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Abstract: Load identification plays an important role in structural health monitoring, which aims at 
preventing structural failures. In order to identify load for linear systems and nonlinear systems, 
this paper presents methods to identify load for a cantilever beam based on dynamic strain 
measurement by Fiber Bragg Grating (FBG) sensors. For linear systems, the proposed inverse 
method consists of Kalman filter with no load terms and a linear estimator. For nonlinear systems, 
the proposed inverse method consists of cubature Kalman filter (CKF) with no load terms and a 
nonlinear estimator. In the process of load identification, the state equations of the beam structures 
are constructed by using the finite element method (FEM). Kalman filter or CKF is used to suppress 
noise. The residual innovation sequences, gain matrix, and innovation covariance generated by 
Kalman filter or CKF are used to identify a load. To prove the effectiveness of the proposed method, 
numerical simulations and experiments of the beam structures are employed and the results show 
that the method has an excellent performance.  
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1. Introduction 

Load identification is an important research area in structural health monitoring [1–4]. For 
reliability and cost effectiveness in the design and analysis of structures, accurate identification of the 
location and magnitude of a load is desirable. The stresses of structures are a function of load, and 
knowledge of load can be helpful for design optimization and health of structures. For aeronautical 
and space systems, load identification is used to prevent structural failures. For bridge-vehicle 
systems, load identification is used to design, diagnose, and maintain bridges. By identifying the 
load, we can also reduce reliance on expensive and time-consuming experiments. In engineering 
applications, force measurement sensors cannot be directly installed sometimes due to the operating 
conditions. In this situation, it is helpful to use attached sensors such as strain gauges or fiber optic 
sensors to measure in-plane strains of the structures. FBG sensors show significant potential in 
engineering applications. Their light weight, accuracy, and high spatial resolution distinguish them 
from traditional strain gauges and make them applicable to a variety of aeroelastic systems such as 
unmanned aerial vehicles and flexible flying wings that have strict weight requirements. So this 
paper focuses on identifying a load by using FBG sensors. 

Load identification algorithms [3–7] can be divided into time domain algorithms and frequency 
domain algorithms. Compared to frequency domain algorithms, time domain algorithms are much 
more valuable. In the study of time domain algorithms, Ma [8,9] proposes a method to identify the 
load for linear systems by measuring all nodal displacements and rotations. In his work, Kalman 
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filter is used to suppress noise, then residual innovation sequences, gain matrix, and innovation 
covariance generated by Kalman filter are used to identify a load using a least-squares method. At 
the foundation of Ma’s work, Lin [10] proposes a method to identify a load for nonlinear systems 
with a linear estimator by combing the extended Kalman filter (EKF) with a least-squares method. 
The key to Lin’s method is using EKF to turn nonlinear systems to linear systems so as to use a linear 
estimator to identify the load. For now, Ma’s and Lin’s work is limited to theoretical research, and 
cannot be directly used in engineering applications as nodal displacements and rotations are not 
easily measured. At the same time, the system of load identification needs to stall many sensors, 
which is difficult to realize in engineering applications. To amend these flaws, this work focuses on 
identifying a load by applying FBG sensors. FBG sensors have great advantages than other types of 
sensors, which are immune to electromagnetic interference, small enough to be embedded into 
structures and easy to complete distributed measurement. The distributed FBG sensing network can 
also solve the difficulties of sensor installation. For Lin’s work, turning nonlinear systems to linear 
systems with EKF can cause errors, and may result in sub-optimal performance and divergence when 
dealing with strong nonlinear systems. To amend this flaw, this work proposes a new method that is 
based on CKF and a nonlinear estimator to identify a load for nonlinear systems.  

In engineering applications, structures are usually simplified as a linear beam or a nonlinear 
beam. So the paper uses a linear beam and a nonlinear beam as the model to verify the proposed 
method, respectively. The finite element method is used to construct dynamic model of the beam 
structure, and the strain values getting from FBG sensors are employed as observed values. For linear 
systems, Kalman filter is used to suppress noise, then residual innovation sequences, gain matrix, 
and innovation covariance generated by Kalman filter are used to identify a load by using a linear 
estimator. For nonlinear systems, CKF is used to suppress noise, then the residual innovation 
sequences, priori state estimate, gain matrix and innovation covariance generated by CKF are 
employed to identify a load by using a nonlinear estimator. To verify the accuracy of the identification 
method, the simulations and experiments of a linear system and a nonlinear system are employed, 
and the results show that the system based on FBG sensors has an excellent performance.  

2. Sensing Principle 

In this paper, FBG sensing network is established to measure the responses of structures. The 
relationship between wavelength shift and strain in FBG is shown in Equation (1). From Equation (1), 
we can get strain value . Here ∆  is wavelength shift of FBG; 	  is FBG axial strain; 	 is thermal 
expansion coefficient of FBG; 	 is thermo-optical coefficient of FBG; ∆ 	 is amount of temperature 
change; and 	 is the effective photo-elastic coefficient of FBG [11]. 

[(1 ) ( ) ]eP a Tλ λ ε ξΔ = − + + Δ  (1) 

The finite element method is used to construct the state-space model of a beam structure. The 
finite element model is considered to be a system of “2n”-degrees-of-freedom and we paste two FBG 
sensors on every element. We establish the relationship between strain values, nodal displacements 
and nodal rotations as follows: 
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where ,[ , , ]Ti i j jw wδ θ θ= , 2

1
( ) [ 6 12 , ( 4 6 ),6 12 , ( 2 6 )]

2

h
B l l

l
ξ ξ ξ ξ ξ= − + − + − − + × . ( )B ξ  is the 

shape function; l  is the length of the beam element; /x lξ = , x is the location of the FBG in element; 
h is the thickness of the beam; w  is the nodal displacement; and θ  is the nodal rotation. 

