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Abstract: This paper presents a novel method of seamline determination for remote sensing image
mosaicking. A two-level optimization strategy is applied to determine the seamline. Object-level
optimization is executed firstly. Background regions (BRs) and obvious regions (ORs) are extracted
based on the results of parametric kernel graph cuts (PKGC) segmentation. The global cost map which
consists of color difference, a multi-scale morphological gradient (MSMG) constraint, and texture
difference is weighted by BRs. Finally, the seamline is determined in the weighted cost from the start
point to the end point. Dijkstra’s shortest path algorithm is adopted for pixel-level optimization to
determine the positions of seamline. Meanwhile, a new seamline optimization strategy is proposed
for image mosaicking with multi-image overlapping regions. The experimental results show the
better performance than the conventional method based on mean-shift segmentation. Seamlines
based on the proposed method bypass the obvious objects and take less time in execution. This new
method is efficient and superior for seamline determination in remote sensing image mosaicking.

Keywords: remote sensing; image mosaicking; seamline detection; image segmentation; graph cuts;
multi-scale morphological gradient (MSMG)

1. Introduction

A large remote sensing image with a wide field of view and high resolution is often required
for many applications, such as map-making, disaster management, and military reconnaissance [1,2].
However, the wide field of view and high resolution cannot be captured at the same time because of
the limit of the sensor size of the aerial camera. Image mosaicking was used to solve this problem
effectively. Image mosaicking is the instrument used to gain a remote sensing image that meets the
requirements for both the field of view and resolution using a series of images with overlapping
areas. Ideally, the transition in the overlapping region from one image to another should be invisible.
Realistically, due to different illumination, exposure parameter settings, depth of field differences,
shooting field changes, and other reasons, the overlapping area will inevitably have uneven brightness
and geometric misalignment. The problem of brightness unevenness in the mosaicking image can be
effectively solved after a series of color corrections, smoothing [3–5], and image fusion [6–8]. However,
the apparent parallax caused by geometric misalignment cannot be solved by the above method.
An effective way to solve this problem is to find an optimal seamline in the overlapping region, then
take image content respectively on each side. The optimal seamline detection is to find the minimal
difference between the two images in the overlapping area, e.g., the intensity difference, gradient
difference, and color difference. The geometric misalignment can be eliminated by the above process,
and two images can be mosaicked as a large field of view image without apparent parallax.
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Since Milgram [9] proposed computer mosaicking technology, finding the optimal seamline to
improve the quality of mosaicking image has become an important direction for many scholars to study.
Many methods have been proposed to determine the location of the seamline. Yang et al. [10] smoothed
the artificial edge effectively through the two-dimensional seam point search strategy. Afek and
Brand [11] completed the geometric correction of the image by adding the feature-matching algorithm
to the optimal seamline detection process. Fernandez et al. [12] proposed a bottleneck shortest path
algorithm to realize the drawing of the aerial photography map by using the absolute value of pixel
differences in the overlapping region. Fernandez and Marti [13] subsequently optimized the bottleneck
shortest path with a greedy random adaptive search procedure (GRASP) to obtain a superior image.
Kerschner [14] constructed an energy function based on color and texture similarity, and then used
the twin snakes detection algorithm to detect the position of the optimal seamline. One snake is a
profile that moves inside the image, changing its shape until its own energy function is minimal [15].
The twin snakes detection algorithm created start points for two contours on the opposite sides of the
overlapping area, which passed through the overlapping area and constantly changed the shape until
a new one was synthesized. Soille [16] proposed a mosaicking algorithm based on the morphology
and marker control segmentation program, which rendered the seamline along the highlight structure
to reduce the visibility of the joints in mosaicking image. Chon et al. [17] used the normalized cross
correlation (NCC) to construct a new object function that could effectively evaluate mismatching
between two input images. This model determined the horizontal expectations of the largest difference
in overlapping region, and then detected the position of the best seamline using Dijkstra’s algorithm.
It could contain fewer high-energy pixels in a long seamline. Yu et al. [18] constructed a combined
energy function with a combination of multiple image similarity measures, including pixel-based
similarity (color, edge, texture), region-based similarity (saliency) and location constraint, and then
determined the seamline by dynamic programming (DP) [19]. Li et al. [20] extracted the histogram
of oriented gradient (HOG) feature to construct an energy function, then detected the seamline by
graph cuts.

