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Abstract: This paper reviews and compares the thermal and noise characterization of CMOS
(complementary metal-oxide-semiconductor) SOI (Silicon on insulator) transistors and lateral diodes
used as temperature and thermal sensors. DC analysis of the measured sensors and the experimental
results in a broad (300 K up to 550 K) temperature range are presented. It is shown that both sensors
require small chip area, have low power consumption, and exhibit linearity and high sensitivity
over the entire temperature range. However, the diode’s sensitivity to temperature variations in
CMOS-SOI technology is highly dependent on the diode’s perimeter; hence, a careful calibration for
each fabrication process is needed. In contrast, the short thermal time constant of the electrons in the
transistor’s channel enables measuring the instantaneous heating of the channel and to determine the
local true temperature of the transistor. This allows accurate “on-line” temperature sensing while no
additional calibration is needed. In addition, the noise measurements indicate that the diode’s small
area and perimeter causes a high 1/f noise in all measured bias currents. This is a severe drawback
for the sensor accuracy when using the sensor as a thermal sensor; hence, CMOS-SOI transistors are
a better choice for temperature sensing.
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1. Introduction

Nanometric partially-depleted CMOS-SOI technology, is now an established technology in a wide
range of low-cost, low power and high temperature applications including sensors, high-performance
RF, mobile, and mixed-signal chips [1–8]. In spite the enhanced performance of SOI (Silicon on
Insulator) devices offered by the buried oxide (BOX) layer, this layer severely impedes heat conduction
to the substrate due to the low thermal conductivity of silicon dioxide. Furthermore, the thickness of
BOX plays a role in the heat transfer to the substrate since a thinner BOX will allow better cooling of
the device from the substrate contact [9]. Therefore, compared to bulk MOS devices, all SOI transistors
are more prone to self-heating effects, especially ones with a thick BOX layer.

A rise in chip temperature may degrade the chip performance and decrease its reliability [10,11],
hence, thermal design is a critical issue. Continuous thermal monitoring is necessary to reduce thermal
damage, increase reliability, and optimize performance. In order to implement effective thermal
management, multiple temperature sensors should be placed in strategic chip areas. The desired
number of sensors, their exact location, and accuracy depend greatly on system-level requirements,
IC packaging, and the cooling system.

An ideal on-chip temperature sensor should be accurate, compatible with the target process,
and have reasonable silicon area so that it can be placed non-invasively across the chip without
drastically changing the chip design plan. In addition, the power consumption of the sensor should be
very low to reduce the power budget overhead of the thermal monitoring system, and to minimize
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measurement inaccuracies due to self-heating. However, usually there is a distinct tradeoff between the
sensor’s accuracy and its area and power consumption, as well as the need for calibration. Calibration
requirements significantly affect the cost of the products. Furthermore, a highly accurate sensor
consumes more silicon area and power compared to a less accurate one. Hence, it is challenging to
generalize the criterions for an optimal temperature sensor, but it is widely known that the design
tradeoffs are largely driven by the exact application and system-level considerations.

A number of silicon physical properties are temperature dependent, hence there are a number of
CMOS-SOI devices that may be used as integrated temperature sensors. In addition, by adding MEMS
or NEMS to CMOS-SOI devices, the temperature sensors may be thermally isolated, thus providing
thermal sensors and thermal imaging systems. Since CMOS and its derivative CMOS-SOI are the
most mature and prevalent microelectronics technologies and the key to a significant cost reduction,
uncooled thermal sensors based on standard CMOS or CMOS-SOI technology have been extensively
pursued [5–8].

This paper reviews the concepts, advantages and limitations of the leading temperature sensors
and thermal sensors fabricated using nanometric CMOS-SOI technology. We compare these sensors
in terms of sensitivity, linearity, accuracy, calibration needs, area, and the possibility to measure
temperature during the chip operation (on-line) in the temperature range of 300–550 K. In addition,
the noise characteristics of the sensors are investigated and compared in order to evaluate their
performance as the main component of thermal sensors. This study is performed on standard
CMOS-SOI MOSFETs and lateral diodes commercially available today and fabricated using CMOS-SOI
180 nm and 130 nm processes [12,13]. The specific dimensions, determined by W/L, were designed by
the authors.

2. Temperature and Thermal Sensors

An integrated temperature sensor produces an output current or voltage that is proportional
to the local area absolute temperature. These sensors are usually small, accurate, and have a fast
response time.