3. Load Identification of a Linear Beam System 

3.1. Identification Principle 

There are three steps to identify the location and magnitude of a load. First, the state equation 
and measurement equation of the state-space model are discretized. Second, a Kalman filter is used 
to suppress noise. Finally, the residual innovation sequences, gain matrix, and innovation covariance 
generated by Kalman filter are used to identify a load.  

3.1.1. Linear System Discretization 

The vibration equation of the discrete cantilever beam can be written as follows: 

( ) ( ) ( ) ( )MY t CY t KY t F t+ + =  , (3) 

where  is the ×  mass matrix;  is the ×  damping matrix; 	  is the ×  stiffness 
matrix; ( ) is the × 1 force vector; and ( ), ( ), and ( ) are the × 1 acceleration vector, 
velocity vector, and displacement vector, respectively.  

According to the second-order dynamic system and measuring principle, the state equation and 
measurement equation of the state-space model can be written as:  

( ) ( ) ( )X t AX t BF t= +  (4) 

( ) ( )Z t HX t= , (5) 

where: 
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.  

State value ( ) 	= 	 [ ( ), ( ), … ( ), ( )] , force value ( ) = [ , , , … ] .  is 
the 2 × 2 	measurement matrix and ( )Z t  represents the strain vector.  

Equations (4) and (5) are discretized over time intervals of length 	△  to become:  

( 1) ( ) ( ( ) ( ))X k X k F k w k+ = Φ +Γ +  (6) 

( ) ( ) ( )Z k HX k v k= +  (7) 

exp( )A tΦ = Δ  (8) 

( 1)
exp[ ( )]

k t

k t
A k t Bdτ τ

Δ

− Δ
Γ = Δ − , (9) 

where ( ) represents the state vector;  represents the state transition matrix;  represents the 
input matrix; △  represents the sampling interval; and ( )  represents the load sequence. 
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( ) = 0, ( ) (j) = δ . ( ) = 0 , 	 ( ) (j) = Rδ . [ ( )] =0, [ ( ) (l)] = ( ) , = ∗ , where vector w(k) represents the process white noise, Q 
represents the covariance matrix, and  is the Kronecker deltas. [ ( )] = 0 , 	 [ (k) (l)] =(k) , = ∗ , where vector v(k) represents the measurement white noise, R represents noise 
covariance matrix, = , σ is the standard deviation of the measurement noise. The vectors w(k) 
and v(k) are mutually uncorrelated. 

3.1.2. Kalman Filter 

The equations of Kalman filter are as follows:  

( / 1) ( 1 / 1)X k k X k k− = Φ − −  (10) 

( / 1) ( 1 / 1) T TP k k P k k Q− = Φ − − Φ + Γ Γ  (11) 

( ) ( / 1) TS k HP k k H R= − +  (12) 

1( ) ( / 1) ( )T
aK k P k k H S k−= −  (13) 

( / ) [ ( ) ] ( / 1)aP k k I K k H P k k= − −  (14) 

( ) ( ) ( / 1)Z k Z k HX k k= − −  (15) 

( )( / ) ( / 1) ( )aX k k X k k K k Z k= − + , (16) 

where ( / 1)X k k −  and ( / )X k k  are state vectors; Φ  is the state transition matrix;  is 

measurement matrix; ( / 1)P k k−  and ( / )P k k  are the covariance matrices; ( )aK k  is gain 
matrix; ̅( ) represents the innovation matrix. 

3.1.3. Linear Estimator 

The residual innovation sequences, gain matrix, and innovation covariance generated by 
Kalman filter are employed to calculate load by using a least-squares algorithm. The detailed 
derivation of the identification method can be found in Appendix A. The simple equations of the 
linear estimator are as follows: 

( ) [ ( 1) ]s sB k H M k I= Φ − + Γ  (17) 

( ) [ ( ) ][ ( 1) ]s a sM k I K k H M K I= − Φ − +  (18) 

1 1 1( ) ( 1) ( )[ ( ) ( 1) ( ) ( )]T T
b b s s b sK k P k B k B k P k B k S kγ γ− − −= − − +  (19) 

1( ) [ ( ) ( )] ( 1)b b s bP k I K k B k P kγ −= − −  (20) 

ˆ ˆ ˆ( ) ( 1) ( )[ ( ) ( ) ( 1)]b sF k F k K k Z k B k F k= − + − − , (21) 

where ( )  represents the Kalman gain matrix, ( )	  and ( )	  represent the sensitivity 
matrices, ̅( )  represents the innovation matgrix, ( )	  represents the correction gain for 
updating ( ) , ( )  represents the error covariance of the estimated input vector, and ( ) 
represents the estimated input vector. The fading factor γ is used to compromise between the loss of 
estimation accuracy and the fast adaptive capability. In this study, γ is set to a constant value (i.e., 
0.69).  