Many of the methods described above considered seamline detection as an energy optimization,
characterizing the difference between input images in overlapping regions by constructing a
special energy function (cost). Image information should be contained in the cost comprehensively,
e.g., the color, the gradient, the texture feature and the edge strength, and then find the optimal solution
through different optimization algorithms, such as dynamic programming, Dijkstra’s algorithm [21],
snake model [15], and graph cuts [22,23]. The core issue is how to avoid the seamline passing through
the obvious objects in overlapping area. Owing to the differences of input images, there will be pixel
misalignment and color differences near the seamline in the mosaicking image when the seamline
passes through the obvious objects. This manifests as the obvious “seam” which can compromise the
integrity of objects. Therefore, the seamline should pass through smooth texture region, such as roads,
rivers, grass, i.e., background regions, bypassing the obvious objects, such as buildings or cars. It is
beneficial to avoid the seamline from passing through the obvious objects to extract the pixel position
of objects accurately. Namely, segmentation of the input image is necessary.

Pan et al. [24] proposed an urban image mosaicking method based on segmentation, which
determined preferred regions by the mean-shift (MS) algorithm and calculated the color difference
as the cost. Firstly, the input images were segmented by the mean-shift algorithm and then the span
of every segmented region was computed. Then preferred regions were determined based on the
given threshold of the span which was consistent with the size of the largest obvious object in the
overlapping regions. Ideally, most of the obvious objects are smaller than the grass or street areas,
which are segmented into smaller regions, so that the selected preferred regions do not contain obvious
objects, such as buildings, cars, etc. Under the realistic condition, there are some difficulties in the
implementation of the method. The result of segmentation strongly depends on the parameters of the
mean-shift algorithm, such as bandwidth. In addition, the threshold of the span is related to the size
of the objects of the overlapping region, which cannot be completed automatically and needs to be
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given artificially for each image. Furthermore, the size of the obvious object is not always smaller than
the street or the grass, so we cannot accurately extract the preferred regions without obvious objects.
This method is too simple to construct the cost map, only considering the color difference, but not
the other aspects, e.g., texture or edge. Saito et al. [25] proposed a seamline determination method
based on semantic segmentation by training a convolution neural network (CNN). The model can
effectively avoid the buildings and obtain a good mosaicking. However, the model needs large-scale
image datasets for training, and it is very time consuming.

In this paper, a novel method for seamline determination is presented based on a parametric kernel
graph cuts (PKGC) segmentation algorithm [26] for remote sensing image mosaicking. We determine
the seamline via a two-level optimization strategy. Object-level optimization is executed firstly. The
cost map is weighted by the background regions (BRs) determined by the results of the PKGC
segmentation. The cost map contains the color difference, gradient constraint, and texture difference.
Then the pixel-level optimization by Dijkstra’s algorithm is carried out to determine the seamline in
the weighted cost. This paper is organized as follows: Section 2 describes the novel method of this
paper. Section 3 presents the experimental results and the discussion. Section 4 summarizes this paper.

2. Methods

Considering the integrity of the mosaicking image, the seamline should pass through flat areas
of texture, such as rivers and meadows, bypassing the obvious objects, such as buildings. Therefore,
we can set the background regions (BRs) and obvious regions (ORs) with an image segmentation
method. The seamline prefers to pass through BRs and round ORs.

The corresponding relation of the overlap area of the input images will be determined after
pretreatment and registration for input images [27]. Then the seamline can be detected in the
overlapping region. Firstly, we determine BRs based on the segmentation by the PKGC algorithm.
Then we construct the global cost considering the color difference, the multi-scale morphological
gradient (MSMG) constraint, and texture difference. Finally, we determine the pixel position of the
seamline by Dijkstra’s algorithm based on the weighted cost map. Figure 1 shows the flowchart of
this method.
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2.1. BR Determination

