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Abstract: Load identification plays an important role in structural health monitoring, which aims at
preventing structural failures. In order to identify load for linear systems and nonlinear systems, this
paper presents methods to identify load for a cantilever beam based on dynamic strain measurement
by Fiber Bragg Grating (FBG) sensors. For linear systems, the proposed inverse method consists
of Kalman filter with no load terms and a linear estimator. For nonlinear systems, the proposed
inverse method consists of cubature Kalman filter (CKF) with no load terms and a nonlinear estimator.
In the process of load identification, the state equations of the beam structures are constructed by
using the finite element method (FEM). Kalman filter or CKF is used to suppress noise. The residual
innovation sequences, gain matrix, and innovation covariance generated by Kalman filter or CKF are
used to identify a load. To prove the effectiveness of the proposed method, numerical simulations
and experiments of the beam structures are employed and the results show that the method has an
excellent performance.
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1. Introduction

Load identification is an important research area in structural health monitoring [1–4].
For reliability and cost effectiveness in the design and analysis of structures, accurate identification of
the location and magnitude of a load is desirable. The stresses of structures are a function of load, and
knowledge of load can be helpful for design optimization and health of structures. For aeronautical
and space systems, load identification is used to prevent structural failures. For bridge-vehicle systems,
load identification is used to design, diagnose, and maintain bridges. By identifying the load, we can
also reduce reliance on expensive and time-consuming experiments. In engineering applications, force
measurement sensors cannot be directly installed sometimes due to the operating conditions. In this
situation, it is helpful to use attached sensors such as strain gauges or fiber optic sensors to measure
in-plane strains of the structures. FBG sensors show significant potential in engineering applications.
Their light weight, accuracy, and high spatial resolution distinguish them from traditional strain
gauges and make them applicable to a variety of aeroelastic systems such as unmanned aerial vehicles
and flexible flying wings that have strict weight requirements. So this paper focuses on identifying a
load by using FBG sensors.

Load identification algorithms [3–7] can be divided into time domain algorithms and frequency
domain algorithms. Compared to frequency domain algorithms, time domain algorithms are much
more valuable. In the study of time domain algorithms, Ma [8,9] proposes a method to identify the
load for linear systems by measuring all nodal displacements and rotations. In his work, Kalman
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filter is used to suppress noise, then residual innovation sequences, gain matrix, and innovation
covariance generated by Kalman filter are used to identify a load using a least-squares method. At the
foundation of Ma’s work, Lin [10] proposes a method to identify a load for nonlinear systems with a
linear estimator by combing the extended Kalman filter (EKF) with a least-squares method. The key to
Lin’s method is using EKF to turn nonlinear systems to linear systems so as to use a linear estimator
to identify the load. For now, Ma’s and Lin’s work is limited to theoretical research, and cannot be
directly used in engineering applications as nodal displacements and rotations are not easily measured.
At the same time, the system of load identification needs to stall many sensors, which is difficult to
realize in engineering applications. To amend these flaws, this work focuses on identifying a load
by applying FBG sensors. FBG sensors have great advantages than other types of sensors, which are
immune to electromagnetic interference, small enough to be embedded into structures and easy to
complete distributed measurement. The distributed FBG sensing network can also solve the difficulties
of sensor installation. For Lin’s work, turning nonlinear systems to linear systems with EKF can cause
errors, and may result in sub-optimal performance and divergence when dealing with strong nonlinear
systems. To amend this flaw, this work proposes a new method that is based on CKF and a nonlinear
estimator to identify a load for nonlinear systems.

In engineering applications, structures are usually simplified as a linear beam or a nonlinear
beam. So the paper uses a linear beam and a nonlinear beam as the model to verify the proposed
method, respectively. The finite element method is used to construct dynamic model of the beam
structure, and the strain values getting from FBG sensors are employed as observed values. For linear
systems, Kalman filter is used to suppress noise, then residual innovation sequences, gain matrix, and
innovation covariance generated by Kalman filter are used to identify a load by using a linear estimator.
For nonlinear systems, CKF is used to suppress noise, then the residual innovation sequences, priori
state estimate, gain matrix and innovation covariance generated by CKF are employed to identify a
load by using a nonlinear estimator. To verify the accuracy of the identification method, the simulations
and experiments of a linear system and a nonlinear system are employed, and the results show that
the system based on FBG sensors has an excellent performance.

2. Sensing Principle

In this paper, FBG sensing network is established to measure the responses of structures.
The relationship between wavelength shift and strain in FBG is shown in Equation (1). From
Equation (1), we can get strain value ε. Here ∆λ is wavelength shift of FBG; ε is FBG axial strain;
α is thermal expansion coefficient of FBG; ξ is thermo-optical coefficient of FBG; ∆T is amount of
temperature change; and Pe is the effective photo-elastic coefficient of FBG [11].

∆λ = λ[(1− Pe)ε + (a + ξ)∆T] (1)

The finite element method is used to construct the state-space model of a beam structure. The finite
element model is considered to be a system of “2n”-degrees-of-freedom and we paste two FBG sensors
on every element. We establish the relationship between strain values, nodal displacements and nodal
rotations as follows:
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where δ = [wi, θi,wj, θj]
T , B(ξ) = 1

l2 [−6 + 12ξ, l(−4 + 6ξ), 6− 12ξ, l(−2 + 6ξ)]× h
2 . B(ξ) is the shape

function; l is the length of the beam element; ξ = x/l, x is the location of the FBG in element; h is the
thickness of the beam; w is the nodal displacement; and θ is the nodal rotation.