3.2. Numerical Simulations of a Linear Beam System 
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To verify the practicability and accuracy of the proposed method, numerical simulations of a 
cantilever beam are employed. The finite element model and the FBG sensing network of the 
cantilever beam are shown in Figure 1. The model parameters are given in Table 1. For the cantilever 
beam, the element mass matrix , element stiffness matrix , and proportional damping matrix 
C are as follows: 

2 2 2 2

3

2 2 2 2

624 44 216 26 24 6 24 6

44 4 26 3 6 2 64
,

216 26 624 44 24 6 24 63360

26 3 44 4 6 6 2

e e

l l l l

l l l l l l l lAl EI
M K

l l l ll

l l l l l l l l

ρ
− −   

   − −   = =
− − − −   

   − − − −   

, 

C M Kα β= +  

 

where ρ is the mass per unit length of the beam, l  the length of the beam element, E the elastic 
modulus and I the moment of inertia of the cross-section, and α and β are constants with proper units. 
Considering a four-element beam, the global matrices M and K of the beam are obtained by 
assembling the matrices  and . Three types of load (sinusoidal, triangular, and rectangular) are 
considered in the simulations.  

Table 1. Model parameters. 

Bernoulli–Euler Beam
Material 1540 
Density (kg/m3) 2690 
Elastic modulus (GPa) 68.9 
Length (m) 0.64 
Width (m) 0.03 
Height (m) 0.003 
Units number 4 

The system responses (strain values) with white noise are employed as the measurement values. 
The initial parameters of the estimation system are generally listed as follows: = (16,1), =(16) , = (16) , = 200 × (16) , = 200 × (8),  = 0.69.  The noise 
characteristic is set to  = 1 ×	e−5 and  = 1 ×	e−10. The forcing frequency is set 1 Hz and 100 Hz, 
respectively. Load is applied at the end of the cantilever; the location and magnitude of load are 
identified from the strain responses. Figures 2–4 plot the results of load identification with forcing 
frequency set 1 Hz and the sampling interval set Δ  = 0.01 s. Figures 5–7 plot the results of load 
identification with forcing frequency set 100 Hz and the sampling interval set Δ  = 0.1 ms. 

 

Figure 1. Beam model and FBG sensing network.  
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Figure 2. Identification result of the sinusoidal load. 
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Figure 3. Identification result of the rectangular load. 
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Figure 4. Identification result of the triangular load. 
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Figure 5. Identification result of the sinusoidal load.  
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Figure 6. Identification result of the rectangular load. 
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Figure 7. Identification result of the triangular load. 

3.3. Experimental Verification of a Linear Beam System 

The experiment is employed to verify the practicability and accuracy of the method, and the 
laboratory tests are performed on a simple support cantilever. Six FBG strain sensors are attached at 
the surface of the beam along its center line, to measure the axial dynamic strains, as shown in Figure 
8. The distance between two consecutive sensors is about 9.15 cm. FBG interrogation system (SM130) 
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is used for measuring the dynamic strains, and an electrodynamic shaker is employed for the 
excitation. The excitation point is at the end of the cantilever and a force sensor is also used at this 
location to measure the input force. The beam is excited with periodic sinusoidal signals, and the 
magnitude and location of the load are identified simultaneously from the dynamic strains. In the 
process, the measured force is used as exact value to verify the practicability of the proposed method. 
A NI cDAQ-9174 module and LABVIEW software are used to acquire signal. Parameters of the beam 
are: elastic modulus = 6.89 × 10 	(N/m ), density = 2.69 × 10 	(kg/m ), beam length = 0.48	m, 
the cross section = 0.03	m × 0.003	m. The damping matrix C is set as: 0.01 0.02C M K= × + × . 
Sampling frequency is set as 100 Hz, and experimental time is 10 s. The layout of the experiment is 
presented in Figure 8 and the identification results are plotted in Figure 9.  

 

Figure 8. Layout of experiment.  
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Figure 9. Identification result of the sinusoidal load. 

4. Load Identification of a Nonlinear Beam System 

4.1. Identification Principle 

There are three steps to identify a load. First, the state equation and measurement equation of 
the state-space model are discretized. Second, a Cubature Kalman filter is used to suppress noise. 
Finally, the residual innovation sequences, a priori state estimate, gain matrix, and innovation 
covariance generated by CKF are used to identify the load.  

4.1.1. Nonlinear System Discretization 

The vibration equation of the nonlinear discrete beam can be written as follows: 

( ) ( ) ( ) ( ) ( )MY t CY t K Y Y t F t+ + =  , (22) 
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where  is the ×  mass matrix;  is the ×  damping matrix;	  is the ×  stiffness matrix 
and is varying with displacement vector; ( ) is the × 1 force vector; and ( ), ( ), and ( ) 
are the × 1 acceleration vector, velocity vector, and displacement vector, respectively.  

According to the second-order dynamic system and measuring principle, the state equation and 
measurement equation of the state-space model can be written as:  

( ) ( ( )) ( )X t f X t BF t= +  (23) 

( ) ( )Z t HX t= , (24) 

where: 

1

0
,n nB

M

×

−

 
=  
 

 

1

2

3

4

2 1

2

n

n

B

B

B

B
H

B

B
−

 
 
 
 
 
 =
 
 
 
 
 
 





  

State value ( ) = [ ( ), ( ), … ( ), ( )] , force value ( ) = [ , , , … ] . f(·) is a 
nonlinear function with respect to X.  is the 2 ∗ 2 	measurement matrix and ( )Z t  represents the 
strain vector.  

