03 465 705 591 511 377

SEP2-01 1186 1429 770 1004 910

SEP2-02 553 787 213 437 230

SEP2-03 1210 1446 860 1079 763

OPC-UA-01 1804 1935 1251 1385 788
OPC-UA-02 500 642 98 244 81
OPC-UA-03 540 684 142 285 101

Results from the tests show that CTC performed generally better in terms of processing time
(an average of 36.6% time reduction and up to 87.4% time reduction) compared to any EXIP case.
This is a direct result from using the simpler CTC approach and structure of the Context Tables and
Template Tables compared to the EXI specification and EXIP implementation. This difference in decoding
speed will be more pronounced in devices with slower CPUs, such as the popular TelosB [30], which
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runs at 8 MHz. For those cases, times shown in Table 4 will be incremented by a factor of 2-8. Reducing
processing time is key in resource-constrained devices in order to reduce the energy consumption as
much as possible and to make the most of the available energy.

2000 4 cTC

EXIP-EP-H
EXIP-EP
EXIP-H
EXIP

goonn

1750 4

1500 4

1250 4

1000 4

Time (microseconds)

750 A

500 A

250 A

netconf-03 F
|
|
|
|
|
|

o
notebook
netconf-01 F
netconf-02 !
SenML-01
SenML-02
SenML-03
SEP2-01
SEP2-02
SEP2-03
OPC-UA-01
OPC-UA-02
OPC-UA-03

Figure 11. XML document decoding time comparative. EXIP: schema strict mode, all preserve options
to FALSE and schemald to constant string “1”. EXIP-H: same options as EXIP case and EXI options
embedded in the EXI header. EXIP-EP: same options as EXIP case plus EXI Profile. EXIP-EP-H: same

options as EXIP-EP column and EXI options embedded in the EXI header, but no EXI Profile parameters.
CTC: CTC normal and strict modes.

6.3. Third Comparison: Memory Usage

In the last comparison, memory usage of the EXIP library and CTC prototype implementations
were compared in terms of required Flash and runtime memories (i.e., code size, data, heap and
stack consumption).

The EXIP library supports a dedicated compilation configuration for EXI Profile. In this
configuration, the EXIP library code and EXI grammars are more compact, and the RAM usage
is notably reduced. Both compilation configurations, normal and EXI Profile, were taken into account
in the comparison. For CTC, the memory consumption for the Context Tables and Template Tables
are separately considered. Measures were taken from the test applications used in the second test
(described in Section 6.2), and the results are listed in Table 5. Memory usage is separately listed for
the EXI and CTC core libraries (labelled as “library”) and for each XML schema (labeled as “*.xsd”).

Code memory (Flash) and data memory are depicted in different columns. Figure 12 shows the Flash
memory usage listed in Table 5.
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Table 5. Memory consumption comparative in bytes. The table shows the use of code memory (Flash)
and data memory (RAM). Additionally, the maximum heap and stack used for the EXIP case is 1734
and 904 bytes respectively. For the EXIP-EP case, maximum heap and stack usage amounts to 1294 and
792 bytes respectively. Finally, CTC uses no Heap and the maximum stack size used for the tests is

692 bytes.
XML Schema Flash Data RAM
EXIP EXIP-EP CTC EXIP EXIP-EP CTC
Library 21,493 21,794 1722 292 292 12
notebook.xsd 4745 5242 208 + 196 1196 252 0
netconf.xsd 8226 8979 1224 + 1812 1748 292 0
SenML.xsd 5550 6064 320 + 300 1348 292 0
SEP2.xsd 85,776 94,500 25,560 + 27,188 11,860 292 0
OPC-UA.xsd 133,528 130,823 21,172 +42,396 13,765 292 0
140000
mm CTC o
[ EXIP-EP —
3 EXIP
120000 -
100000 -
g |
& 80000 -
2
o
1S
(]
E 60000 -
L
[
40000 -
20000 -
i o Nl m

Library notebook.xsd netconf.xsd  SenML.xsd SEP2.xsd OPC-UA.xsd

Figure 12. Flash memory consumption comparative in bytes.

Results show that CTC requires significantly less Flash and runtime memory than EXIP. In the
case of the base library, CTC is 7.9% the size of the EXIP EXI Profile implementation. For the test XML
Schemas, the comparative size ranges from 7.7%-55.8%. As has been explained in Section 5.2, the
Template Table can be stripped from devices that do not make use of it, thus reducing even further CTC
memory requirements for the test XML Schemas. In this case, the comparative memory usage will be
reduced to 3.9%-29.0%.

Additionally, CTC uses nearly no data RAM, while EXIP uses 252 bytes in its best case and up to
13,765 bytes in the worst one. Finally, the maximum heap and stack used for the EXIP case is 1734 and
904 bytes, respectively, and for the EXIP-EP case, heap and stack usage amounts to 1294 and 792 bytes,
respectively. In contrast, CTC uses no heap, and the maximum stack size consumed is 692 bytes.

Devices need to share the memory between multiple functionalities (application, sensor drivers,
communication stacks, etc.) and will likely need to accommodate more than one schema. Results show
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that CTC memory requirements are much more suited to resource-constrained devices than EXI
implementations due to the significantly smaller memory footprint.

7. Conclusions

In this paper we have presented Context and Template based Compression, a compression approach
for standard data model representation formats. CTC provides a data model representation encoding
targeted to resource-constrained devices that is more efficient than standard formats but that allows
seamless transformation between the CTC format and the original format. Additionally, CTC supports
the WoT paradigm which consists on supporting web standards directly on embedded devices. CTC
makes possible the native use of Web Services by enabling the native use of standard data model
representation formats Web Services are based on.

Cyber Physical Systems rely on the deployment of interconnected heterogeneous devices and
systems. This demands interoperable communications and data models which are typically addressed
through the adoption of generic data formats such as XML or JSON. However, the verbosity of
these standard data formats requires system resources that might be beyond the capabilities of the
resource-constrained devices typically used into CPS. CTC addresses this problem by easing the
interoperable integration of heterogeneous devices at the data representation level while requiring
very low resource needs (in terms of communication bandwidth, memory size and processing power).

We have shown that CTC provides good performance results compared to EXI implementations.
CTC achieves better performance than EXI implementations in terms of speed and memory usage,
while keeping a similar efficiency in terms of compression for EXI's better case (Schema Strict). These
results show that CTC is a good candidate for resource-constrained devices as it produces very efficient
implementations in terms of memory usage and energy consumption.

Additionally, the CTC communication model provides a flexible and interoperable communication
architecture. Devices can communicate using standard data model representation formats with devices
residing in the same local network or in external networks. The communication can be end-to-end
if both devices implement CTC or the gateway can act as an application level gateway otherwise.
The schema registration mechanism allows to assign and distribute schema information dynamically
at running time. The flexibility in the location of the schema information storing place reduces
the message transmission overhead and removes the need to store Template Tables on the devices
themselves, saving memory resources.

The CTC Library provides a modular approach that allows to tailor the capabilities to the needs and
resources of the devices. The library is complemented by the CTC Compiler tool, easing and automating
the implementation of the Context Table, Template Table and data model bindings to native code.

As a future work, we are considering to extend CTC in order to take into account constraints
described in the schema. This would improve the compression and the addition of partial validations
to the coded streams. We are also planning on extending the CTC Compiler to add support for automatic
generation of Web Service bindings.

Another line of research is to apply the concepts used in CTC to EXI grammars representation.
By improving the implementation efficiency of EXI processors (from in-memory representation to
grammar processing), the use of EXI will open to a wider range of resource-constrained devices.
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