3. Load Identification of a Linear Beam System

3.1. Identification Principle

There are three steps to identify the location and magnitude of a load. First, the state equation
and measurement equation of the state-space model are discretized. Second, a Kalman filter is used to
suppress noise. Finally, the residual innovation sequences, gain matrix, and innovation covariance
generated by Kalman filter are used to identify a load.

3.1.1. Linear System Discretization

The vibration equation of the discrete cantilever beam can be written as follows:

M
..
Y(t) + C

.
Y(t) + KY(t) = F(t), (3)

where M is the n× n mass matrix; C is the n× n damping matrix; K is the n× n stiffness matrix; F(t)
is the n× 1 force vector; and

..
Y(t),

.
Y(t), and Y(t) are the n× 1 acceleration vector, velocity vector, and

displacement vector, respectively.
According to the second-order dynamic system and measuring principle, the state equation and

measurement equation of the state-space model can be written as:

.
X(t) = AX(t) + BF(t) (4)

Z(t) = HX(t), (5)

where:

A =

[
0n×n In×n

−M−1K −M−1C

]
, B =

[
0n×n

M−1

]
, H =


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
.

State value X(t) = [X1(t), X2(t), . . . X2n−1(t), X2n(t)]
T , force value F(t) = [F1, F2, F3, . . . Fn]

T . H
is the 2n× 2n measurement matrix and Z(t) represents the strain vector.

Equations (4) and (5) are discretized over time intervals of length 4t to become:

X(k + 1) = ΦX(k) + Γ(F(k) + w(k)) (6)

Z(k) = HX(k) + v(k) (7)

Φ = exp(A∆t) (8)

Γ =
∫ k∆t

(k−1)∆t
exp[A(k∆t− τ)]Bdτ, (9)

where X(k) represents the state vector; Φ represents the state transition matrix; Γ represents
the input matrix; 4t represents the sampling interval; and F(k) represents the load sequence.
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E(w(k)) = 0, E
(
w(k)wT(j)

)
= Qδkj. E(v(k)) = 0, E

(
v(k)vT(j)

)
= Rδkj. E[w(k)] = 0, E

[
w(k)wT(l)

]
=

Q(k)δkl, Q = Qw I2n∗2n, where vector w(k) represents the process white noise, Q represents the
covariance matrix, and δkl is the Kronecker deltas. E[v(k)] = 0, E

[
v(k)vT(l)

]
= R(k)δkl, R = Rv I2n∗2n,

where vector v(k) represents the measurement white noise, R represents noise covariance matrix,
Rv = σ2, σ is the standard deviation of the measurement noise. The vectors w(k) and v(k) are
mutually uncorrelated.

3.1.2. Kalman Filter

The equations of Kalman filter are as follows:

X(k/k− 1) = ΦX(k− 1/k− 1) (10)

P(k/k− 1) = ΦP(k− 1/k− 1)ΦT + ΓQΓT (11)

S(k) = HP(k/k− 1)HT + R (12)

Ka(k) = P(k/k− 1)HTS−1(k) (13)

P(k/k) = [I − Ka(k)H]P(k/k− 1) (14)

Z(k) = Z(k)− HX(k/k− 1) (15)

X(k/k) = X(k/k− 1) + Ka(k)Z(k), (16)

where X(k/k− 1) and X(k/k) are state vectors; Φ is the state transition matrix; H is measurement
matrix; P(k/k− 1) and P(k/k) are the covariance matrices; Ka(k) is gain matrix; Z(k) represents the
innovation matrix.

3.1.3. Linear Estimator

The residual innovation sequences, gain matrix, and innovation covariance generated by Kalman
filter are employed to calculate load by using a least-squares algorithm. The detailed derivation of the
identification method can be found in Appendix A. The simple equations of the linear estimator are
as follows:

Bs(k) = H[ΦMs(k− 1) + I]Γ (17)

Ms(k) = [I − Ka(k)H][ΦMs(K− 1) + I] (18)

Kb(k) = γ−1Pb(k− 1)BT
s(k)[Bs(k)γ−1Pb(k− 1)BT

s(k) + S(k)]
−1

(19)

Pb(k) = [I − Kb(k)Bs(k)]γ−1Pb(k− 1) (20)

F̂(k) = F̂(k− 1) + Kb(k)[Z(k)− Bs(k)F̂(k− 1)], (21)

where Ka(k) represents the Kalman gain matrix, Bs(k) and Ms(k) represent the sensitivity matrices,
Z(k) represents the innovation matgrix, Kb(k) represents the correction gain for updating F̂(k), Pb(k)
represents the error covariance of the estimated input vector, and F̂(k) represents the estimated input
vector. The fading factor γ is used to compromise between the loss of estimation accuracy and the fast
adaptive capability. In this study, γ is set to a constant value (i.e., 0.69).