Discretize the Equations (23) and (24), and the discrete model can be described by: 

1 1( , )

( )
k k k k

k k k

X f X F w

Z h X v
− −= +

 = +
. (25) 

kX  is state vector; kZ  is measurement vector; f(·) and h(·) are a nonlinear functions. [ ] =0, [ ] = , = ∗ , where vector  represents the process white noise, Q represents 
covariance matrix and  is the Kronecker deltas. [ ] = 0,	 [ ] = , = ∗ , where 
vector  represents the measurement white noise, R represents noise covariance matrix, = , σ 
is the standard deviation of the measurement noise. The vectors  and  are mutually 
uncorrelated.  

4.1.2. Cubature Kalman Filter 

Initialization: Initialize the filter by setting the initial state and covariance matrix [12,13]:  

0 0 0 0X̂ E X =    (26) 

( ) ( )0 0 0 0 0 0 0 0 0 0
ˆ ˆ T

P E X X X X = − −  
 (27) 

0 0X̂  is the initial state vector, and 0 0P  is the initial covariance matrix. 

Time update:  

(1) Calculate the cubature points:  

( )1/ 1 1/ 1k k k kS chol P− − − −=   

, 1/ 1 1/ 1 1/ 1
ˆ , 1, 2, ...,i k k k k i k kX S X i mξ− − − − − −= + = , (28) 
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where , 1/ 1
ˆ
i k kX − −  is the prior estimated state. = [1] , [1]  is the ith column of the matrix  

[I (−1)I]. 

(2) Calculate the propagated cubature points:  

( ), 1 , 1 1, 1i k k i k kX f X k∗
− − −= − . (29) 

(3) Calculate the predicted state and covariance matrix:  

1 , / 1
1

1ˆ
m

k k i k k
i

X X
m

∗
− −

=

=   (30) 

1 , 1 , 1 1 1 1
1

1 ˆˆ ˆ
m

T T
k k i k k i k k k k k k k

i

P X X X X Q
m

∗ ∗
− − − − − −

=

= − + . (31) 

Measurement update:  

(1) Calculate the cubature points:  

( )/ 1 / 1k k k kS chol P− −=  (32) 

, / 1 / 1 1
ˆ

i k k k k i k kX S Xξ− − −= + . (33) 

(2) Calculate the propagated cubature points: 

( ), / 1 , / 1i k k i k kY h X− −= . (34) 

(3) Calculate the predicted state:  

/ 1 , / 1
1

1ˆ
m

k k i k k
i

Z Y
m− −

=

=  . (35) 

(4) Calculate the innovation covariance matrix: 

, 1 , 1 , 1 1 1
1

1 ˆ ˆ ˆ
m

T T
zz k k i k k i k k k k k k k

i

P Y Y Z Z R
m− − − − −

=

= − + . (36) 

(5) Calculate the cross-covariance matrix:  

, 1 , 1 , 1 1 1
1

1 ˆ ˆ
m

T T
xz k k i k k i k k k k k k

i

P X Y X Z
m− − − − −

=

= − . (37) 

(6) Calculate the Kalman gain:  

1
, / 1 , 1k xz k k zz k kK P P−

− −= . (38) 

(7) Calculate the updated state:  

1
ˆ

k k k kZ Z Z −= −  (39) 
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1
ˆ ˆ
k k k k k kX X K Z−= + . (40) 

(8) Calculate the error covariance:  

1 , 1
T

k k k k k zz k k kP P K P K− −= − . (41) 

4.1.3. The Nonlinear Estimator 

Applying the residual innovation sequences, priori state estimate, gain matrix and innovation 
covariance generated by CKF, the location and magnitude of load can be identified by using a 
recursive least-squares algorithm from the response values (displacement, velocity, or acceleration). 
In the process, the first-order Taylor series expansion is used to around the estimated state value

1
ˆ
k kX − . The detailed derivation of the estimation method can be found in Appendix B. The simple 

equations of the least-squares estimator are as follows: 

1
ˆ( ) /k k kf X X−Φ = ∂ ∂  (42) 

1
ˆ( ) /k k kf X F−Γ = ∂ ∂  (43) 

1
ˆ( ) /k k kH h X X−= ∂ ∂  (44) 

( ) [ ( 1) ]s k k s kB k H M k I= Φ − + Γ  (45) 

( ) [ ][ ( 1) ]s k k k sM k I K H M k I= − Φ − +  (46) 

1 1 1
, 1( ) ( 1) ( )[ ( ) ( 1) ( ) ]T T

b b s s b s zz k kK k P k B k B k P k B k Pγ γ− − −
−= − − +  (47) 

1( ) [1 ( ) ( )] ( 1)b b s bP k K b B k P kγ −= − −  (48) 

ˆ ˆ ˆ( ) ( 1) ( )[ ( ) ( 1)]b k sF k F k K k Z B k F k= − + − − , (49) 

where f(·) and h(·) represent nonlinear functions of the discrete system; , 1zz k kP −  represents the 

innovation covariance matrix;  represents the gain matrix; ( )	  and ( )	  represent the 
sensitivity matrices; kZ  represents the innovation matrix; ( )	 represents the correction gain for 
updating ( ) ; ( )  represents the error covariance; and ( )  represents the estimated input 
vector; γ is a fading factor.  