Unlike temperature sensors, thermal sensors measure the physical quantities by transducing
their signals into thermal quantities first and then transducing the thermal quantities into electrical
quantities. A thermal sensor operates in three steps:

1. A non-thermal signal is transduced into a heat flow.
2. The heat flow is converted, within the thermal signal domain, into a temperature difference.
3. The temperature difference is transduced into an electric signal with a temperature sensor.

Hence, the basic building block of each thermal sensor is an integrated temperature sensor.
There are various ways to realize a temperature sensor using CMOS technology. The vertical

forward biased diode which, in practice, is a part of a parasitic PNP transistor, is probably one of the
most commonly used sensors in the semiconductor industry to monitor temperature [14,15] (see [14],
p. 294). Its advantage over other types of temperature sensors includes its compatibility with IC
technology, low manufacturing cost, accuracy, and reasonable sensitivity over a wide temperature
range [14–16]. When the diode is forward-biased at a given current and the junction temperature
varies, the voltage across the diode shows a linear variation with temperature [16,17].

In [18], a temperature sensor, which consists of three transistors and has quite good linearity
for 1.0 and 0.8 µm processes, has been introduced. However, in nanometric technologies and very
low-power applications, with 1.8 V or 1 V supply voltage, the sensor’s linearity is degraded. Some
research groups have realized temperature sensors using a time-to-digital-converter, or a ring-oscillator,
in a 0.35 µm process or below. However, such temperature sensors occupy a large area and consume
excessive power at the required sampling rate [19]. In addition, most of these temperature sensors are
not compatible with CMOS-SOI technology.
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The two most commonly used elements for temperature sensing available in CMOS-SOI technology
are: standard MOSFET transistors operating at subthreshold levels and lateral diodes [20–23]. In advanced
CMOS-SOI technology it is impossible to manufacture a vertical diode due to the thin body layer;
hence, a forward-biased diode is built with a lateral structure based on the device layer, forming a
source/drain PN junction under the gate of a MOSFET transistor, as shown in Figure 1a.
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Figure 1. Schematic presentation of a lateral CMOS-SOI diode; (a) cross-section; (b) overview; and
(c) cathode cross-section to demonstrate the area and perimeter of the current flow.

Although the SOI lateral diode is modeled as an ideal diode, it should be noted that the saturation
current exhibits perimeter dependence rather than area dependence, as in regular planar bulk diodes,
due to the thin body layer. Contrary to CMOS bulk diodes, where surface effects may be neglected,
the thin device layer in SOI technology requires a model where the current is primarily dependent on
surface effects. As a result, the saturation current is strongly affected by the surface, determined by the
device periphery as shown in Figure 1c. It will be shown that this significantly affects its performance as
a temperature sensor and requires a careful calibration process for each technology.

3. Thermal Characterization

3.1. MOSFET Transistor

In our previous work, we proposed to use the transistor’s threshold voltage (Vt) to determine the
local temperature of each chip area [24]. This requires a careful characterization of Vt(T) and dVt/dT
of the process under study. This part is performed by measuring the current-voltage characteristics of
single transistors with relatively small W/L dimensions in order to avoid self-heating effects, as well
as thermal cross-talk between different devices, due to the low power consumption during operation.
In addition, the technologies used to fabricate these test devices have a BOX layer, 0.5 µm and 1 µm
for the 130 nm and 180 nm processes, respectively, preventing cooling through the substrate and
maintaining a constant temperature applied by an external temperature controller during the thermal
characterization process.
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Subsequently, by monitoring the changes in Vt under actual operation, the true local temperature
of larger devices can be determined. We refer to this method as “Threshold-Voltage Thermometry”.
It is worthwhile mentioning that this method can be implemented in CMOS technology as well, though
the chip temperature rise will be much smaller due to heat conduction to the substrate.

Aiming to evaluate the behavior of MOSFET’s as temperature sensors, commercially-available
MOSFETs with different W/L ratios were designed by the authors and measured in temperatures
ranging from 300 K to 550 K. The fabrication was performed in two different SOI partially-depleted
technologies [12,13].

The experimental current-voltage curves as a function of the applied temperature have been
obtained with an Agilent Technologies (Santa Clara, CA, USA) B1500A semiconductor parameter
analyzer and the temperature has been controlled by using a variable temperature micro probe system
from MMR Technologies (San Jose, CA, USA), which features a temperature control accuracy of
±0.01 K.

An example of current-voltage characteristics as a function of temperature for an NMOS transistor
fabricated using 130 nm CMOS-SOI process is shown in Figure 2.
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Figure 2. Current-voltage characteristics vs. temperature of an NMOS transistor with W/L = 43.2/2.4
fabricated using 130 nm CMOS-SOI process: (a) on a linear scale; and (b) on a semi-log scale.