3.2. Numerical Simulations of a Linear Beam System

To verify the practicability and accuracy of the proposed method, numerical simulations of a
cantilever beam are employed. The finite element model and the FBG sensing network of the cantilever
beam are shown in Figure 1. The model parameters are given in Table 1. For the cantilever beam,
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the element mass matrix Me, element stiffness matrix Ke, and proportional damping matrix C are as
follows:

Me =
ρAl
3360


624 44l 216 −26l
44l 4l2 26l −3l2

216 26l 624 −44l
−26l −3l2 −44l 4l2

, Ke =
4EI
l3


24 6l −24 6l
6l 2l2 −6l l2

−24 −6l 24 −6l
6l l2 −6l 2l2

, C = αM + βK

where ρ is the mass per unit length of the beam, l the length of the beam element, E the elastic
modulus and I the moment of inertia of the cross-section, and α and β are constants with proper units.
Considering a four-element beam, the global matrices M and K of the beam are obtained by assembling
the matrices Me and Ke. Three types of load (sinusoidal, triangular, and rectangular) are considered in
the simulations.

Table 1. Model parameters.

Bernoulli–Euler Beam

Material 1540
Density (kg/ m3) 2690
Elastic modulus (GPa) 68.9
Length (m) 0.64
Width (m) 0.03
Height (m) 0.003
Units number 4

The system responses (strain values) with white noise are employed as the measurement values.
The initial parameters of the estimation system are generally listed as follows: x0 = zeros(16, 1),
P1 = eye(16), P2 = zeros(16), Ms = 200× eye(16), Pb = 200× eye(8), γ = 0.69. The noise characteristic
is set to Qw = 1 × e−5 and σ = 1 × e−10. The forcing frequency is set 1 Hz and 100 Hz, respectively.
Load is applied at the end of the cantilever; the location and magnitude of load are identified from the
strain responses. Figures 2–4 plot the results of load identification with forcing frequency set 1 Hz and
the sampling interval set ∆T = 0.01 s. Figures 5–7 plot the results of load identification with forcing
frequency set 100 Hz and the sampling interval set ∆T = 0.1 ms.
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3.3. Experimental Verification of a Linear Beam System

The experiment is employed to verify the practicability and accuracy of the method, and the
laboratory tests are performed on a simple support cantilever. Six FBG strain sensors are attached
at the surface of the beam along its center line, to measure the axial dynamic strains, as shown in
Figure 8. The distance between two consecutive sensors is about 9.15 cm. FBG interrogation system
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(SM130) is used for measuring the dynamic strains, and an electrodynamic shaker is employed for
the excitation. The excitation point is at the end of the cantilever and a force sensor is also used at
this location to measure the input force. The beam is excited with periodic sinusoidal signals, and the
magnitude and location of the load are identified simultaneously from the dynamic strains. In the
process, the measured force is used as exact value to verify the practicability of the proposed method.
A NI cDAQ-9174 module and LABVIEW software are used to acquire signal. Parameters of the beam
are: elastic modulus = 6.89× 1010 (N/m2), density ρ = 2.69× 103 (kg/m3), beam length l = 0.48 m,
the cross section S = 0.03 m× 0.003 m. The damping matrix C is set as: C = 0.01×M + 0.02× K.
Sampling frequency is set as 100 Hz, and experimental time is 10 s. The layout of the experiment is
presented in Figure 8 and the identification results are plotted in Figure 9.
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4. Load Identification of a Nonlinear Beam System

4.1. Identification Principle

There are three steps to identify a load. First, the state equation and measurement equation of the
state-space model are discretized. Second, a Cubature Kalman filter is used to suppress noise. Finally,
the residual innovation sequences, a priori state estimate, gain matrix, and innovation covariance
generated by CKF are used to identify the load.

4.1.1. Nonlinear System Discretization

The vibration equation of the nonlinear discrete beam can be written as follows:

M
..
Y(t) + C

.
Y(t) + K(Y)Y(t) = F(t), (22)
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where M is the n× n mass matrix; C is the n× n damping matrix; K is the n× n stiffness matrix and is
varying with displacement vector; F(t) is the n× 1 force vector; and

..
Y(t),

.
Y(t), and Y(t) are the n× 1

acceleration vector, velocity vector, and displacement vector, respectively.
According to the second-order dynamic system and measuring principle, the state equation and

measurement equation of the state-space model can be written as:

.
X(t) = f (X(t)) + BF(t) (23)

Z(t) = HX(t), (24)

where:

B =

[
0n×n

M−1

]
, H =



B1

B2

B3

B4
. . .

. . .
B2n−1

B2n


State value X(t) = [X1(t), X2(t), . . . X2n−1(t), X2n(t)]

T , force value F(t) = [F1, F2, F3, . . . Fn]
T . f (·)

is a nonlinear function with respect to X. H is the 2n ∗ 2n measurement matrix and Z(t) represents the
strain vector.

Discretize the Equations (23) and (24), and the discrete model can be described by:{
Xk = f (Xk−1, Fk−1) + wk
Zk = h(Xk) + vk

. (25)

Xk is state vector; Zk is measurement vector; f (·) and h(·) are a nonlinear functions.
E[wk] = 0, E

[
wkwT

l
]
= Qδkl , Q = Qw I2n∗2n, where vector wk represents the process white noise, Q

represents covariance matrix and δkl is the Kronecker deltas. E[vk] = 0, E
[
vkvT

l
]
= Rδkl , R = Rv I2n∗2n,

where vector vk represents the measurement white noise, R represents noise covariance matrix, Rv = σ2,
σ is the standard deviation of the measurement noise. The vectors wk and vk are mutually uncorrelated.