4.2. Numerical Simulations of a Nonlinear Beam System 

To verify the practicability and accuracy of load identification in nonlinear systems, numerical 
simulations of a cantilever beam that is constrained by a nonlinear spring at the end node are 
employed. The finite element model is the same as the model in Figure 10, and the model parameters 
are the same as in Table 1. Considering a four-element beam, the sampling interval is set as Δ  = 0.01 
s. The system responses (strain values) with white noise are employed as the measurement values. 
Load is applied at the end of the cantilever; the location and magnitude of load are identified from 
the strain responses. The noise characteristic is set to  = 1 	×	e−3 and  = 1 	×	e−6. The initial 
parameters of the estimation system are generally listed as follows: = (16,1), = (16), = (16), = 200 × (16), = 200 × (8), = 0.69. For the beam model, sinusoidal 
load, rectangular load, and triangular load are employed. In order to contrast with Lin’s method, 
Figures 11–13 plot the identified results based on EKF and the results based on CKF.  
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Figure 10. Beam model and FBG sensing network.  
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Figure 11. Identification result of the sinusoidal load. 
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Figure 12. Identification result of the rectangular load.  
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Figure 13. Identification result of the triangular load. 

4.3. Experimental Verification of a Nonlinear Beam System 

The experiment is employed to verify the practicability and accuracy of the identification 
method. Considering a linear three-element beam with a nonlinear spring stalled at the end nodal, 
six FBG strain sensors are attached at the surface of the beam along its center line, to measure the 
axial dynamic strains, as shown in Figure 14. The distance between two consecutive sensors is about 
9.15 cm. FBG interrogation system (SM130) is used for measuring the dynamic strains, and an 
electrodynamic shaker is employed for the excitation. The excitation point coincided with a nonlinear 
spring is at the end of the cantilever and a force sensor is also used at this location to measure the 
input force. The beam is excited with periodic sinusoidal signals, and the magnitude and location of 
load are identified simultaneously from the dynamic strains. In the process, the measured force is 
used as exact value to verify the practicability of the proposed method. A NI cDAQ-9174 module and 
LABVIEW software are used to acquire signal. Parameters of the beam are: elastic modulus	 = 6.89 ×10 	(N/m ), density 	 = 2.69 × 10 	(kg/m ) ,	 beam length	 = 0.48	m , the cross section =0.03	m × 0.003	m. The damping matrix C is set as: 0.01 0.02C M K= × + × . Sampling frequency 
is set as 100 Hz, and experimental time is 2 s. The layout of experiment is presented in Figure 14 and 
the identification result is plotted in Figure 15.  

 
Figure 14. Layout of experiment.  
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Figure 15. Identification result of experiment. 

5. Discussion 

(1) The proposed method of load identification is a recursive method that only needs the recent 
measurement values and the previously identified values to be kept in storage. This 
characteristic can save considerable memory and greatly decrease the system burden. The 
proposed method is based on a Kalman filter, and this can be helpful to control the beam 
structure by using optimal control theory after identifying the load. 

(2) As illustrated in Figures 2–7 and 11–13, the identified load rapidly converges to the exact load. 
The identification performance of the sinusoidal load is better than that of the triangular load 
and rectangular load. As illustrated in Figures 9 and 15, experimental results show that the load 
identification system based on FBG sensors has a good performance.  

(3) The proposed method of load identification is based on a Kalman filter. As a Kalman filter can 
only be used to estimate continuous signal and cannot be used to estimate a random signal, the 
proposed method cannot be used to identify a random load. The identification results show a 
little delay between the exact load and the identified load, but we can apply iterative algorithms 
to decrease the delay. The identified load rapidly converges to the exact load, but with large 
initial estimation errors. To improve the performance of the initial estimation, the initial values 
of P and  should be set to large values.  

6. Conclusions 

In order to identify the load of both linear beam systems and nonlinear beam systems, real-time 
methods based on FBG sensors are presented. The finite element method is used to construct a 
dynamic model of the beam structure, and the strain values obtained from FBG sensors are employed 
as observed values to identify the location and magnitude of the load. The proposed method is 
established on the foundation of a Kalman filter, which can be helpful to control the beam structure 
by using optimal control theory after load identification. At the same time, the proposed methods 
can identify a load accurately and solve the difficulty of sensor installation. Contrast this with Lin’s 
method, which is based on EKF. The method based on CKF has a better performance. This research 
has great value in engineering applications, and future studies will focus on the applications in 
aircraft structures. 
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Appendix A 

The discrete system is given below: 

1 1k k k kX X F w− −= Φ + Γ +  (A1) 

k k kZ HX v= + . (A2) 

The posteriori state estimate without exciting force: 

1 1[ ]k k k k kX X K Z H X− −= Φ + − Φ . (A3) 

The posteriori state estimate with exciting force: 

1 1 1 1
ˆ ˆ ˆ[ ]k k k k k k kX X F K Z H X H F− − − −= Φ + Γ + − Φ − Γ , (A4) 

where kK  is obtained from KF.  
Define the difference of the two posteriori state estimates as follows:  

1 1 1

ˆ

ˆ( ) ( ) ( )

k k k

k k k k k

X X X

I K H X X I K H F− − −

Δ = −

= − Φ − + − Γ
. (A5) 

Assuming the exciting force begins with time nt , then: 

1. k < n. 1 1
ˆ
k kX X− −−  = 0. 1kF −  = 0, so kXΔ  = 0 

2. k = n. 1 1
ˆ
k kX X− −−  = 0. 1kF −  = 0, so kXΔ  = 0 

3. k > n. 1 1 1
ˆ
k k kX X X− − −− = Δ , so 

1 1 1

1 1

ˆ( ) ( ) ( )

( )( )
k k k k k k

k k k

X I K H X X I K H F

I K H X F
− − −

− −

Δ = − Φ − + − Γ
= − ΦΔ + Γ

. (A6) 

In summary, we get: 