Segmentation by PKGC: The PKGC algorithm borrows from the idea of kernel k-means, and a
kernel function φ is introduced in the segmentation. The image data is implicitly mapped into the
high-dimensional feature space. This makes it possible to highlight the slight difference between the
image data, so that the original data, which cannot be divided, is linearly separable (or approximately
linear), as Figure 2 shows. This is helpful to construct the piecewise constant model (PCM) containing
only the dot product operation and the unsupervised segmentation function. By Mercer’s theorem,
any continuous, symmetric and positive semi-definite kernel function can be expressed as a dot
product of higher dimensional space without knowing the mapping.
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The kernel graph cuts model needs to set Nseg marks for the Nseg regions firstly, and then every
pixel of the image is assigned a mask. Finally, determine which region that each pixel belongs to
according to the mark. The segmentation by graph cuts method in the kernel-induced space is
transformed into finding a mark allocation scheme to minimize the energy function. The energy
function contains two items: the first is the kernel-induced distance term, which is used to estimate the
deviation between the mapped data in each region of the PCM model, and the second is the smoothing
term which can smooth adjacent pixels. The energy function is as follows:

EK({µl}, λ) = ∑
l∈L

∑
p∈Rl

JK(φ(µl)− φ(Ip))
2
+ α ∑
{p,q}∈N

r(λ(p), λ(q)) (1)

where EK is the non-Euclidean distance between the region’s parameter and the observations. µl
is the PCM parameter of region Rl , which can be acquired by the k-means clustering algorithm. λ

is the indexing function assigning a label to the pixel. l is the label of the segmentation region. L
is the number of segmentation regions. Rl means the region of label l. φ is the nonlinear mapping
from image space I to the higher dimensional feature space J. The commonly-used function is the
radial basis function (RBF), K(y, z) = exp(−

∣∣∣∣y− z
∣∣∣∣2/σ2) . p and q represent two adjacent pixels.

r(λ(p), λ(q)) is the smoothing function, r(λ(p), λ(q)) = min
{

c,
∣∣∣µλ(p) − µλ(q)

∣∣∣2}, where c is constant.
α is a non-negative factor used to weigh the two terms. Then introducing the kernel function:

K(y, z) = φ(y)T• φ(z), ∀(y, z) ∈ I2 (2)
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where “•” is the dot product in the feature space. The non-Euclidean distance of the feature space can
be expressed as follows:

JK(Ip, µ) =
∣∣∣∣φ(Ip)− φ(µ)

∣∣∣∣2
= K(Ip, Ip) + K(µ, µ)− 2K(Ip, µ), µ ∈ {µl}1≤l≤Nreg

(3)

Then, substitution of Equation (3) into Equation (1) results in the expression:

EK({µl}, λ) = ∑
l∈L

∑
p∈Rl

JK(Ip, µl)
2
+ α ∑
{p,q}∈N

r(λ(p), λ(q)) (4)

Clearly, the solution of Equation (4) depends only on the regional parameters {µl}l=1,2,··· ,Nreg
and

the indexing function λ. The iterative two-step optimization method is used to minimize the
function. Firstly, fix the labeling results (image segmentation) and update the current statistics region
parameter. Optimize EK for the given kernel function. Then search for optimal labeling results
(image segmentation) using the graph cuts iteration base on the region parameter obtained above.

Determining BRs: The image can be segmented into the foreground obvious objects regions and
the background regions. Two input images are segmented using the PKGC algorithm independently.
The BRs determine the intersection of the segmentation results of the left image and the right
image. The remaining regions of overlapping area are regarded as ORs, i.e., the union of the
segmentation results.

2.2. Constructing the Energy Function

We consider the following steps to construct a more accurate energy function. Firstly, calculate
the global energy function C(x, y) and then obtain the weighted cost D(x, y) weighted by the BRs.
Let the compound image I be the overlapping region of the input left image I1 and the right image I2.
The global energy function C(x, y) of pixel (x, y) contains several aspects as follows:

2.2.1. Color Difference

Color difference is the most common energy function in seamline detection for image mosaicking.
We calculate the difference in the HSV (hue, saturation, value) color space instead of the common RGB
space. The color difference δc(x, y) is defined as follows:

δc(x, y) = ω|V1(x, y)−V2(x, y)|+ (1−ω)|(S1(x, y)− S2(x, y))| (5)

where V1(x, y) and S1(x, y) is the intensity values of pixel (x, y) in the V and S channels of the HSV
space of the left image I1. Weight coefficient ω ∈ [0, 1] is used to balance the effects of V and S channels,
and equals 0.95 in this paper. Similarly, V2(x, y) and S2(x, y) express analogous meaning.