4.1.2. Cubature Kalman Filter

Initialization: Initialize the filter by setting the initial state and covariance matrix [12,13]:

X̂0/0 = E[X0/0] (26)

P0/0 = E
[(

X0/0 − X̂0/0
)(

X0/0 − X̂0/0
)T
]

(27)

X̂0/0 is the initial state vector, and P0/0 is the initial covariance matrix.
Time update:

(1) Calculate the cubature points:

Sk−1/k−1 = chol(Pk−1/k−1)

Xi,k−1/k−1 = Sk−1/k−1ξi + X̂k−1/k−1, i = 1, 2, . . . , m, (28)

where X̂i,k−1/k−1 is the prior estimated state. ξi =
√

m
2 [1]i, [1]i is the ith column of the matrix

[I (−1)I].
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(2) Calculate the propagated cubature points:

X∗i,k/k−1 = f (Xi,k−1/k−1, k− 1). (29)

(3) Calculate the predicted state and covariance matrix:

X̂k/k−1 =
1
m

m

∑
i=1

X∗i,k/k−1 (30)

Pk/k−1 =
1
m

m

∑
i=1

X∗i,k/k−1X∗Ti,k/k−1 − X̂k/k−1X̂T
k/k−1 + Q̂k−1. (31)

Measurement update:

(1) Calculate the cubature points:
Sk/k−1 = chol(Pk/k−1) (32)

Xi,k/k−1 = Sk/k−1ξi + X̂k/k−1. (33)

(2) Calculate the propagated cubature points:

Yi,k/k−1 = h(Xi,k/k−1). (34)

(3) Calculate the predicted state:

Ẑk/k−1 =
1
m

m

∑
i=1

Yi,k/k−1. (35)

(4) Calculate the innovation covariance matrix:

Pzz,k/k−1 =
1
m

m

∑
i=1

Yi,k/k−1YT
i,k/k−1 − Ẑk/k−1ẐT

k/k−1 + R̂k. (36)

(5) Calculate the cross-covariance matrix:

Pxz,k/k−1 =
1
m

m

∑
i=1

Xi,k/k−1YT
i,k/k−1 − X̂k/k−1ẐT

k/k−1. (37)

(6) Calculate the Kalman gain:
Kk = Pxz,k/k−1P−1

zz,k/k−1. (38)

(7) Calculate the updated state:
Zk = Zk − Ẑk/k−1 (39)

X̂k/k = X̂k/k−1 + KkZk. (40)

(8) Calculate the error covariance:

Pk/k = Pk/k−1 − KkPzz,k/k−1KT
k . (41)

4.1.3. The Nonlinear Estimator

Applying the residual innovation sequences, priori state estimate, gain matrix and innovation
covariance generated by CKF, the location and magnitude of load can be identified by using a recursive
least-squares algorithm from the response values (displacement, velocity, or acceleration). In the
process, the first-order Taylor series expansion is used to around the estimated state value X̂k/k−1.
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The detailed derivation of the estimation method can be found in Appendix B. The simple equations
of the least-squares estimator are as follows:

Φk = ∂ f (X̂k/k−1)/∂X (42)

Γk = ∂ f (X̂k/k−1)/∂F (43)

Hk = ∂h(X̂k/k−1)/∂X (44)

Bs(k) = Hk[Φk Ms(k− 1) + I]Γk (45)

Ms(k) = [I − Kk Hk][Φk Ms(k− 1) + I] (46)

Kb(k) = γ−1Pb(k− 1)Bs
T(k)[Bs(k)γ−1Pb(k− 1)Bs

T(k) + Pzz,k/k−1]
−1

(47)

Pb(k) = [1− Kb(b)Bs(k)]γ−1Pb(k− 1) (48)

F̂(k) = F̂(k− 1) + Kb(k)[Zk − Bs(k)F̂(k− 1)], (49)

where f (·) and h(·) represent nonlinear functions of the discrete system; Pzz,k/k−1 represents the
innovation covariance matrix; Kk represents the gain matrix; Bs(k) and Ms(k) represent the sensitivity
matrices; Zk represents the innovation matrix; Kb(k) represents the correction gain for updating
F̂(k); Pb(k) represents the error covariance; and F̂(k) represents the estimated input vector; γ is a
fading factor.