1 1

0

( )( )
k

k k k

k n
X

I K H X F k n− −

 ≤Δ = 
− ΦΔ + Γ >

. (A7) 

At time 1nt + , Equation (A7) becomes: 

1 1( )( )n n n nX I K H X F+ +Δ = − ΦΔ +Γ . (A8) 

From Equation (A7) we know that nXΔ = 0, so Equation (A8) becomes: 

1 1( )n n nX I K H F+ +Δ = − Γ . (A9) 

Define 1 1n nM I K H+ += − . 
Then Equation (A9) becomes: 

1 1n n nX M F+ +Δ = Γ . (A10) 

From Equations (A7) and (A10), for k > n, we have: 

1 1( )( )k k k kX I K H X F− −Δ = − ΦΔ + Γ . (A11) 

Ignoring 1kX −ΦΔ , Equation (A11) becomes: 

1k k kX M F −Δ = Γ . (A12) 

From Equations (A11) and (A12), we have: 
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1 1 1

1 2 1

( )( )

( ) ( )
k k k k k

k k k k k

M F I K H X F

I K H M F I K H F
− − −

− − −

Γ = − ΦΔ +Γ
= − Φ Γ + − Γ .  

Assume 1kF − = 2kF − , then: 

1( )( )k k kM I K H M I−= − Φ + . (A13) 

From Equations (A12) and (A13), we have: 

1
ˆ
k k k kX X M F −= + Γ , (A14) 

where: 

1

0

( )( )k
k k

k n
M

I K H M I k n−

≤
=  − Φ + >

.  

The observed value of the residual sequence with exciting force can be described as: 

1 1
ˆ ˆ[ ]k k k kZ Z H X F− −= − Φ + Γ . (A15) 

The observed value of the residual sequence without exciting force can be described as: 

1k k kZ Z H X −= − Φ . (A16) 

For different values of k, we have: 

1. k < n. 1kF −  = 0, ˆ
k kZ Z=  

2. k = n. 1kF −  = 0, ˆ
k kZ Z=  

3. k > n. 1 0kF − ≠ , ˆ
k kZ Z≠  

1 1

1

ˆ ˆ( )

( )
k k k k

k

Z Z H X X H F

H M I F
− −

−

− = Φ − + Γ
= Φ + Γ .  

In summary, we get: 

ˆ

ˆ
k

k

k k

Z k n
Z

Z B F k n

 ≤= 
+ >

, (A17) 

where: 

1( )k kB H M I−= Φ + Γ .  

For k = n + 1, n + 2, ... n + l. we have: 

Y Fψ ε= + , (A18) 

where: 

11

12 2

1

1

ˆ ( 1)
ˆ ( ) 0 0( 2)

( ) , ( ) , ( ) ,
( )[ ] 0

( ) ( )ˆ

nn

nn n
n l

n l n l

n ln l n l

ZZ HB n

H M I lB nZ Z
Y N N N M

I K H M I l

B n l H M IZ Z

ε ψ

++

++ +
+

+ + −

+ −+ +

   Γ+   
      Φ + Γ =+      = = = = =       − Φ + >     + Φ + Γ         

  

. 

 

Assume ˆ ˆ[ ( ) ( )] ( )TE z k z k s k= , ( )s k  is got from KF. ( )Nε  is a disturbance vector, and its 
variance is given by: 
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( 1) 0 0

0 ( 2) 0
( )

0 0 ( )

s n

s n
N

s n l

+ 
 + Σ =
 
 + 









. (A19) 

From Equation (A18), we can get: 
11 1ˆ ( ) ( ) ( ) ( ) ( ) ( ) ( )T TF N N N N N N Y Nψ ψ ψ

−− − = Σ Σ  . (A20) 

The error covariance matrix is: 

{ }
11

ˆ ˆ( ) ( ) ( )

( ) ( ) ( )

T

b

T

P N E F F N F F N

N N Nψ ψ
−−

   = − −   

 = Σ 

. (A21) 

Including forgetting factor γ, from Equation (A19) we get: 

1 1

1 2
1

1

( 1) 0 0

0 ( 2) 0
( )

0 0 ( )

l

l

s n

s n
N

s n l

γ
γ

− −

− −
−

−

 +
 + Σ =
 
 

+ 









. (A22) 

For k = n + 1, from Equations (A17), (A18), and (A22), we have: 

ˆ( 1) ( 1) ( 1)Z N B N F Z N+ = + + +  (A23) 

( 1) ( 1) ( 1) ( 1)Y N N F N Nψ ε+ = + + + + (A24) 

1
1

1

( ) 0
( 1)

0 ( 1)

N
N

s N

γ −
−

−

 Σ
Σ + =  + 

, (A25) 

where 

( )( ) ( )
( 1) ( 1) ( 1)

ˆ( 1)( 1) ( 1)

NY N N
Y N N N

B NZ N Z N

εψ
ψ ε

    + = + = + =     ++ +    
.  