2.2.2. MSMG Constraint

In the image morphological processing, the structural element is a common tool for image
feature extraction and the structural element with different shapes can extract different image
features. Furthermore, changing the size of the element can be extended to the multi-scale space [28].
The gradient can represent the sharpness of an image [29,30]. The comprehensive gradient feature will
be extracted by the multi-scale morphological gradient operator [31,32]. In this paper, we propose a
novel multi-angle linear structural element to extract the multi-scale morphological gradient (MSMG),
extracting the multi-scale gradient of each angle and then combining them into the multi-scale
morphological gradient, as Figure 3 shows. The details of this method are given as follows:
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Firstly, construct the multi-scale element:

SEθ
j = SEθ

1 ⊕ SEθ
1 · · · ⊕ SEθ

1︸ ︷︷ ︸
j

, j ∈ {1, 2, · · · , n}, θ ∈ {θ1, θ2, · · · , θm} (6)

where SEθ
1 is the basic linear structural element with length l and angle θ, and n is the sum of scales.

Then the gradient feature Gθ
j with scale j and angle θ will be extracted by the above operator.

Let image I = f (x, y).
Gθ

j (x, y) = f (x, y)⊕ SEθ
j − f (x, y)	 SEθ

j (7)

where ⊕ and 	 is the morphological dilation and erosion respectively, which are defined as:

f ⊕ SE = max
(u,v)

( f (x− u, y− v) + SE(u, v)) (8)

f 	 SE = min
(u,v)

( f (x + u, y + v)− SE(u, v)) (9)

where (x, y) is the coordinate of the pixel in the image, and (u, v) is the coordinate of the
structural element.

According to the above definition, the maximum and minimum gray value of the local image
region can be obtained by dilation and erosion operators, respectively. The morphological gradient is
defined as the difference of the dilation and erosion, which can extract the local information effectively.
Meanwhile, we can obtain more comprehensive information by changing the scale and angle of the
linear structural element. The large scale indicates the gradient information within long distances,
while the gradient information with short distances is indicated by the small scale. Angle 0◦ indicates
the horizontal gradient information, and angle 90◦ indicates the vertical gradient information.

Finally, gradients of all scales and all angles are integrated into the multi-scale morphological
gradient MSMG.

MSMG(x, y) =

√√√√√2
m
∑

θ=1
(

n
∑

j=1
ε j · Gθ

j (x, y))
2

m
(10)

where m is the number of angle θ, and θ =
{

0
◦
, 45

◦
, 90

◦
, 135

◦}
in this paper, i.e., m = 4. n is the

numbers of scales, and n = 5 in this paper. ε j is the weight of gradient in scale j, ε j = 1/(2× j + 1).
The MSMG constraint δg(x, y) of pixel (x, y) is defined as:

δg(x, y) = max(MSMG1(x, y), MSMG2(x, y)) (11)

where MSMG1(x, y) and MSMG2(x, y) are the multi-scale morphological gradients of the pixel (x, y)
in the left I1 image and the right image I2.
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2.2.3. Texture Difference

In this paper, we calculate the image entropy of the 3 × 3 neighborhood of the pixel to represent
the local texture features of the image. We iterate through all pixels using the entropy filter of size 3 in
the implementation. Image entropy is the measure of data randomness in an image’s gray histogram,
which is calculated by:

It = −∑ p log2 p (12)

where p is the total number of histograms of image I. The detail texture information cannot be
represented by image entropy due to only being based on the frequency of neighborhood data
regardless of the intensity contrast. Considering the amalgamating of the variations of illumination
and contrast in the image, it is considered adequate to regard image entropy as the coarse representation
of texture features. The texture difference δt is defined as following.

δt(x, y) = abs(It
1(x, y)− It

2(x, y)) (13)

where It
1(x, y)is the image entropy of the 3 × 3 neighborhood of the pixel (x, y) in the image, similar

to It
2(x, y).

The global cost C(x, y) is combined by the above three terms.

C(x, y) = (δc(x, y) + δg(x, y))× δt(x, y) (14)

Then we weight C(x, y) by the BRs obtained in Section 2.1 to obtain the weighted cost D(x, y).