4.2. Numerical Simulations of a Nonlinear Beam System

To verify the practicability and accuracy of load identification in nonlinear systems, numerical
simulations of a cantilever beam that is constrained by a nonlinear spring at the end node are employed.
The finite element model is the same as the model in Figure 10, and the model parameters are the
same as in Table 1. Considering a four-element beam, the sampling interval is set as ∆T = 0.01 s. The
system responses (strain values) with white noise are employed as the measurement values. Load is
applied at the end of the cantilever; the location and magnitude of load are identified from the strain
responses. The noise characteristic is set to Qw = 1 × e−3 and σ = 1 × e−6. The initial parameters of
the estimation system are generally listed as follows: x0 = zeros(16, 1), P1 = eye(16), P2 = zeros(16),
Ms = 200× eye(16), Pb = 200× eye(8), γ = 0.69. For the beam model, sinusoidal load, rectangular
load, and triangular load are employed. In order to contrast with Lin’s method, Figures 11–13 plot the
identified results based on EKF and the results based on CKF.
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six FBG strain sensors are attached at the surface of the beam along its center line, to measure the 
axial dynamic strains, as shown in Figure 14. The distance between two consecutive sensors is about 
9.15 cm. FBG interrogation system (SM130) is used for measuring the dynamic strains, and an 
electrodynamic shaker is employed for the excitation. The excitation point coincided with a nonlinear 
spring is at the end of the cantilever and a force sensor is also used at this location to measure the 
input force. The beam is excited with periodic sinusoidal signals, and the magnitude and location of 
load are identified simultaneously from the dynamic strains. In the process, the measured force is 
used as exact value to verify the practicability of the proposed method. A NI cDAQ-9174 module and 
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The experiment is employed to verify the practicability and accuracy of the identification method.
Considering a linear three-element beam with a nonlinear spring stalled at the end nodal, six FBG
strain sensors are attached at the surface of the beam along its center line, to measure the axial dynamic
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strains, as shown in Figure 14. The distance between two consecutive sensors is about 9.15 cm. FBG
interrogation system (SM130) is used for measuring the dynamic strains, and an electrodynamic shaker
is employed for the excitation. The excitation point coincided with a nonlinear spring is at the end
of the cantilever and a force sensor is also used at this location to measure the input force. The beam
is excited with periodic sinusoidal signals, and the magnitude and location of load are identified
simultaneously from the dynamic strains. In the process, the measured force is used as exact value to
verify the practicability of the proposed method. A NI cDAQ-9174 module and LABVIEW software are
used to acquire signal. Parameters of the beam are: elastic modulus = 6.89× 1010 (N/m2), density
ρ = 2.69× 103 (kg/m3), beam length l = 0.48 m, the cross section S = 0.03 m× 0.003 m. The damping
matrix C is set as: C = 0.01×M + 0.02× K. Sampling frequency is set as 100 Hz, and experimental
time is 2 s. The layout of experiment is presented in Figure 14 and the identification result is plotted in
Figure 15.
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5. Discussion 

(1) The proposed method of load identification is a recursive method that only needs the recent 
measurement values and the previously identified values to be kept in storage. This 
characteristic can save considerable memory and greatly decrease the system burden. The 
proposed method is based on a Kalman filter, and this can be helpful to control the beam 
structure by using optimal control theory after identifying the load. 

(2) As illustrated in Figures 2–7 and 11–13, the identified load rapidly converges to the exact load. 
The identification performance of the sinusoidal load is better than that of the triangular load 
and rectangular load. As illustrated in Figures 9 and 15, experimental results show that the load 
identification system based on FBG sensors has a good performance.  

(3) The proposed method of load identification is based on a Kalman filter. As a Kalman filter can 
only be used to estimate continuous signal and cannot be used to estimate a random signal, the 
proposed method cannot be used to identify a random load. The identification results show a 
little delay between the exact load and the identified load, but we can apply iterative algorithms 
to decrease the delay. The identified load rapidly converges to the exact load, but with large 
initial estimation errors. To improve the performance of the initial estimation, the initial values 
of P and ௕ܲ should be set to large values.  

6. Conclusions 

In order to identify the load of both linear beam systems and nonlinear beam systems, real-time 
methods based on FBG sensors are presented. The finite element method is used to construct a 
dynamic model of the beam structure, and the strain values obtained from FBG sensors are employed 
as observed values to identify the location and magnitude of the load. The proposed method is 
established on the foundation of a Kalman filter, which can be helpful to control the beam structure 
by using optimal control theory after load identification. At the same time, the proposed methods 
can identify a load accurately and solve the difficulty of sensor installation. Contrast this with Lin’s 
method, which is based on EKF. The method based on CKF has a better performance. This research 
has great value in engineering applications, and future studies will focus on the applications in 
aircraft structures. 
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5. Discussion

(1) The proposed method of load identification is a recursive method that only needs the recent
measurement values and the previously identified values to be kept in storage. This characteristic
can save considerable memory and greatly decrease the system burden. The proposed method is
based on a Kalman filter, and this can be helpful to control the beam structure by using optimal
control theory after identifying the load.

(2) As illustrated in Figures 2–7, Figures 11–13, the identified load rapidly converges to the exact
load. The identification performance of the sinusoidal load is better than that of the triangular



Sensors 2017, 17, 1733 14 of 21

load and rectangular load. As illustrated in Figures 9 and 15, experimental results show that the
load identification system based on FBG sensors has a good performance.

(3) The proposed method of load identification is based on a Kalman filter. As a Kalman filter can
only be used to estimate continuous signal and cannot be used to estimate a random signal, the
proposed method cannot be used to identify a random load. The identification results show a
little delay between the exact load and the identified load, but we can apply iterative algorithms
to decrease the delay. The identified load rapidly converges to the exact load, but with large
initial estimation errors. To improve the performance of the initial estimation, the initial values of
P and Pb should be set to large values.