These measurements show the process ZTC (zero temperature coefficient) bias point (VGS = 0.75 V)
which is used to extrapolate the threshold voltage for each temperature. From the results of Figure 2
the Vt vs. T curves of several NMOS transistors with different W/L ratio have been extracted for both
technologies and are presented in Figure 3. These results are compared to Vt vs. T curves obtained
from BSIM4 MOSFET models [25] and electrical simulations in the SPICE simulator.

This calibration curves can be used to convert the extracted Vt into the chip local temperature.
As can be seen in Figure 3, the proposed measurement technique is highly linear over a wide

temperature range and its accuracy is determined by the precision of the threshold voltage extraction
technique. In order to reduce the temperature dependence of the Vt extraction methodology and
increase accuracy, the threshold voltage is extrapolated at the ZTC bias point which is exhibited in
Figure 2a,b [24]. The voltage and current at the ZTC bias point are given by [24]:

Vgs,ZTC = Vt(T0)− T0(
dVt
dT )

IZTC = 1
2 CoxµoTo

2(W
L )( dVt

dT )
2 (1)

where Vgs,ZTC and IZTC are the voltage and current at the ZTC bias point, respectively, Vt(T0) is the
process nominal threshold voltage, T0 is the ambient temperature, dVt/dT is the threshold voltage
sensitivity to temperature variations, Cox is the gate oxide capacitance, µo is the charge carrier’s mobility
in the MOSFET channel, and W and L are the transistor’s width and channel length, respectively.
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As can be seen from Equation (1), measuring the ZTC bias points allow to easily obtain the process
thermal parameters, i.e., Vt(T0) and dVt/dT, and calculate the process thermal characterization curves.
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Figure 3. Vt vs. temperature for several NMOS transistors with different W/L ratios at a temperature
range of 300–550 K, which are used to calibrate the processes under study. Dots: experimental data;
dashed lines: linear interpolation of the experimental data point; solid: threshold voltage extracted
from I-V-T simulation obtained using the SPICE circuit simulator and BSIM4 MOSFET models.

Figure 3 also presents the threshold voltage sensitivity to temperature variations, i.e., dVt/dT
of both technologies. Sensitivities of −1.2 mV/K and −1 mV/K were calculated for the 180 nm and
130 nm processes, respectively. This difference in the two process sensitivities and threshold voltage
values are caused by different device layer doping concentrations and different gate oxide thicknesses
of the processes under study. These results are in agreement with the simulation results, also presented
in Figure 3. It is worthwhile mentioning that this thermal characterization is independent of device
dimensions, as can be seen in Figure 3, so it is not easily affected by process variations.

The error in the temperature extraction (∆T) has been obtained by calculating the difference, ∆Vt,
between the measured and simulated Vt vs. T, which is then converted in temperature using the
sensitivity presented in Figure 3. Accordingly, the accuracy is estimated by:

∆T =

∣∣Vt,measured − Vt,simulated
∣∣

dVt/dT
(2)

Errors of 3 K and 1 K have been calculated for the 180 nm and 130 nm processes, respectively.
Although careful thermal characterization is needed, i.e., Vt vs. T needs to be measured once for

each process, the accuracy, linearity and low power consumption required for this method allow it
to be used for “on-line” temperature sensing using a “Vt extractor circuit” [26]. Since the significant
temperature rise of transistors is induced by thermoelectric effects, and since the thermal time constant
of the channel electrons path is very short, heating is almost instantaneous, enabling the on-line
measurement of the true temperature of transistors. In addition, due to the small dependence of this
method to process variations, no specific sensor calibration process is needed.

3.2. Lateral Diode

The current flowing through an SOI lateral diode can be modeled as a forward-biased diode with
perimeter dependence [23]:

Ipn = I0 · [exp

(
qVpn

n f kBT

)
− 1] (3)
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where Ipn is the diode current, q is the electron charge, kB is Boltzmann’s constant, Vpn is the voltage
across the diode, T is the absolute temperature, I0 is the saturation current and nf is the ideality factor.
As emphasized in the introduction, and as shown in Figure 1b, the saturation current I0 is expressed in
terms of the diode perimeter [12]:

I0 = JSW(T) · Perimeter (4)

where JSW is measured by A/µm and it is temperature dependent.
The temperature dependence of the diode voltage can be derived by rearranging Equation (3):

Vpn =
n f kBT

q
[ln (

Ipn

I0
+ 1 )] (5)

As seen from Equation (5) there are two temperature-dependent effects changing the diode’s
voltage: the increase in the saturation current I0 and the linear increase of the voltage with temperature.
The first effect is much more pronounced; hence, the diode voltage is expected to decrease with
temperature when operating at constant current conditions, just like in standard CMOS diodes.
The diode sensitivity under forward voltage bias conditions is calculated by differentiating Equation (3)
with respect to temperature and assuming Ipn >> I0:

dVpn

dT
=

kBn f

q
[ln(

Ipn

I0
)− T

I0

dI0

dT
] (6)

According to Equation (6) the sensor’s expected sensitivity is negative, constant as a function of
temperature, and decreases when increasing the bias current.