D(x, y) =

{
υC(x, y), f (x, y) ∈ BRs

C(x, y), otherwise
(15)

where υ is the weight coefficient of BRs, 0 < υ < 1. The seamline should preferentially pass through
the BRs around the obvious objects, so we give a small weight value for the BRs.

2.3. Pixel-Level Optimization

The purpose of the pixel-level optimization is to optimize the location of the seamline in the local
area. As shown in Figure 4, the overlap area of the image can be gained after determining the relation
of the input images, and the intersection of the input images edges is determined as the start and end
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point of the seamline. Then we detect the shortest path based on the weighted cost from the start point
to the end point.

Dijkstra’s algorithm is a global optimization technique to find the shortest path between the
two nodes in the graph. Each pixel in the overlapping region is regard as one node which has eight
neighbor nodes. As shown in Figure 5, the local cost is calculated based on the cost difference of
neighbor nodes when detecting the shortest path using Dijkstra’s algorithm. Let (x, y) be one node
and (km, lm) be a neighbor node of this node. The local cost of these two nodes is defined as:

dxy,km lm = |D(x, y)− D(km, lm)|, m = 1, 2, · · · , 8 (16)

where D(x, y) and D(km, lm) are the weighted cost of pixel (x, y) and (km, lm). Let NBR(x, y) be all
adjacent nodes of the node (x, y). cost(x, y) and cost(km, lm) represent the global minimum cost from
the start node to pixel (x, y) and (km, lm), respectively.

cost(x, y) = min(dxy,kl + cost(km, lm); (km, lm) ∈ NBR(x, y)) (17)
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2.4. Multi-Image Seamline Detection

We introduce the method of seamline determination in a two-image overlapping region and can
obtain a panoramic image with a wide field of view and high resolution by mosaicking a set of images
using this method. As shown in Figure 6a, in the process of multi-image mosaicking, we hope that
there is no multi-image overlap, i.e., the overlapping regions are all two-image overlap. In practical
applications, the regions are always multi-image overlap. Figure 6b shows an illustrative example
where the overlapping region is overlapped by three input images A, B, and C. The traditional method
is to detect the seamline just between each of the two images, named frame-to-frame [33]. To mosaic
multiple images more accurately, we propose a new optimization strategy to detect seamlines for
multi-image overlap. Firstly we find the point p(x, y) which is the weighted cost minimum in the
setting rectangle. The center of this rectangle is the center of the multi-image overlapping region and
its length and height are a quarter of the overlapping region. Then we detect the seamlines from the
point p(x, y) to the joint points of AB, AC, and BC. Finally, the panoramic image is mosaicked based
on the optimal seamlines.
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3. Experiment and Discussion

The method we proposed was implemented by C++ (VC 10.0) and Matlab (2012b), combined.
A desktop computer with an Intel Core i5 CPU at 3.2 GHz and 4 GB of memory was used. Experiments
were conducted using three sets of orthoimages. In order to improve the efficiency, we built one
pyramid level that was built by a reduction factor of three with a 3 × 3 average filter. Five sets of
experiments were carried out to verify the effectiveness and superiority of our method.

3.1. Experiment of Image Segmentation

An image segmentation comparison was performed for Image Set 1 to verify the advantages of
the BRs obtained by the PKGC segmentation we introduced in Section 2.1. Mean-shift was also carried
out in the pyramid with parameter (hs, hr, M) = (6, 5, 30), where (hs, hr) is the bandwidth and M is
the smallest feature size. The weight υ of BRs was 0.1.