6. Conclusions

In order to identify the load of both linear beam systems and nonlinear beam systems, real-time
methods based on FBG sensors are presented. The finite element method is used to construct a
dynamic model of the beam structure, and the strain values obtained from FBG sensors are employed
as observed values to identify the location and magnitude of the load. The proposed method is
established on the foundation of a Kalman filter, which can be helpful to control the beam structure
by using optimal control theory after load identification. At the same time, the proposed methods
can identify a load accurately and solve the difficulty of sensor installation. Contrast this with Lin’s
method, which is based on EKF. The method based on CKF has a better performance. This research
has great value in engineering applications, and future studies will focus on the applications in
aircraft structures.
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Appendix A

The discrete system is given below:

Xk = ΦXk−1 + ΓFk−1 + wk (A1)

Zk = HXk + vk. (A2)

The posteriori state estimate without exciting force:

Xk = ΦXk−1 + Kk[Zk − HΦXk−1]. (A3)

The posteriori state estimate with exciting force:

X̂k = ΦX̂k−1 + ΓFk−1 + Kk[Zk − HΦX̂k−1 − HΓFk−1], (A4)

where Kk is obtained from KF.
Define the difference of the two posteriori state estimates as follows:

∆Xk = X̂k − Xk
= (I − Kk H)Φ(X̂k−1 − Xk−1) + (I − Kk H)ΓFk−1

. (A5)

Assuming the exciting force begins with time tn, then:



Sensors 2017, 17, 1733 15 of 21

1. k < n. X̂k−1 − Xk−1 = 0. Fk−1 = 0, so ∆Xk = 0
2. k = n. X̂k−1 − Xk−1 = 0. Fk−1 = 0, so ∆Xk = 0
3. k > n. X̂k−1 − Xk−1 = ∆Xk−1, so

∆Xk = (I − Kk H)Φ(X̂k−1 − Xk−1) + (I − Kk H)ΓFk−1
= (I − Kk H)(Φ∆Xk−1 + ΓFk−1)

. (A6)

In summary, we get:

∆Xk =

{
0 k ≤ n
(I − Kk H)(Φ∆Xk−1 + ΓFk−1) k > n

. (A7)

At time tn+1, Equation (A7) becomes:

∆Xn+1 = (I − Kn+1H)(Φ∆Xn + ΓFn). (A8)

From Equation (A7) we know that ∆Xn = 0, so Equation (A8) becomes:

∆Xn+1 = (I − Kn+1H)ΓFn. (A9)

Define Mn+1 = I − Kn+1H.
Then Equation (A9) becomes:

∆Xn+1 = Mn+1ΓFn. (A10)

From Equations (A7) and (A10), for k > n, we have:

∆Xk = (I − Kk H)(Φ∆Xk−1 + ΓFk−1). (A11)

Ignoring Φ∆Xk−1, Equation (A11) becomes:

∆Xk = MkΓFk−1. (A12)

From Equations (A11) and (A12), we have:

MkΓFk−1 = (I − Kk H)(Φ∆Xk−1 + ΓFk−1)

= (I − Kk H)ΦMk−1ΓFk−2 + (I − Kk H)ΓFk−1
.

Assume Fk−1 = Fk−2, then:

Mk = (I − Kk H)(ΦMk−1 + I). (A13)

From Equations (A12) and (A13), we have:

X̂k = Xk + MkΓFk−1 , (A14)

where:

Mk =

{
0 k ≤ n
(I − Kk H)(ΦMk−1 + I) k > n

.

The observed value of the residual sequence with exciting force can be described as:

Ẑk = Zk − H[ΦX̂k−1 + ΓFk−1]. (A15)
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The observed value of the residual sequence without exciting force can be described as:

Zk = Zk − HΦXk−1. (A16)

For different values of k, we have:

1. k < n. Fk−1 = 0, Zk = Ẑk

2. k = n. Fk−1 = 0, Zk = Ẑk

3. k > n. Fk−1 6= 0, Zk 6= Ẑk

Zk − Ẑk = HΦ(X̂k−1 − Xk−1) + HΓF
= H(ΦMk−1 + I)ΓF

.

In summary, we get:

Zk =

{
Ẑk k ≤ n
Ẑk + BkF k > n

, (A17)

where:
Bk = H(ΦMk−1 + I)Γ.

For k = n + 1, n + 2, ... n + l. we have:

Y = ψF + ε, (A18)

where:

Y(N) =


Zn+1

Zn+2
...

Zn+l

, ε(N) =


Ẑn+1

Ẑn+2
...

Ẑn+l

, ψ(N) =


B(n + 1)
B(n + 2)

...
B(n + l)

 =


HΓ

H(ΦMn+1 + I)Γ
...

H(ΦMn+l−1 + I)Γ

, Mn+l =

{
0 l = 0
(I − Kn+l H)[ΦMn+l−1 + I] l > 0

.

Assume E[ẑ(k)ẑT(k)] = s(k), s(k) is got from KF. ε(N) is a disturbance vector, and its variance is
given by:

Σ(N) =


s(n + 1) 0 . . . 0

0 s(n + 2) . . . 0
. . .

0 0 · · · s(n + l)

. (A19)

From Equation (A18), we can get:

F̂(N) =
[
ψT(N)Σ−1(N)ψ(N)

]−1
ψT(N)Σ−1(N)Y(N). (A20)

The error covariance matrix is:

Pb(N) = E
{[

F− F̂(N)
][

F− F̂(N)
]T
}

=
[
ψT(N)Σ−1(N)ψ(N)

]−1 . (A21)

Including forgetting factor γ, from Equation (A19) we get:

Σ−1(N) =


s−1(n + 1)γl−1 0 . . . 0

0 s−1(n + 2)γl−2 . . . 0
. . .