From Equations (A20) and (A21), we have: 
11 1

11 1 1 1

ˆ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)

( ) ( ) ( ) ( 1) ( 1) ( 1) ( ) ( ) ( ) ( 1) ( 1) ( 1)

T T

T T T T

F N N N N N N Y N

N N N B N s N B N N N Y N B N s N Z N

ψ ψ ψ

γψ ψ γψ

−− −

−− − − −

 + = + Σ + + + Σ + + 

   = Σ + + + + Σ + + + +   

 (A26) 

11

11 1

( 1) ( 1) ( 1) ( 1)

( ) ( 1) ( 1) ( 1)

T
b

T
b

P N N N N

P N B N s N B N

ψ ψ

γ

−−

−− −

 + = + Σ + + 

 = + + + + 

. (A27) 

Substituting Equation (A21) into Equation (A27), we have: 
11 1 1 1( 1) ( ) ( ) ( 1) ( 1) ( ) ( 1) ( 1) ( 1) ( )T T

b b b b bP N P N P N B N B N P N B N s N B N P Nγ γ γ γ
−− − − − + = − + + + + + +   (A28) 

Substituting Equation (A20) into Equation (A26), we have: 
1 1 1

11 1 1

ˆ ˆ( 1) ( ) ( ) ( 1) ( 1) ( 1) ( ) ( 1)

ˆ( 1) ( ) ( 1) ( 1) ( 1) ( ) ( ) ( 1) ( 1) ( 1)

T T
b b

T T
b b

F N F N P N B N s N Z N P N B N

B N P N B N s N B N F N P N B N s N Z N

γ γ

γ γ

− − −

−− − −

+ = + + + + − + ×

   + + + + + + + + +     

 (A29) 
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We insert the following term between ( 1)TB N +  and 1 ( 1)s N− + , and get the following 
outcome: 

11 1( 1) ( ) ( 1) ( 1) ( 1) ( ) ( 1) ( 1)T T
b bB N P N B N s N B N P N B N s Nγ γ

−− −   + + + + × + + + +   .  

Appendix B 

Following the nonlinear discrete system is given: 

1 1( , )k k k kX f X F w− −= +  (A30) 

( )k k kZ h X v= + . (A31) 

The posteriori state estimate without exciting force: 

1 1

1 1

( ) [ ( ( ))]

( ) ( ( ))
k k k k k

k k k k k

X f X K Z h f X

f X K h f X K Z
− −

− −

= + −
= − +

. (A32) 

The posteriori state estimate with exciting force: 

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

ˆ ˆ ˆ( , ) [ ( ( , ))]

ˆ ˆ( , ) ( ( , ))

ˆ ˆ( ,0) ( ( ,0) )

ˆ ˆ( ,0) ( ( ( ,0)) )

k k k k k k k

k k k k k k k

k k k k k k k k k

k k k k k k k k k k

X f X F K Z h f X F

f X F K h f X F K Z

f X F K Z K h f X F

f X F K Z K h f X F

− − − −

− − − −

− − − −

− − − −

= + −

= − +

= + Γ + − + Γ

= + Γ + − + Φ Γ

, (A33) 

where kK  is obtained from CKF, and  

ˆ ˆ ˆ( ( | 1)) / ( ( | 1)) / ( ( | 1)) /k k kf X k k X f X k k F H h X k k XΦ = ∂ − ∂ Γ = ∂ − ∂ = ∂ − ∂ .  

Define the difference of the two posteriori state estimates as follows:  

1 1 1

ˆ

ˆ( ) ( ) ( )

k k k

k k k k k k k k k

X X X

I K H X X I K H F− − −

Δ = −

= − Φ − + − Γ
. (A34) 

Assuming the exciting force begins with time nt , then: 

1. k < n. 
1 1

ˆ
k kX X− −−  = 0. 1kF −  = 0, so kXΔ  = 0 

2. k = n. 
1 1

ˆ
k kX X− −−  = 0. 1kF −  = 0, so kXΔ  = 0 

3. k > n. 
1 1 1

ˆ
k k kX X X− − −− = Δ , so 

1 1 1

1 1

ˆ( ) ( ) ( )

( )( )
k k k k k k k k k k

k k k k k k

X I K H X X I K H F

I K H X F
− − −

− −

Δ = − Φ − + − Γ
= − Φ Δ + Γ

. (A35) 

In summary, we get: 

1 1

0

( )( )
k

k k k k k k

k n
X

I K H X F k n− −

 ≤
Δ =  − Φ Δ + Γ >

. (A36) 

At time 1nt + , Equation (A36) becomes: 

1 1 1 1 1( )( )n n n n n n nX I K H X F+ + + + +Δ = − Φ Δ + Γ . (A37) 

From Equation (A36) we know that nXΔ  = 0, so Equation (A37) becomes: 

1 1 1 1( )n n n n nX I K H F+ + + +Δ = − Γ . (A38) 

Define 
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1 1 1n n nM I K H+ + += − .  

Then Equation (A38) becomes: 

1 1 1n n n nX M F+ + +Δ = Γ . (A39) 

From Equations (A36) and (A39), for k > n, we have: 

1 1( )( )k k k k k k kX I K H X F− −Δ = − Φ Δ + Γ . (A40) 

Ignoring 1k kX −Φ Δ , Equation (A40) becomes: 

1k k k kX M F −Δ = Γ . (A41) 

From Equations (A41) and (A40), we have: 

1 1 1

1 1 2 1

( )( )

( ) ( )
k k k k k k k k k

k k k k k k k k k k

M F I K H X F

I K H M F I K H F
− − −

− − − −

Γ = − Φ Δ + Γ
= − Φ Γ + − Γ .  

Assume 1kF −  = 2kF − , then: 

1( )( )k k k k kM I K H M I−= − Φ + . (A42) 

From Equations (A41) and (A42), we have: 

1
ˆ
k k k k kX X M F −= + Γ , (A43) 

where: 

1

0

( )( )k
k k k k

k n
M

I K H M I k n−

≤=  − Φ + >
.  