The results of image segmentation are displayed in Figure 7. Figure 7a,b shows the left image and
the right image, respectively, whose size is 3800 × 3200 pixels and the dotted rectangle indicates the
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overlapping areas. The input images are segmented by mean-shift segmentation proposed in Pan’s
method. The span of regions that are larger than the given threshold ST will be extracted as the BRs.
ST is the threshold of the span and usually equals the maximum size of significant targets. We test a
set of different values ranging from 30 to 200 for determining the appropriate threshold ST . When ST
is small, the BRs can be extracted, but the obvious objects with the larger size will be treated as BRs,
as the red rectangles show in Figure 7c (ST = 50). When ST is larger, it can increase the extraction of
obvious objects, but at the same time the background area cannot effectively be separated and will be
regarded as ORs, as the blue rectangles show in Figure 7d (ST = 180). When the background region
is too small, or the object is too large, it cannot be effectively segmented no matter what value ST is
equal to, as the green rectangles show in Figure 7c,d. Figure 7e shows the segmentation result based
on the PKGC algorithm. The objects and background can be segmented effectively by our method as
the rectangles show. Therefore, the BRs obtained by our method are more accurate. The BRs getting
by Pan’s method depend on the value of the span threshold ST . We must give a suitable ST for every
input image manually, which is apparently difficult. If the size of the object is larger than the size
of the maximum background area, ST , which can distinguish the large objects and the backgrounds,
is non-existent, so the seamline passes through the obvious objects. Figure 7f shows the seamlines
based on Pan’s method (ST = 80) and our method. The green line is Pan’s method and the red line is
ours. Figure 7g shows the enlarged details of the yellow rectangle regions in Figure 7f. We can see that
the seamline by the proposed method successfully bypasses all of the obvious objects, but the seamline
by Pan’s method passes through the buildings.
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gray difference of the corresponding pixel is the same as the cost of the overlapping region directly, 
as Figure 8c shows. Although this method is simple, its stability is not strong, especially when the 
brightness difference of the overlapping region is small. Comprehensively considering the gray, 
texture, and edge information of the image, we proposed a new method to construct the energy 
function. Especially, the MSMG we proposed in Section 2.2.2 can extract the gradient information in 
scale space effectively, so the energy function is more accurate. As Figure 8d shows, the edge and the 
texture information are extracted comprehensively and clearly. Figure 8e shows the location of 
seamlines based on the cost of Pan’s method and our method. The green line is Pan’s method and the 
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segmentation result (ST = 50); (d) mean-shift segmentation result (ST = 80); (e) PKGC segmentation
result; (f) seamlines by Pan’s method (green line) and ours (red line); (g) details marked rectangles in (f).

3.2. Experiment of Energy Function

In order to verify the rationality of the energy function proposed in Section 2.2, we compared our
cost and Pan’s cost, then analyzed the results of the experiment for Image Set 2. The weight parameter
of the color difference ω = 0.95. In the process of calculating the MSMG, angle θ =

{
0
◦
, 45

◦
, 90

◦
, 135

◦}
and the numbers of scales n = 5. The results of the energy function are displayed in Figure 8. Figure 8a,b
shows the left image and the right image, respectively, whose size is 1900 × 1400 pixels, and the dotted
rectangle indicates overlapping areas. The absolute value of the gray difference of the corresponding
pixel is the same as the cost of the overlapping region directly, as Figure 8c shows. Although this
method is simple, its stability is not strong, especially when the brightness difference of the overlapping
region is small. Comprehensively considering the gray, texture, and edge information of the image,
we proposed a new method to construct the energy function. Especially, the MSMG we proposed in
Section 2.2.2 can extract the gradient information in scale space effectively, so the energy function is
more accurate. As Figure 8d shows, the edge and the texture information are extracted comprehensively
and clearly. Figure 8e shows the location of seamlines based on the cost of Pan’s method and our
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method. The green line is Pan’s method and the red one is our method. The seamline based on our
method can effectively avoid significant target edges and regions with complex textures. The cost we
proposed can effectively reflect the salient information of the images. It can still extract the edge and
the texture of the image, even though the gray values of input images are close. Contrarily, the cost
based only on color difference is easily influenced by the brightness of the images. When the difference
of brightness is too small, the obvious objects will be submerged in the BRs and the seamline will pass
through the objects.
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seamline by iteration is intricate. Thus, the time-consumption is very large. Since the HOG feature 
of the 11 × 11 neighborhood is computed for every pixel, the calculation quantity is sizable. The 
main time-consumption of Pan’s method is to determine preferred regions, which need to compute 
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Figure 8. Experimental results of image set 2: (a) the left image; (b) the right image; (c) Pan’s cost;
(d) our cost; (e) seamlines based on Pan’s cost (green line) and ours (red line).