The current-voltage characteristic of standard and commercially-available lateral diodes with
different perimeters fabricated using CMOS-SOI 180 nm [12] and 130 nm [13] processes were measured
as a function of temperature in the range of 300 K to 550 K. From these measurements the diode
forward voltage was extracted at a constant current point by using Equation (3) for each temperature.
Figure 4 presents an example of the measured I-V curves as a function of applied temperature for a
lateral diode with W/L = 80 µm/0.6 µm fabricated using CMOS-SOI 130 nm process [13]. Figure 5
presents the forward voltage extrapolated from the I-V cures shown in Figure 4 as a function of applied
temperature. Figure 5a shows different devices fabricated in both technologies at a constant sensing
current of 1 µA. Figure 5b shows the forward voltage of a diode fabricated using the 180 nm process at
a different sensing current.
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Figure 5. The diode’s forward voltage as a function of temperature (a) for different devices at a constant
bias current of 1 µA; (b) at different bias currents for a lateral diode with W/L = 4.9 µm/0.56 µm
fabricated using the 180 nm CMOS-SOI process. Dots: experimental data; Dashed lines: linear
interpolation of the experimental data point; Solid: simulation results.

As shown in Figure 5, the lateral diode exhibits the same temperature dependence as the standard
PN diode implemented in bulk technology in the sense that the voltage decreases as temperature
increases. However, since I0 is dependent on the perimeter of the lateral diodes, the process variations
limit the linearity of this method, i.e., the linear behavior of the Vpn vs. T curves, to currents above
5 nA, which limits the minimal power consumption needed to preserve the linearity of this method.
For example, in the 180 nm process, for the temperature sensitivity of the transistors (ca. −1.2 mV/K),
the diode power consumption is at least 95 µW (Ipn = 1 µA and Vpn, T = 300 K = 0.95 V) while, if using
a “Vt extractor circuit” [26] to measure the threshold voltage, the circuit power consumption is only
~50 µW. Furthermore, since the diode extracted voltage is highly dependent on device dimensions,
a carful calibration process is needed in order to improve the sensor’s accuracy.
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Figure 6 presents the sensitivity, i.e., |dVpn/dT|, of the lateral diode at different temperatures and
different bias currents. These curves show that the sensitivity of the diode increases when decreasing
the forward current, as the voltage drop across the neutral regions of the device is less pronounced
and the diode’s current is governed by recombination in the space charge region, which is of the
order of the leakage current. Citing [23], it should be emphasized that the driving current needs to
be low enough to avoid any self-heating while simultaneously providing a high ratio with respect
to the reverse saturation (i.e., leakage) current. It can also be observed that the diode sensitivity is
negative, constant over the entire temperature range (ca. −2.1 mV/K at IDS = 5 nA) and higher than the
transistor’s sensitivity (~−1.2 mV/K). However, the sensitivity of the diode in CMOS-SOI technology
is highly dependent on the diode perimeter and leakage currents; hence, a careful sensor calibration
is needed.
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The error in the temperature extraction (∆T) has been obtained by calculating the difference, ∆Vpn,
between the measured and simulated Vpn vs. T, which is then converted into temperature using the
sensitivity presented in Figure 6. Accordingly, the accuracy is estimated by:

∆T =

∣∣∣Vpn,measured − Vpn,simulated

∣∣∣
dVpn/dT

(7)

At a constant current of 1 µA, accuracies of 6 K and 4 K have been calculated for the 180 nm and
130 nm processes, respectively. It is possible to achieve higher accuracy by increasing the sensing
current; however, it will increase the power consumption during the measurement.