0 0 · · · s−1(n + l)

. (A22)
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For k = n + 1, from Equations (A17), (A18), and (A22), we have:

Z(N + 1) = B(N + 1)F + Ẑ(N + 1) (A23)

Y(N + 1) = ψ(N + 1)F(N + 1) + ε(N + 1) (A24)

Σ−1(N + 1) =

[
γΣ−1(N) 0

0 s−1(N + 1)

]
, (A25)

where

Y(N + 1) =

[
Y(N)

Z(N + 1)

]
ψ(N + 1) =

[
ψ(N)

B(N + 1)

]
ε(N + 1) =

[
ε(N)

Ẑ(N + 1)

]
.

From Equations (A20) and (A21), we have:

F̂(N + 1) =
[
ψT(N + 1)Σ−1(N + 1)ψ(N + 1)

]−1
ψT(N + 1)Σ−1(N + 1)Y(N + 1)

=
[
γψT(N)Σ−1(N)ψ(N) + BT(N + 1)s−1(N + 1)B(N + 1)

]−1[
γψT(N)Σ−1(N)Y(N) + BT(N + 1)s−1(N + 1)Z(N + 1)

] (A26)

Pb(N + 1) =
[
ψT(N + 1)Σ−1(N + 1)ψ(N + 1)

]−1

=
[
γPb

−1(N) + BT(N + 1)s−1(N + 1)B(N + 1)
]−1 . (A27)

Substituting Equation (A21) into Equation (A27), we have:

Pb(N + 1) = γ−1Pb(N)− γ−1Pb(N)BT(N + 1)
[
B(N + 1)γ−1Pb(N)BT(N + 1) + s(N + 1)

]−1 B(N + 1)γ−1Pb(N) (A28)

Substituting Equation (A20) into Equation (A26), we have:

F̂(N + 1) = F̂(N) + γ−1Pb(N)BT(N + 1)s−1(N + 1)Z(N + 1)− γ−1Pb(N)BT(N + 1)×[[
B(N + 1)γ−1Pb(N)BT(N + 1) + s(N + 1)

]−1B(N + 1)
][

F̂(N) + γ−1Pb(N)BT(N + 1)s−1(N + 1)Z(N + 1)
] (A29)

We insert the following term between BT(N + 1) and s−1(N + 1), and get the following outcome:[
B(N + 1)γ−1Pb(N)BT(N + 1) + s(N + 1)

]−1
×

[
B(N + 1)γ−1Pb(N)BT(N + 1) + s(N + 1)

]
.

Appendix B

Following the nonlinear discrete system is given:

Xk = f (Xk−1, Fk−1) + wk (A30)

Zk = h(Xk) + vk. (A31)

The posteriori state estimate without exciting force:

Xk = f (Xk−1) + Kk[Zk − h( f (Xk−1))]

= f (Xk−1)− Kkh( f (Xk−1)) + KkZk
. (A32)

The posteriori state estimate with exciting force:

X̂k = f (X̂k−1, Fk−1) + Kk[Zk − h( f (X̂k−1, Fk−1))]

= f (X̂k−1, Fk−1)− Kkh( f (X̂k−1, Fk−1)) + KkZk
= f (X̂k−1, 0) + ΓkFk−1 + KkZk − Kkh( f (X̂k−1, 0) + ΓkFk−1)

= f (X̂k−1, 0) + ΓkFk−1 + KkZk − Kk(h( f (X̂k−1, 0)) + ΦkΓkFk−1)

, (A33)
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where Kk is obtained from CKF, and

Φk = ∂ f (X̂(k|k− 1))/∂X Γk = ∂ f (X̂(k|k− 1))/∂F Hk = ∂h(X̂(k|k− 1))/∂X .

Define the difference of the two posteriori state estimates as follows:

∆Xk = X̂k − Xk
= (I − Kk Hk)Φk(X̂k−1 − Xk−1) + (I − Kk Hk)ΓkFk−1

. (A34)

Assuming the exciting force begins with time tn, then:

1. k < n. X̂k−1 − Xk−1 = 0. Fk−1 = 0, so ∆Xk = 0
2. k = n. X̂k−1 − Xk−1 = 0. Fk−1 = 0, so ∆Xk = 0
3. k > n. X̂k−1 − Xk−1 = ∆Xk−1, so

∆Xk = (I − Kk Hk)Φk(X̂k−1 − Xk−1) + (I − Kk Hk)ΓkFk−1
= (I − Kk Hk)(Φk∆Xk−1 + ΓkFk−1)

. (A35)

In summary, we get:

∆Xk =

{
0 k ≤ n
(I − Kk Hk)(Φk∆Xk−1 + ΓkFk−1) k > n

. (A36)

At time tn+1, Equation (A36) becomes:

∆Xn+1 = (I − Kn+1Hn+1)(Φn+1∆Xn + Γn+1Fn). (A37)

From Equation (A36) we know that ∆Xn = 0, so Equation (A37) becomes:

∆Xn+1 = (I − Kn+1Hn+1)Γn+1Fn. (A38)

Define

Mn+1 = I − Kn+1Hn+1.

Then Equation (A38) becomes:
∆Xn+1 = Mn+1Γn+1Fn. (A39)

From Equations (A36) and (A39), for k > n, we have:

∆Xk = (I − Kk Hk)(Φk∆Xk−1 + ΓkFk−1). (A40)

Ignoring Φk∆Xk−1, Equation (A40) becomes:

∆Xk = MkΓkFk−1. (A41)

From Equations (A41) and (A40), we have:

MkΓkFk−1 = (I − Kk Hk)(Φk∆Xk−1 + ΓkFk−1)

= (I − Kk Hk)Φk Mk−1Γk−1Fk−2 + (I − Kk Hk)ΓkFk−1
.