3.3. Analysis of Time-Consumption

For Image Set 1 and 2, we determined the seamline using Chon’s method [17], Li’s method [20],
Pan’s method [24], and the proposed method, respectively, then recorded the time-consumption and
the number of obvious objects passed through. Table 1 shows the performance comparison of different
methods. To compute the NCC in Chon’s method takes much time, and determining the seamline
by iteration is intricate. Thus, the time-consumption is very large. Since the HOG feature of the
11 × 11 neighborhood is computed for every pixel, the calculation quantity is sizable. The main
time-consumption of Pan’s method is to determine preferred regions, which need to compute the
span of every segmentation region. The more segmentation regions mean the more time-consumption.
The proposed method takes less time than other methods. Meanwhile the seamline does not pass
through any obvious object.

Table 1. Comparison of different methods.

Image Set Items Method Number of Pixels
in Seamline

Number of Obvious
Objects Passed Through

Processing Time
(s)

1

Chon’s 3694 2 buildings 835.63
Li’s 3546 2 buildings and 1 car 58.28

Pan’s 3975 5 buildings 37.20
The proposed 4158 None 10.87

2

Chon’s 1460 1 building 145.21
Li’s 1563 4 buildings 25.42

Pan’s 2254 6 buildings 13.76
The proposed 1911 None 8.42
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3.4. Analysis of Suppressing Noise

In order to test the performance of suppressing noise, we detected seamlines in the images
perturbed with Gaussian noise and Gamma noise. Figure 9a shows the original image. Figure 9b,c
are the images perturbed with Gaussian noise and Gamma noise. Figure 9d–f are the results of
segmentation using the PKGC algorithm. The PKGC algorithm is very strong to suppress noise.
As Figure 9e,f shows, obvious objects are segmented effectively. Thus, the seamlines based on the BRs
bypass the obvious objects, as Figure 9h,i show. Correspondingly, the method we proposed in this
paper is robust and stable to suppressing noise.
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The mosaicking dataset is captured by an aerial digital camera integrated in the airborne 
photoelectric platform. We use the unmanned aerial vehicle (UAV)-equipped airborne photoelectric 
platform to take images by whisk broom for a ground area. Figure 10 shows the process of obtaining 
the remote sensing image set. The experimental weather conditions are clear, the flight altitude AGL 

Figure 9. Experimental results of suppressing noise: (a) image without noise; (b) image with Gaussian
noise; (c) image with Gamma noise; (d) segmentation result of (a); (e) segmentation result of (b);
(f) segmentation result of (c); (g)seamline based on (d); (h) seamline based on (e), (i) seamline based on (f).

3.5. Experiment of Remote Sensing Image Mosaicking

The mosaicking dataset is captured by an aerial digital camera integrated in the airborne
photoelectric platform. We use the unmanned aerial vehicle (UAV)-equipped airborne photoelectric
platform to take images by whisk broom for a ground area. Figure 10 shows the process of obtaining
the remote sensing image set. The experimental weather conditions are clear, the flight altitude
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AGL is 2.1 km, the flight velocity is 30 m/s. The image is captured by an aerial visible light camera,
the resolution is 3288 × 2192 pixels, the pixel size is 0.5 µm, the focal length f = 130.2 mm.
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Figure 10. Obtaining remote sensing image set.

Figure 11a exhibits the remote sensing image dataset. Figure 11b gives the positional relations
and overlapping regions between image sequences and the blue rectangle is the edge of each image.
Figure 11c shows the seamlines detected in each overlapping region of the two images. Figure 11d are
the optimal seamlines using the method we proposed in Section 2.4. Figure 11e shows the enlarged
details of the yellow rectangle regions in Figure 11d. The detailed picture shows that the seamlines
can effectively avoid the significant target, and pass through the background regions with a smooth
texture, such as road, grass, and so on. The seamlines can provide a strong guarantee for the follow-up
mosaicking. The comparison of seamlines detected in each two-image overlapping (TIO) region and
multi-image overlapping (MIO) region is shown in Table 2. We can see that the optimal method for
multi-image seamline detection proposed in Section 2.4 can determine a seamline with fewer pixels
and takes less time, only 69.16% of TIO. Meanwhile, the optimal method can effectively resolve the
problem that the seamline passes through the obvious objects near the edge of the overlapping region.
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We mosaic this dataset by the pixel fusion method, two-image overlap seamlines, and the 
multi-image overlap seamlines method. Figure 12 shows the compare of mosaicking results by 
different methods, the first row of which is the result and details by pixel fusion method. The second 
row is the result based on two-image overlap seamlines and the third row shows the result and 
details based on the multi-image overlap seamlines. When using the pixel fusion method, the ghost 
effect will exist in the regions that the corresponding pixels are misaligned. The uneven brightness 
also exists when the brightness differences are too large. When using the two-image seamlines 