4. Noise Characterization

The noise characteristics of both sensors were measured in a common source configuration as
presented in Figure 7. The measurement setup consists of 35670A dynamic signal analyzer (DSA),
low noise current preamplifier (SR570) (including both built-in DC current source (Ioff), and a DC
voltage source (Vb)), low-pass filter (LPF), ADC, DAC, and a personal computer (PC). The gate of
the device is biased by means of DAC, while the drain is supplied by voltage Vb through the current
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preamplifier virtual ground. The built-in DC current source provides the DUT with the accurate DC
current corresponding to the operating voltages so that only current noise is amplified by the current
preamplifier and is converted to the voltage noise. DSA measures the voltage noise PSD at the current
preamplifier output. The function of ADC is to control the DC voltage at the output of the current
preamplifier in order to keep it in a linear regime.Sensors 2017, 17, 1739  10 of 13 
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Figure 7. Current noise measurement setup based on a common-source configuration.

The noise density spectrum was measured in the range of 1 Hz to 14 kHz for different device
currents. The input-referred current noise power spectral density (PSD) is shown in Figure 8 for
devices fabricated using the 180 nm process at current level of 1 µA. In both cases the PSD is inversely
proportional to the device area; hence, a transistor and a lateral diode of approximately the same area
(2 µm2 and 3 µm2, respectively) were measured and compared in Figures 8 and 9. Figure 9 shows the
dependence of the noise current power spectral density on the drain current for the NMOS transistor
and lateral diode.
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Figure 9. Current noise power spectral density of an NMOS transistor with area of ~2 µm2 and a lateral
SOI diode with area of ~3 µm2.

The low-frequency noise of a MOSFET in saturation is calculated using [27]:

SI,1/ f ( f ) =
KFsat · IDS

COX L2 · 1
f

(8)

and in subthreshold:

SI,1/ f ( f ) =
KFsub · I2

DS
Cox A

· 1
f

(9)

where KFsat and KFsub are the technological noise coefficients in saturation and subthreshold,
respectively, Cox is the oxide capacitance, L is the channel effective length, A is the transistor area, and
IDS is the transistor DC current.

The PSD of a lateral diode is modeled according to the SPICE model as follows:

SI,1/ f ( f ) =
KFdiode · Iβ

DS
Adiode

· 1
f α

(10)

where α is extracted from Figure 8 and is equal to 1 since we always observed a nearly 1/f dependence
of SI in the lower frequency range of the spectra. KF and β represent the SPICE parameters. The study
of the device current spectral density evolution at 1 Hz versus device current IDS allows us to extract
the value of β. Figure 9 shows a quadratic relation of SI at 1 Hz versus IDS; thus, β equals 2.

Figure 9 compares the current noise PSD of the transistor and lateral diode. As seen, between
currents of 1 nA to 0.1 µA which correspond to voltages of 0 to 0.25 V at the transistor gate
(subthreshold), the lateral diode contributes higher low frequency noise by one order of magnitude.
For currents of 0.1 nA to 1 µA which correspond to voltages of 0.25 to 0.5 V at the transistor gate
(saturation), the lateral diode contributes higher low-frequency noise by two orders of magnitude.

The noise coefficients (KF) of each device were calculated from Figure 9 at different operation
regimes. Noise coefficients of KFsat = 6.3 · 10−29 A · F, KFsub = 1.2 · 10−21 F were calculated for the
transistor at saturation and subthreshold, respectively, and KFdiode = 9.5 · 10−21 µm2 was calculated
for the lateral diode. The noise measurements indicate that the diode’s small perimeter contributes
high 1/f noise in all measured bias currents, which is a severe drawback for a thermal sensor.
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5. Conclusions

In this work the performance of SOI diodes and transistors as temperature and thermal sensors
has been presented and compared. Experimental and simulation results of diodes and transistors
from two different technologies showed that both sensors exhibit high linearity and sensitivity in a
wide temperature range (from 300 K to 550 K). However, SOI transistors provide much more accurate
and reliable temperature sensor due to a smaller dependence upon process variations without any
additional calibration. In addition, the noise characterization indicates that the current of the lateral
diode flows at a small area of diode’s perimeter, resulting in a high 1/f noise. The higher noise is
a severe drawback when using the sensor as a thermal sensor; hence, CMOS-SOI transistors are a
better choice for temperature sensing. In Table 1, the main properties of both sensors are summarized
and compared.

Table 1. The temperature/thermal sensors’ main properties.

Technology
(nm) Device Area

(µm2)
Maximum

Sensitivity (mV/K)
Accuracy

(K) SI (A2/Hz) Calibration

180
Transistor 2 −1.2 3 1.6 × 10−19 Not needed

Diode 3 −2.1 6 3 × 10−17 Needed

130
Transistor 50 −1 1 1.2 × 10−21 Not needed

Diode 45 −2 4 1.4 × 10−19 Needed
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