Assume Fk−1 = Fk−2, then:

Mk = (I − Kk Hk)(Φk Mk−1 + I). (A42)
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From Equations (A41) and (A42), we have:

X̂k = Xk + MkΓkFk−1 , (A43)

where:

Mk =

{
0 k ≤ n
(I − Kk Hk)(Φk Mk−1 + I) k > n

.

The observed value of the residual sequence with exciting force can be described as:

Ẑk = Zk − h( f (X̂k−1, Fk−1)). (A44)

The observed value of the residual sequence without exciting force can be described as:

Zk = Zk − h( f (Xk−1)). (A45)

For different values of k, we have:

1. k < n. Fk−1 = 0, Zk = Ẑk

2. k = n. Fk−1 = 0, Zk = Ẑk

3. k > n. Fk−1 6= 0 , Zk 6= Ẑk

Zk − Ẑk = HkΦk(X̂k−1 − Xk−1) + HkΓkF
= Hk(Φk Mk−1 + I)ΓkF

.

In summary, we get:

Zk =

{
Ẑk k ≤ n
Ẑk + BkF k > n

, (A46)

where:
Bk = Hk(Φk Mk−1 + I)Γk.

For k = n + 1,n + 2, ... n + l. we have:

Y = ψF + ε, (A47)

where:

Y(N) =


Zn+1

Zn+2
...

Zn+l

 ε(N) =


Ẑn+1

Ẑn+2
...

Ẑn+l

 ψ(N) =


B(n + 1)
B(n + 2)

...
B(n + l)

 =


Hn+1Γn+1

Hn+2(Φn+2Mn+1 + I)Γn+2
...

Hn+l(Φn+l Mn+l−1 + I)Γn+l



Mn+l =

{
0 l = 0
(I − Kn+l Hn+l)[Φn+l Mn+l−1 + I] l > 0

.

Assume E[ẑ(k)ẑT(k)] = s(k), s(k) is got from CKF. ε(N) is a disturbance vector, and its variance is
given by:

Σ(N) =


s(n + 1) 0 . . . 0

0 s(n + 2) . . . 0
. . .

0 0 · · · s(n + l)

. (A48)
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From Equation (A47), we can get:

F̂(N) =
[
ψT(N)Σ−1(N)ψ(N)

]−1
ψT(N)Σ−1(N)Y(N). (A49)

The error covariance matrix is:

Pb(N) = E
{[

F− F̂(N)
][

F− F̂(N)
]T
}

=
[
ψT(N)Σ−1(N)ψ(N)

]−1 . (A50)

Including forgetting factor γ, from (A48), we get:

Σ−1(N) =


s−1(n + 1)γl−1 0 . . . 0

0 s−1(n + 2)γl−2 . . . 0
. . .

0 0 · · · s−1(n + l)

. (A51)

For k = n + 1, from Equations (A46), (A47), and (A51), we have:

Z(N + 1) = B(N + 1)F + Ẑ(N + 1) (A52)

Y(N + 1) = ψ(N + 1)F(N + 1) + ε(N + 1) (A53)

Σ−1(N + 1) =

[
γΣ−1(N) 0

0 s−1(N + 1)

]
, (A54)

where

Y(N + 1) =

[
Y(N)

Z(N + 1)

]
ψ(N + 1) =

[
ψ(N)

B(N + 1)

]
ε(N + 1) =

[
ε(N)

Ẑ(N + 1)

]
.

From Equations (A49) and (A50), we have:

F̂(N + 1) =
[
ψT(N + 1)Σ−1(N + 1)ψ(N + 1)

]−1
ψT(N + 1)Σ−1(N + 1)Y(N + 1)

=
[
γψT(N)Σ−1(N)ψ(N) + BT(N + 1)s−1(N + 1)B(N + 1)

]−1[
γψT(N)Σ−1(N)Y(N) + BT(N + 1)s−1(N + 1)Z(N + 1)

] (A55)

Pb(N + 1) =
[
ψT(N + 1)Σ−1(N + 1)ψ(N + 1)

]−1

=
[
γPb

−1(N) + BT(N + 1)s−1(N + 1)B(N + 1)
]−1 . (A56)

Substituting Equation (A50) into Equation (A56), we have:

Pb(N + 1) = γ−1Pb(N)− γ−1Pb(N)BT(N + 1)
[
B(N + 1)γ−1Pb(N)BT(N + 1) + s(N + 1)

]−1 B(N + 1)γ−1Pb(N) (A57)

Substituting Equation (A49) into Equation (A55), we have:

F̂(N + 1) = F̂(N) + γ−1Pb(N)BT(N + 1)s−1(N + 1)Z(N + 1)− γ−1Pb(N)BT(N + 1)×[[
B(N + 1)γ−1Pb(N)BT(N + 1) + s(N + 1)

]−1B(N + 1)
][

F̂(N) + γ−1Pb(N)BT(N + 1)s−1(N + 1)Z(N + 1)
] . (A58)

We insert the following term between BT(N + 1) and s−1(N + 1), and get the following outcome:[
B(N + 1)γ−1Pb(N)BT(N + 1) + s(N + 1)

]−1
×

[
B(N + 1)γ−1Pb(N)BT(N + 1) + s(N + 1)

]
.
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