Figure 11. Experimental results of image mosaicking: (a) the remote sensing image set; (b) positional
relations and overlapping regions; (c) seamlines in two-image overlap; (d) optimal seamlines; (e) the
details of yellow rectangles in (d).

Table 2. Comparison of seamlines.

Number of Image
Overlapping Region

Type of
Seamline

Number of Pixels
in Seamline

Number of Obvious
Objects Passed Through

Processing
Time (s)

1-2
TIO 2916 1 2.19
MIO 2277 0 1.68

1-4
TIO 3302 0 2.10
MIO 2897 0 1.58

2-3
TIO 3255 0 1.92
MIO 1863 0 1.42

2-5
TIO 3012 2 1.92
MIO 1986 0 1.49

3-6
TIO 3706 1 2.52
MIO 3163 1 2.01

4-5
TIO 3300 0 1.95
MIO 1646 0 1.41

4-7
TIO 3693 2 1.58
MIO 2124 1 1.06

5-6
TIO 2755 1 1.96
MIO 1598 0 1.50

5-8
TIO 3621 1 1.48
MIO 2320 0 0.95

6-9
TIO 4270 1 2.62
MIO 2747 0 2.08

7-8
TIO 4114 0 2.56
MIO 2793 0 2.03

8-9
TIO 3711 0 2.23
MIO 3396 0 1.77

We mosaic this dataset by the pixel fusion method, two-image overlap seamlines, and the
multi-image overlap seamlines method. Figure 12 shows the compare of mosaicking results by
different methods, the first row of which is the result and details by pixel fusion method. The second
row is the result based on two-image overlap seamlines and the third row shows the result and details
based on the multi-image overlap seamlines. When using the pixel fusion method, the ghost effect will
exist in the regions that the corresponding pixels are misaligned. The uneven brightness also exists
when the brightness differences are too large. When using the two-image seamlines method, there will
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be the geometrical dislocations in the misaligned regions and uneven brightness in the regions of the
large brightness difference, showing the obvious “seam”. The multi-image overlap seamlines method
can solve the above problems effectively. There are no obvious seams, no geometric misalignments,
no ghosting, and a high quality of reproduction in the panoramic mosaicking image.
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The proposed method is effective and excellent to determine seamlines for remote sensing image
mosaicking. However, there is still room for improvement in this method. When the size of the
objects is too small and the color is very close to the background, such as black cars in the shadow
of buildings, they cannot be extracted. Moreover, although the time-consumption is greatly reduced
compared with other methods, it is not sufficient for real-time processing. These issues will be solved
in future research.

4. Conclusions

We proposed a novel method to determine the seamline based on PKGC segmentation and
the combined cost for remote sensing image mosaicking. In this method, we segment the input
images by the PKGC algorithm and determine the BRs and ORs based on the result of segmentation
firstly. Then the global cost containing the color difference, MSMG constraint, and texture difference
is weighted by BRs. Finally, the seamline is determined in the weighted cost from the start point
to the end point. Dijkstra’s shortest path algorithm is used to optimize the seamline at the pixel
level. The BRs can automatically be obtained by PKGC segmentation in this method. Furthermore,
the combined cost can indicate the image information accurately. The new method for multi-image
seamline detection can effectively resolve the problems in multi-image mosaicking. Experimental
results demonstrate the effectiveness and superiority of the proposed method. Seamlines go within
roads or grass and successfully bypass the obvious objects. The performance of the proposed method
is much better and faster than Pan’s method. Moreover, this method is particularly suitable for images
with objects of larger size. The proposed method is effective and shows potential for remote sensing
image mosaicking. The mosaicking image based on the seamlines using the proposed method can
satisfy the requirements of both field of view and resolution.
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