The observed value of the residual sequence with exciting force can be described as: 

1 1
ˆ ˆ( ( , ))k k k kZ Z h f X F− −= − . (A44) 

The observed value of the residual sequence without exciting force can be described as: 

1( ( ))k k kZ Z h f X −= − . (A45) 

For different values of k, we have: 

1. k < n. 1kF −  = 0, ˆ
k kZ Z=  

2. k = n. 1kF −  = 0, ˆ
k kZ Z=  

3. k > n. 
1

ˆ0 ,k k kF Z Z− ≠ ≠  

1 1

1

ˆ ˆ( )

( )
k k k k k k k k

k k k k

Z Z H X X H F

H M I F
− −

−

− = Φ − + Γ
= Φ + Γ

. 
 

In summary, we get: 

ˆ

ˆ
k

k

k k

Z k n
Z

Z B F k n

 ≤= 
+ >

, (A46) 

where: 

1( )k k k k kB H M I−= Φ + Γ .  

For k = n + 1,n + 2, ... n + l. we have: 
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Y Fψ ε= + , (A47) 

where: 

11 1 1

2 2 1 22 2

1

ˆ ( 1)
ˆ ( )( 2)

( ) ( ) ( )

( ) ( )ˆ

nn n n

n n n nn n

n l n l n l n ln l n l

ZZ HB n

H M IB nZ Z
Y N N N

B n l H M IZ Z

ε ψ

++ + +

+ + + ++ +

+ + + − ++ +

   Γ+   
      Φ + Γ+     = = = =     
     + Φ + Γ         

  

  

1

0 0

( )[ ] 0
n l

n l n l n l n l

l
M

I K H M I l
+

+ + + + −

== 
− Φ + >

.  

Assume ˆ ˆ[ ( ) ( )] ( )TE z k z k s k= , ( )s k  is got from CKF. ( )Nε  is a disturbance vector, and its 
variance is given by: 

( 1) 0 0

0 ( 2) 0
( )

0 0 ( )

s n

s n
N

s n l

+ 
 + Σ =
 
 + 









. (A48) 

From Equation (A47), we can get: 
11 1ˆ ( ) ( ) ( ) ( ) ( ) ( ) ( )T TF N N N N N N Y Nψ ψ ψ

−− − = Σ Σ  . (A49) 

The error covariance matrix is: 

{ }
11

ˆ ˆ( ) ( ) ( )

( ) ( ) ( )

T

b

T

P N E F F N F F N

N N Nψ ψ
−−

   = − −   

 = Σ 

. (A50) 

Including forgetting factor γ, from (A48), we get: 

1 1

1 2
1

1

( 1) 0 0

0 ( 2) 0
( )

0 0 ( )

l

l

s n

s n
N

s n l

γ
γ

− −

− −
−

−

 +
 + Σ =
 
 

+ 









. (A51) 

For k = n + 1, from Equations (A46), (A47), and (A51), we have: 

ˆ( 1) ( 1) ( 1)Z N B N F Z N+ = + + +  (A52) 

( 1) ( 1) ( 1) ( 1)Y N N F N Nψ ε+ = + + + + (A53) 

1
1

1

( ) 0
( 1)

0 ( 1)

N
N

s N

γ −
−

−

 Σ
Σ + =  + 

, (A54) 

where 

( )( ) ( )
( 1) ( 1) ( 1)

ˆ( 1)( 1) ( 1)

NY N N
Y N N N

B NZ N Z N

εψ
ψ ε

    + = + = + =     ++ +    
.  

From Equations (A49) and (A50), we have: 
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11 1

11 1 1 1

ˆ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)

( ) ( ) ( ) ( 1) ( 1) ( 1) ( ) ( ) ( ) ( 1) ( 1) ( 1)

T T

T T T T

F N N N N N N Y N

N N N B N s N BN N NY N B N s N Z N

ψ ψ ψ

γψ ψ γψ

−− −

−− − − −

 + = + Σ + + + Σ + + 

   = Σ + + + + Σ + + + +   

 (A55) 

11

11 1

( 1) ( 1) ( 1) ( 1)

( ) ( 1) ( 1) ( 1)

T
b

T
b

P N N N N

P N B N s N B N

ψ ψ

γ

−−

−− −

 + = + Σ + + 

 = + + + + 

. (A56) 

Substituting Equation (A50) into Equation (A56), we have: 
11 1 1 1( 1) ( ) ( ) ( 1) ( 1) ( ) ( 1) ( 1) ( 1) ( )T T

b b b b bP N P N P N B N B N P N B N s N B N P Nγ γ γ γ
−− − − − + = − + + + + + +   (A57) 

Substituting Equation (A49) into Equation (A55), we have: 

1 1 1

11 1 1

ˆ ˆ( 1) ( ) ( ) ( 1) ( 1) ( 1) ( ) ( 1)

ˆ( 1) ( ) ( 1) ( 1) ( 1) ( ) ( ) ( 1) ( 1) ( 1)

T T
b b

T T
b b

F N F N P N B N s N Z N P N B N

B N P N B N s N B N F N P N B N s N Z N

γ γ

γ γ

− − −

−− − −

+ = + + + + − + ×

   + + + + + + + + +     

. (A58) 

We insert the following term between ( 1)TB N +  and 1 ( 1)s N− + , and get the following outcome: 

11 1( 1) ( ) ( 1) ( 1) ( 1) ( ) ( 1) ( 1)T T
b bB N P N B N s N B N P N B N s Nγ γ

−− −   + + + + × + + + +    .  
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